1
|
Du W, Cheng Z, Pan X, Liu C, Yue M, Li T, Xiao Z, Li LL, Zeng X, Lin X, Li F, Dong LB. Microbe Engineering to Provide Drimane-Type Building Blocks for Chiral Pool Synthesis of Meroterpenoids. Angew Chem Int Ed Engl 2025; 64:e202419463. [PMID: 39714334 DOI: 10.1002/anie.202419463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 12/19/2024] [Accepted: 12/19/2024] [Indexed: 12/24/2024]
Abstract
Drimane-type merosesquiterpenoids (DMT) are a class of natural products with diverse structures and broad biological activity. Classical DMT synthesis relies on atom-inefficient plant-derived chiral pool building blocks, while alternative drimane-type building blocks such as drimenol and albicanol offer more direct routes but face production challenges. In this study, we engineered a microbial platform for efficient production of these building blocks. By optimizing the PhoN-IPK system through rational engineering and incorporating a Nudix hydrolase, we achieved a drimenol production of 398 mg/L and high albicanol titers of 1805 mg/L in shake flasks and 3.5 g/L in a bioreactor. Structural analysis and molecular dynamics simulations of the engineered PhoN provided insights into its improved catalytic efficiency. We demonstrated the utility of this platform by synthesizing several DMT using albicanol as the starting material, reducing the number of synthetic steps and improving overall efficiency as compared to classical approaches.
Collapse
Affiliation(s)
- Wenyu Du
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Zhongyu Cheng
- Department of Natural Medicine, School of Pharmacy Key Laboratory of Smart Drug Delivery (Ministry of Education), Fudan University, Shanghai, 201203, China
| | - Xingming Pan
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Chenhao Liu
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Mingyu Yue
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Tianhao Li
- Department of Natural Medicine, School of Pharmacy Key Laboratory of Smart Drug Delivery (Ministry of Education), Fudan University, Shanghai, 201203, China
| | - Zhixi Xiao
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Lu-Lu Li
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Xuelan Zeng
- Mudi Meng Honors College, China Pharmaceutical University, Nanjing, 211198, China
| | - Xiaoxu Lin
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Fuzhuo Li
- Department of Natural Medicine, School of Pharmacy Key Laboratory of Smart Drug Delivery (Ministry of Education), Fudan University, Shanghai, 201203, China
| | - Liao-Bin Dong
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| |
Collapse
|
2
|
Feng J, Qu N, Kalsoom S, Zhou Z, Zhang S, Cui Z, Zhong C, Ma M. Synthesis of drimanyl indole fragments of drimentine alkaloids and their antibacterial activities. Bioorg Med Chem Lett 2025; 116:130040. [PMID: 39586551 DOI: 10.1016/j.bmcl.2024.130040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 11/03/2024] [Accepted: 11/20/2024] [Indexed: 11/27/2024]
Abstract
Two types of drimanyl indole fragments of drimentine alkaloids were synthesized and evaluated their in vitro antibacterial activities using minimum inhibitory concentration. Analysis of structure-activity relationship against Ralstonia solanacearum revealed that fragment I exhibited superior inhibitory activity compared to fragment II. Notably, free NH of the indole motif was essential for antibacterial activity, while C12OH of the drimane skeleton was beneficial for enhancing the inhibitory effect. Compound 2, possessing these structural features, showed the highest activity to R. solanacearum among all the tested compounds with a MIC value of 8 µg/mL, indicating its potential as a promising lead for the development of novel antibiotics.
Collapse
Affiliation(s)
- Jili Feng
- College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Nini Qu
- College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China; College of Language and Culture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Summia Kalsoom
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Zunjun Zhou
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Shiyi Zhang
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Zhe Cui
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Chongmin Zhong
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Miaofeng Ma
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, Shaanxi, China.
| |
Collapse
|
3
|
Wu Y, Wang S, Guo Z, Sun M, Xu Z, Du Y, Zhu F, Su Y, Xu Z, Xu Y, Gong X, Fang R, Hu J, Peng Y, Ding Z, Liu C, Li A, He W. Hapalindole Q suppresses autophagosome-lysosome fusion by promoting YAP1 degradation via chaperon-mediated autophagy. Proc Natl Acad Sci U S A 2024; 121:e2400809121. [PMID: 39642207 DOI: 10.1073/pnas.2400809121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 09/18/2024] [Indexed: 12/08/2024] Open
Abstract
Autophagy is a conserved catabolic process crucial for maintaining cellular homeostasis and has emerged as a promising therapeutic target for many diseases. Mechanistically novel small-molecule autophagy regulators are highly desirable from a pharmacological point of view. Here, we report the macroautophagy-inhibitory effect of hapalindole Q, a member of the structurally intriguing but biologically understudied hapalindole family of indole terpenoids. This compound promotes the noncanonical degradation of Yes-associated protein 1 (YAP1), the downstream effector of the Hippo signaling pathway, via chaperone-mediated autophagy, disrupting proper distribution of Rab7 and suppressing autophagosome-lysosome fusion in macroautophagy. Its binding to YAP1 is further confirmed by using biophysical techniques. A preliminary structure-activity relationship study reveals that the hapalindole Q scaffold, rather than the isothiocyanate group, is essential for YAP1 binding and degradation. This work not only identifies a macroautophagy inhibitor with a distinct mechanism of action but also provided a molecular scaffold for direct targeting of YAP1, which may benefit the development of therapeutics for both autophagy-related and Hippo-YAP-related diseases.
Collapse
Affiliation(s)
- Yali Wu
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Shaonan Wang
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Zhicong Guo
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Min Sun
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Zhen Xu
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Yu Du
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Fahui Zhu
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Yajuan Su
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Zhou Xu
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Yi Xu
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Xu Gong
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Ruan Fang
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Jiaojiao Hu
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China
| | - Yan Peng
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Zhaowen Ding
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Cong Liu
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China
| | - Ang Li
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Weiwei He
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
4
|
Peng Y, Zhang Y, Fang R, Jiang H, Lan G, Xu Z, Liu Y, Nie Z, Ren L, Wang F, Zhang S, Ma Y, Yang P, Ge H, Zhang W, Luo C, Li A, He W. Target Identification and Mechanistic Characterization of Indole Terpenoid Mimics: Proper Spindle Microtubule Assembly Is Essential for Cdh1-Mediated Proteolysis of CENP-A. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305593. [PMID: 38873820 PMCID: PMC11304278 DOI: 10.1002/advs.202305593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 04/23/2024] [Indexed: 06/15/2024]
Abstract
Centromere protein A (CENP-A), a centromere-specific histone H3 variant, is crucial for kinetochore positioning and chromosome segregation. However, its regulatory mechanism in human cells remains incompletely understood. A structure-activity relationship (SAR) study of the cell-cycle-arresting indole terpenoid mimic JP18 leads to the discovery of two more potent analogs, (+)-6-Br-JP18 and (+)-6-Cl-JP18. Tubulin is identified as a potential cellular target of these halogenated analogs by using the drug affinity responsive target stability (DARTS) based method. X-ray crystallography analysis reveals that both molecules bind to the colchicine-binding site of β-tubulin. Treatment of human cells with microtubule-targeting agents (MTAs), including these two compounds, results in CENP-A accumulation by destabilizing Cdh1, a co-activator of the anaphase-promoting complex/cyclosome (APC/C) E3 ubiquitin ligase. This study establishes a link between microtubule dynamics and CENP-A accumulation using small-molecule tools and highlights the role of Cdh1 in CENP-A proteolysis.
Collapse
Affiliation(s)
- Yan Peng
- Shanghai Key Laboratory of New Drug DesignSchool of PharmacyEast China University of Science and TechnologyShanghai200237China
| | - Yumeng Zhang
- Shanghai Key Laboratory of New Drug DesignSchool of PharmacyEast China University of Science and TechnologyShanghai200237China
| | - Ruan Fang
- Shanghai Key Laboratory of New Drug DesignSchool of PharmacyEast China University of Science and TechnologyShanghai200237China
- State Key Laboratory of Chemical BiologyShanghai Institute of Organic ChemistryUniversity of Chinese Academy of SciencesChinese Academy of SciencesShanghai200032China
| | - Hao Jiang
- Drug Discovery and Design CenterState Key Laboratory of Drug ResearchShanghai Institute of Materia MedicaChinese Academy of SciencesShanghai201203China
| | - Gongcai Lan
- Shanghai Key Laboratory of New Drug DesignSchool of PharmacyEast China University of Science and TechnologyShanghai200237China
| | - Zhou Xu
- State Key Laboratory of Chemical BiologyShanghai Institute of Organic ChemistryUniversity of Chinese Academy of SciencesChinese Academy of SciencesShanghai200032China
| | - Yajie Liu
- Shanghai Key Laboratory of New Drug DesignSchool of PharmacyEast China University of Science and TechnologyShanghai200237China
| | - Zhaoyang Nie
- State Key Laboratory of Chemical BiologyShanghai Institute of Organic ChemistryUniversity of Chinese Academy of SciencesChinese Academy of SciencesShanghai200032China
- Henan Institute of Advanced Technology and College of ChemistryZhengzhou UniversityZhengzhou450001China
| | - Lu Ren
- State Key Laboratory of Chemical BiologyShanghai Institute of Organic ChemistryUniversity of Chinese Academy of SciencesChinese Academy of SciencesShanghai200032China
| | - Fengcan Wang
- Shanghai Key Laboratory of New Drug DesignSchool of PharmacyEast China University of Science and TechnologyShanghai200237China
| | - Shou‐De Zhang
- State Key Laboratory of Plateau Ecology and AgricultureQinghai UniversityXining810016China
| | - Yuyong Ma
- State Key Laboratory of Chemical BiologyShanghai Institute of Organic ChemistryUniversity of Chinese Academy of SciencesChinese Academy of SciencesShanghai200032China
| | - Peng Yang
- State Key Laboratory of Chemical BiologyShanghai Institute of Organic ChemistryUniversity of Chinese Academy of SciencesChinese Academy of SciencesShanghai200032China
- Henan Institute of Advanced Technology and College of ChemistryZhengzhou UniversityZhengzhou450001China
| | - Hong‐Hua Ge
- Institute of Physical Science and Information TechnologyAnhui UniversityHefei230601China
| | - Wei‐Dong Zhang
- Shanghai Key Laboratory of New Drug DesignSchool of PharmacyEast China University of Science and TechnologyShanghai200237China
- Department of PhytochemistrySchool of PharmacySecond Military Medical UniversityShanghai200433China
| | - Cheng Luo
- Drug Discovery and Design CenterState Key Laboratory of Drug ResearchShanghai Institute of Materia MedicaChinese Academy of SciencesShanghai201203China
| | - Ang Li
- State Key Laboratory of Chemical BiologyShanghai Institute of Organic ChemistryUniversity of Chinese Academy of SciencesChinese Academy of SciencesShanghai200032China
- Henan Institute of Advanced Technology and College of ChemistryZhengzhou UniversityZhengzhou450001China
| | - Weiwei He
- Shanghai Key Laboratory of New Drug DesignSchool of PharmacyEast China University of Science and TechnologyShanghai200237China
| |
Collapse
|
5
|
Ba M, He F, Ren L, Whittingham WG, Yang P, Li A. Scalable Total Synthesis of Acremolactone B. Angew Chem Int Ed Engl 2024; 63:e202314800. [PMID: 37932901 DOI: 10.1002/anie.202314800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 10/27/2023] [Accepted: 10/31/2023] [Indexed: 11/08/2023]
Abstract
Acremolactone B is a pyridine-containing azaphilone-type polyketide. The first total synthesis of this molecule was achieved on a gram scale, based on an aza-6π electrocyclization-aromatization strategy for construction of the tetra-substituted pyridine ring. A bicyclic intermediate was expeditiously prepared by using [2+2] photocycloaddition and chemoselective Baeyer-Villiger oxidation, which was further elaborated to a densely substituted aza-triene. An electrocyclization-aromatization cascade was utilized to forge the tetracyclic core of this natural product, and the side chain was introduced through diastereoselective acylation and reduction.
Collapse
Affiliation(s)
- Mengyu Ba
- College of Chemistry and Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou, 450001, China
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Fengqi He
- College of Chemistry and Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou, 450001, China
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Lu Ren
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - William G Whittingham
- Jealott's Hill International Research Centre, Syngenta Limited, Bracknell, Berkshire, RG42 6EY, UK
| | - Peng Yang
- College of Chemistry and Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou, 450001, China
| | - Ang Li
- College of Chemistry and Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou, 450001, China
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| |
Collapse
|
6
|
Hu N, Sun S, Wang X, Li S. Modular Synthesis and Antimicrobial Investigation of Mycoleptodiscin A and Simplified Indolosesquiterpenoids. Org Lett 2024; 26:5764-5769. [PMID: 38958211 DOI: 10.1021/acs.orglett.4c01932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
The structure-activity relationship of the unusual indolosesquiterpenoid mycoleptodiscin A is unknown due to natural scarcity and inefficient synthesis. A modular approach leveraging Larock indole synthesis has been established to access mycoleptodiscin A and a divergent collection of drimenyl indoles. It features the utilization of an inexpensive (+)-sclareolide, modularity, purification-economy, and scalability, which facilitates the first biological evaluation of mycoleptodiscin A and related precursors.
Collapse
Affiliation(s)
- Nvdan Hu
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
- College of Food and Pharmaceutical Engineering, Guizhou Institute of Technology, Guiyang, Guizhou 550003, China
| | - Shengxin Sun
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Xia Wang
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Shengkun Li
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| |
Collapse
|
7
|
Selective functionalization of benzylic C(sp3)–H bonds to synthesize complex molecules. Chem 2022. [DOI: 10.1016/j.chempr.2022.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
8
|
Kang J, Quynh Le T, Oh CH. Recent advances in abietane/icetexane synthesis. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2022.154133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
9
|
Gao Z, Ren L, Wang R, Shi L, Wang Y, Su F, Hao HD. Total Synthesis of (±)-Codonopiloneolignanin A. Org Lett 2021; 23:5684-5688. [PMID: 34251830 DOI: 10.1021/acs.orglett.1c01803] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
An intramolecular formal [3 + 2] cationic cycloaddition between benzylic carbocation and styrene was developed for the total synthesis of codonopiloneolignanin A. Further study shows benzocycloheptene as a good substrate for 1,3-dipolar cycloaddition, and a model study toward cephalocyclidine A skeleton was reported.
Collapse
Affiliation(s)
- Zhiyu Gao
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Li Ren
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Ruizhi Wang
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Liang Shi
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yanhai Wang
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Feng Su
- Department of Chemistry, Changzhi University, Changzhi 046011, Shanxi China
| | - Hong-Dong Hao
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, China.,State Key Laboratory of Bioorganic & Natural Products Chemistry, Shanghai Institute of Organic Chemistry (SIOC), Chinese Academy of Science, Shanghai 200032, China
| |
Collapse
|
10
|
Alachouzos G, Frontier AJ. Cyclization Strategies for the Concurrent Installation of Multiple Quaternary Stereogenic Centers. Isr J Chem 2021. [DOI: 10.1002/ijch.202100014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Georgios Alachouzos
- Stratingh Institute of Chemistry Rijksuniversiteit Groningen Nijenborgh 4 9747AG Groningen, The Netherlands
| | - Alison J. Frontier
- Department of Chemistry University of Rochester 414 Hutchison Hall, 100 Trustee Road Rochester New York 14627-0216 United States
| |
Collapse
|
11
|
Wong HNC, Peng XS, Zhong Z, Lyu MY, Ma HR. Pivotal Reactions in the Creation of the Polycyclic Skeleton of Cryptotrione. Synlett 2021. [DOI: 10.1055/a-1472-4594] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
AbstractThree pivotal reactions, namely, enyne cycloisomerization, polyene cyclization, and quinone methide formation, are applied to synthesize the complex polycyclic skeleton of cryptotrione. This review summarizes the most prominent applications of these three reactions to the total syntheses of natural products, covering results published in the literature between 2011 and 2020.1 Introduction2 Three Pivotal Reactions Applied to Create the Polycyclic Framework of Cryptotrione2.1 Enyne Cycloisomerization2.2 Polyene Cyclization2.3 Quinone Methide Formation3 Conclusion
Collapse
Affiliation(s)
- Henry N. C. Wong
- School of Science and Engineering, The Chinese University of Hong Kong (Shenzhen)
- Department of Chemistry, and State Key Laboratory of Synthetic Chemistry, The Chinese University of Hong Kong
| | - Xiao-Shui Peng
- School of Science and Engineering, The Chinese University of Hong Kong (Shenzhen)
- Department of Chemistry, and State Key Laboratory of Synthetic Chemistry, The Chinese University of Hong Kong
| | - Zhuliang Zhong
- Department of Chemistry, and State Key Laboratory of Synthetic Chemistry, The Chinese University of Hong Kong
| | - Mao-Yun Lyu
- Department of Chemistry, and State Key Laboratory of Synthetic Chemistry, The Chinese University of Hong Kong
| | - Hao-Ran Ma
- School of Science and Engineering, The Chinese University of Hong Kong (Shenzhen)
| |
Collapse
|
12
|
Li J, Ma Y, Zhang X, Cao X, Gong H, Li A. Expeditious and scalable preparation of a Li−Thiele reagent for amine-based bioconjugation. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2020.06.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
13
|
Tracy JS, Kalnmals CA, Toste FD. Beyond Allylic Alkylation: Applications of Trost Chemistry in Complex Molecule Synthesis. Isr J Chem 2021. [DOI: 10.1002/ijch.202000103] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Jacob S. Tracy
- Dept. of Chemistry University of California, Berkeley MC 1460 Berkeley CA 94720 USA
| | | | - F. Dean Toste
- Dept. of Chemistry University of California, Berkeley MC 1460 Berkeley CA 94720 USA
| |
Collapse
|
14
|
Lv SD, Tian T, Zhang LQ, Xu SY, Zhao DH, Wang JJ, Fu JG, Li YM, Feng CG. Total synthesis of (±)-Scrodentoid A. Tetrahedron 2019. [DOI: 10.1016/j.tet.2019.130774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
15
|
Quilez Del Moral JF, Domingo V, Pérez Á, Martínez Andrade KA, Enríquez L, Jaraiz M, López-Pérez JL, Barrero AF. Mimicking Halimane Synthases: Monitoring a Cascade of Cyclizations and Rearrangements from Epoxypolyprenes. J Org Chem 2019; 84:13764-13779. [PMID: 31559826 DOI: 10.1021/acs.joc.9b01996] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
We have developed and rationalized a biomimetic transformation mimicking halimane synthases based on a Lewis acid-catalyzed cascade of cyclizations and rearrangements of epoxypolyprenes. Two rings, three stereogenic centers, and a new double bond were generated in a single chemical operation. Based on this cascade transformation, we achieved a unified strategy toward the stereoselective total syntheses of halimene-type terpenoids and analogues as a proof-of-concept study. This method has been applied to the rapid synthesis of diterpene isotuberculosinol, a virulence factor of Mycobacterium tuberculosis as a representative example.
Collapse
Affiliation(s)
- José F Quilez Del Moral
- Department of Organic Chemistry, Institute of Biotechnology , University of Granada , 18071 Granada , Spain
| | - Victoriano Domingo
- Department of Organic Chemistry, Institute of Biotechnology , University of Granada , 18071 Granada , Spain
| | - Álvaro Pérez
- Department of Organic Chemistry, Institute of Biotechnology , University of Granada , 18071 Granada , Spain
| | - Kevin A Martínez Andrade
- Department of Organic Chemistry, Institute of Biotechnology , University of Granada , 18071 Granada , Spain
| | - Lourdes Enríquez
- Department of Electronics , University of Valladolid , 47011 Valladolid , Spain
| | - Martín Jaraiz
- Department of Electronics , University of Valladolid , 47011 Valladolid , Spain
| | - José Luis López-Pérez
- Department of Pharmaceutical Sciences, IBSAL-CIETUS , University of Salamanca , 37007 Salamanca , Spain.,Department of Pharmacology, Faculty of Medicine , University of Panama , 3366 Panama , Republic of Panama
| | - Alejandro F Barrero
- Department of Organic Chemistry, Institute of Biotechnology , University of Granada , 18071 Granada , Spain
| |
Collapse
|
16
|
Rössler SL, Petrone DA, Carreira EM. Iridium-Catalyzed Asymmetric Synthesis of Functionally Rich Molecules Enabled by (Phosphoramidite,Olefin) Ligands. Acc Chem Res 2019; 52:2657-2672. [PMID: 31243973 DOI: 10.1021/acs.accounts.9b00209] [Citation(s) in RCA: 229] [Impact Index Per Article: 38.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The catalytic, asymmetric synthesis of complex molecules has been a core focus of our research program for some time because developments in the area can have an immediate impact on the identification of novel strategies for the synthesis of value-added molecules. In concert with this central interest, we have emphasized the design of ligand scaffolds as a tactic to discover and develop novel chemistry and overcome well-recognized synthetic challenges. Based on our group's work on chiral pool-derived diolefin ligands, we designed and implemented a class of hybrid (phosphoramidite,olefin) ligands, which combines the properties of both phosphoramidite and olefin motifs to impact, fine-tune, and even override the inherent reactivity of the metal center. Specifically, we have utilized these unique modifying ligands to address several recognized limitations in the field of iridium-catalyzed, asymmetric allylic substitution. The methods we have documented typically employ branched, unprotected allylic alcohols as substrates and obviate the need for rigorous exclusion of air and moisture. Following Takeuchi's seminal report demonstrating the high aptitude of Ir(I)-phosphite catalysts for branch-selective allylic substitution, concerted efforts from numerous research laboratories have led to a broadening of the synthetic utility of this reaction class. The first section of this Account outlines the process leading to our discovery of an unprecedented (phosphoramidite,olefin) ligand and its validation in the first iridium-catalyzed amination of branched, unprotected allylic alcohols. This section continues with our work involving heteroatom-based nucleophiles within inter- and intramolecular etherification, thioetherification and spiroketalization processes. The second section highlights the use of readily available carbon nucleophiles possessing sp, sp2, and sp3 hybridization in a series of enantioselective carbon-carbon bond-forming reactions. We describe how alkylzinc, allylsilane, and several classes of organotrifluoroborate nucleophiles can be coupled enantioselectively to enable construction of several key motifs including 1,5-dienes, 1,4-dienes, and 1,4-enynes. Since the unique electronic and steric properties of this class of ligands renders the (η3-allyl)-Ir(III) intermediate highly electrophilic, even weak nucleophiles such as alkyl olefins can be used. We also show that more nucleophilic alkene motifs such as enamines and in situ generated ketene acetals smoothly participate in substitution reactions with allylic alcohols to yield valuable piperidines and γ,δ-unsaturated esters, respectively. The concept of stereodivergent dual catalysis, which synergistically combines chiral amine catalysis with iridium catalysis to furnish α-allylated aldehydes containing two independently controllable stereocenters is then discussed. This process has enabled the independent, stereoselective synthesis of all four possible product stereoisomers from a single set of starting materials, and was highlighted in the stereodivergent synthesis of Δ9-tetrahydrocannabinol. This Account concludes with an overview of our organometallic mechanistic studies regarding relevant intermediates within the catalytic cycle of this class of allylic substitution. These studies have allowed us to better understand the origin of the unique characteristics exhibited by this catalyst in comparison to related systems.
Collapse
|
17
|
Zhang X, Fang X, Xu M, Lei Y, Wu Z, Hu X. Enantioselective Total Synthesis of Pseudopteroxazole and Ileabethoxazole. Angew Chem Int Ed Engl 2019; 58:7845-7849. [DOI: 10.1002/anie.201901651] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 03/18/2019] [Indexed: 12/13/2022]
Affiliation(s)
- Xuan Zhang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education College of Chemistry & Materials ScienceNorthwest University Xi'an 710127 China
| | - Xianhe Fang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education College of Chemistry & Materials ScienceNorthwest University Xi'an 710127 China
| | - Miao Xu
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education College of Chemistry & Materials ScienceNorthwest University Xi'an 710127 China
| | - Yibo Lei
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education College of Chemistry & Materials ScienceNorthwest University Xi'an 710127 China
| | - Zibo Wu
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education College of Chemistry & Materials ScienceNorthwest University Xi'an 710127 China
| | - Xiangdong Hu
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education College of Chemistry & Materials ScienceNorthwest University Xi'an 710127 China
| |
Collapse
|
18
|
Zhang X, Fang X, Xu M, Lei Y, Wu Z, Hu X. Enantioselective Total Synthesis of Pseudopteroxazole and Ileabethoxazole. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201901651] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Xuan Zhang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education College of Chemistry & Materials ScienceNorthwest University Xi'an 710127 China
| | - Xianhe Fang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education College of Chemistry & Materials ScienceNorthwest University Xi'an 710127 China
| | - Miao Xu
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education College of Chemistry & Materials ScienceNorthwest University Xi'an 710127 China
| | - Yibo Lei
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education College of Chemistry & Materials ScienceNorthwest University Xi'an 710127 China
| | - Zibo Wu
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education College of Chemistry & Materials ScienceNorthwest University Xi'an 710127 China
| | - Xiangdong Hu
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education College of Chemistry & Materials ScienceNorthwest University Xi'an 710127 China
| |
Collapse
|
19
|
Xue D, Xu M, Zheng C, Yang B, Hou M, He H, Gao S. Titanium-promoted Intramolecular Photoenolization/Diels-Alder Reaction to Construct Polycyclic Terpenoids: Formal Synthesis of Mycoleptodiscin A. CHINESE J CHEM 2019. [DOI: 10.1002/cjoc.201800555] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Dongsheng Xue
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering; East China Normal University; 3663N Zhongshan Road, Shanghai 200062 China
| | - Mengmeng Xu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering; East China Normal University; 3663N Zhongshan Road, Shanghai 200062 China
| | - Chaoying Zheng
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering; East China Normal University; 3663N Zhongshan Road, Shanghai 200062 China
| | - Baochao Yang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering; East China Normal University; 3663N Zhongshan Road, Shanghai 200062 China
| | - Min Hou
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering; East China Normal University; 3663N Zhongshan Road, Shanghai 200062 China
| | - Haibing He
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development; East China Normal University; 3663N Zhongshan Road, Shanghai 200062 China
| | - Shuanhu Gao
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering; East China Normal University; 3663N Zhongshan Road, Shanghai 200062 China
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development; East China Normal University; 3663N Zhongshan Road, Shanghai 200062 China
| |
Collapse
|
20
|
Cheng Q, Tu HF, Zheng C, Qu JP, Helmchen G, You SL. Iridium-Catalyzed Asymmetric Allylic Substitution Reactions. Chem Rev 2018; 119:1855-1969. [PMID: 30582688 DOI: 10.1021/acs.chemrev.8b00506] [Citation(s) in RCA: 488] [Impact Index Per Article: 69.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In this review, we summarize the origin and advancements of iridium-catalyzed asymmetric allylic substitution reactions during the past two decades. Since the first report in 1997, Ir-catalyzed asymmetric allylic substitution reactions have attracted intense attention due to their exceptionally high regio- and enantioselectivities. Ir-catalyzed asymmetric allylic substitution reactions have been significantly developed in recent years in many respects, including ligand development, mechanistic understanding, substrate scope, and application in the synthesis of complex functional molecules. In this review, an explicit outline of ligands, mechanism, scope of nucleophiles, and applications is presented.
Collapse
Affiliation(s)
- Qiang Cheng
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry , University of Chinese Academy of Sciences, Chinese Academy of Sciences , 345 Lingling Lu , Shanghai 200032 , China
| | - Hang-Fei Tu
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry , University of Chinese Academy of Sciences, Chinese Academy of Sciences , 345 Lingling Lu , Shanghai 200032 , China
| | - Chao Zheng
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry , University of Chinese Academy of Sciences, Chinese Academy of Sciences , 345 Lingling Lu , Shanghai 200032 , China
| | - Jian-Ping Qu
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials , Nanjing Tech University , Nanjing 211816 , China
| | - Günter Helmchen
- Organisch-Chemisches Institut der Ruprecht-Karls , Universität Heidelberg , Im Neuenheimer Feld 270 , D-69120 Heidelberg , Germany
| | - Shu-Li You
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry , University of Chinese Academy of Sciences, Chinese Academy of Sciences , 345 Lingling Lu , Shanghai 200032 , China
| |
Collapse
|
21
|
Zhou S, Guo R, Yang P, Li A. Total Synthesis of Septedine and 7-Deoxyseptedine. J Am Chem Soc 2018; 140:9025-9029. [DOI: 10.1021/jacs.8b03712] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Shupeng Zhou
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Rui Guo
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Peng Yang
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Ang Li
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| |
Collapse
|
22
|
Abstract
The first enantioselective total synthesis of (-)-petromindole, an architecturally distinct congener of indole diterpene family, has been achieved. Key features of this synthetic route include the scalable and concise synthesis of tricyclic allylic alcohol from enantiopure Wieland-Mischer ketone derivative, and TMSOTf-mediated, highly efficient biomimetic C-4 cyclization of indole derivative for the rapid construction of a hexacyclic skeleton of petromindole.
Collapse
Affiliation(s)
- Dattatraya H Dethe
- Department of Chemistry, Indian Institute of Technology Kanpur , Kanpur-208016, India
| | - Susanta Kumar Sau
- Department of Chemistry, Indian Institute of Technology Kanpur , Kanpur-208016, India
| |
Collapse
|
23
|
Chen P, Wu Y, Zhu S, Jiang H, Ma Z. Ir-Catalyzed reactions in natural product synthesis. Org Chem Front 2018. [DOI: 10.1039/c7qo00665a] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
This review highlights the recent applications of Ir-catalyzed reactions in the total synthesis of natural products.
Collapse
Affiliation(s)
- Pengquan Chen
- Key Lab of Functional Molecular Engineering of Guangdong Province
- School of Chemistry & Chemical Engineering
- South China University of Technology
- Guangzhou 510641
- People's Republic of China
| | - Yuecheng Wu
- Key Lab of Functional Molecular Engineering of Guangdong Province
- School of Chemistry & Chemical Engineering
- South China University of Technology
- Guangzhou 510641
- People's Republic of China
| | - Shifa Zhu
- Key Lab of Functional Molecular Engineering of Guangdong Province
- School of Chemistry & Chemical Engineering
- South China University of Technology
- Guangzhou 510641
- People's Republic of China
| | - Huanfeng Jiang
- Key Lab of Functional Molecular Engineering of Guangdong Province
- School of Chemistry & Chemical Engineering
- South China University of Technology
- Guangzhou 510641
- People's Republic of China
| | - Zhiqiang Ma
- Key Lab of Functional Molecular Engineering of Guangdong Province
- School of Chemistry & Chemical Engineering
- South China University of Technology
- Guangzhou 510641
- People's Republic of China
| |
Collapse
|
24
|
Abstract
An overview of the highlights in total synthesis of natural products using iridium as a catalyst is given.
Collapse
Affiliation(s)
- Changchun Yuan
- School of Chemical Engineering and Technology
- North University of China
- Taiyuan 030051
- PR China
| | - Bo Liu
- Key Laboratory of Green Chemistry & Technology of Ministry of Education
- College of Chemistry
- Sichuan University
- Chengdu 610064
- PR China
| |
Collapse
|
25
|
Qu J, Helmchen G. Applications of Iridium-Catalyzed Asymmetric Allylic Substitution Reactions in Target-Oriented Synthesis. Acc Chem Res 2017; 50:2539-2555. [PMID: 28937739 DOI: 10.1021/acs.accounts.7b00300] [Citation(s) in RCA: 253] [Impact Index Per Article: 31.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Metal catalyzed allylic substitution is a cornerstone of organometallic and synthetic chemistry. Enantioselective versions have been developed with catalysts derived from transition metals, most notably molybdenum, nickel, ruthenium, rhodium, iridium, palladium, and copper. The palladium- and the iridium-catalyzed versions have turned out to be particularly versatile in organic synthesis because of the very broad scope of the nucleophile and great functional group compatibility. Assets of the iridium-catalyzed reaction are the formation of branched, chiral products from simple monosubstituted allylic substrates, high degrees of regio- and enantioselectivity, and use of modular, readily available chiral ligands. The possibility to use carbon, nitrogen, oxygen, and sulfur compounds as well as fluoride as nucleophiles allows a wide range of chiral building blocks to be prepared. Our Account begins with the presentation of fundamental reaction schemes and chiral ligands. We will focus our discussion on reactions promoted by phosphoramidite ligands, though numerous chiral ligands have been employed. The subsequent section presents a brief overview of reaction mechanism and experimental conditions. Two versions of the iridium-catalyzed allylic substitution have emerged. In type 1 reactions (introduced in 1997), linear allylic esters are commonly used as substrates under basic reaction conditions. In type 2 reactions (introduced in 2007), environmentally friendly branched allylic alcohols can be reacted under acidic conditions; occasionally, derivatives of allylic alcohols have also been applied. A unique feature of the type 2 reactions is that highly electrophilic allylic intermediates can be brought to reaction with weakly activated alkenes. The subsequent text is ordered according to the strategies followed to transform allylic substitution products to desired targets, most of which are natural products or drugs. Syntheses starting with an intermolecular allylic substitution are discussed first. Some fairly complex targets, for example, the potent nitric oxide inhibitor (-)-nyasol and the drug (-)-protrifenbute, have been synthesized via less than five steps from simple starting materials. Most targets discussed are cyclic compounds. Intermolecular allylic substitution with subsequent ring closing metathesis is a powerful strategy for their synthesis. Highlights are stereodivergent syntheses of Δ9-tetrahydrocannabinols (THC), wherein iridium- and organocatalysis are combined (dual catalysis). The combination of allylic alkylation with a Diels-Alder reaction was utilized to synthesize the ketide apiosporic acid and the drug fesoterodine (Toviaz). Sequential allylic amination, hydroboration and Suzuki-Miyaura coupling generates enones suitable for conjugate addition reactions; this strategy was employed in syntheses of a variety of alkaloids, for example, the poison frog alkaloid (+)-cis-195A (pumiliotoxin C). Intramolecular substitutions offer interesting possibilities to build up stereochemical complexity via short synthetic routes. For example, in diastereoselective cyclizations of chiral compounds, substrate control can be overruled by catalyst control in order to generate cis- and trans-isomers selectively from a given precursor. This approach was used to prepare a variety of piperidine and pyrrolidine alkaloids. Finally, complex polycyclic structures, including the structurally unusual indolosesquiterpenoid mycoleptodiscin A, have been generated diastereo- and enantioselectively from olefins by polyene cyclizations and from electron-rich arenes, such as indoles, in dearomatization reactions.
Collapse
Affiliation(s)
- Jianping Qu
- Institute of Advanced
Synthesis, Nanjing Tech University, Nanjing 211816, China
| | - Günter Helmchen
- Organisch-Chemisches Institut der Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, D-69120 Heidelberg, Germany
| |
Collapse
|
26
|
Haque MA, Jana CK. Regiodivergent Remote Arylation of Cycloalkanols to Dysideanone's Fused Carbotetracycles and Its Bridged Isomers. Chemistry 2017; 23:13300-13304. [PMID: 28771837 DOI: 10.1002/chem.201703094] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Indexed: 01/22/2023]
Abstract
Regiodivergent γ and γ' arylations across an all-carbon quaternary center of cycloalkanols to access enantioenriched fused and bridged carbotetracycles are reported. The conformation of the carbocation guided either sequential stereospecific β-C-Me/γ-C-H-shifts or β-C-Me/γ'-C-H-shifts, providing fused carbotetracyclic analogs of dysideanone or bridged tetracycles, respectively. The reaction is highly stereoselective in building three contiguous stereocenters, where one, two, or three could be all-carbon quaternary centers. Interestingly, mechanistic studies revealed a crucial role of a methyl substituent in controlling regioselectivity.
Collapse
Affiliation(s)
- Md Ashraful Haque
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, 781039, India
| | - Chandan K Jana
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, 781039, India
| |
Collapse
|
27
|
Zhang Z, Wang J, Li J, Yang F, Liu G, Tang W, He W, Fu JJ, Shen YH, Li A, Zhang WD. Total Synthesis and Stereochemical Assignment of Delavatine A: Rh-Catalyzed Asymmetric Hydrogenation of Indene-Type Tetrasubstituted Olefins and Kinetic Resolution through Pd-Catalyzed Triflamide-Directed C–H Olefination. J Am Chem Soc 2017; 139:5558-5567. [DOI: 10.1021/jacs.7b01718] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Zhongyin Zhang
- School
of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
- Department
of Phytochemistry, School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, China
- State
Key Laboratory of Bioorganic and Natural Products Chemistry, Collaborative
Innovation Center of Chemistry for Life Sciences, Shanghai Institute
of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling
Road, Shanghai 200032, China
| | - Jinxin Wang
- Department
of Phytochemistry, School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, China
- State
Key Laboratory of Bioorganic and Natural Products Chemistry, Collaborative
Innovation Center of Chemistry for Life Sciences, Shanghai Institute
of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling
Road, Shanghai 200032, China
| | - Jian Li
- State
Key Laboratory of Bioorganic and Natural Products Chemistry, Collaborative
Innovation Center of Chemistry for Life Sciences, Shanghai Institute
of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling
Road, Shanghai 200032, China
| | - Fan Yang
- School
of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Guodu Liu
- State
Key Laboratory of Bioorganic and Natural Products Chemistry, Collaborative
Innovation Center of Chemistry for Life Sciences, Shanghai Institute
of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling
Road, Shanghai 200032, China
| | - Wenjun Tang
- State
Key Laboratory of Bioorganic and Natural Products Chemistry, Collaborative
Innovation Center of Chemistry for Life Sciences, Shanghai Institute
of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling
Road, Shanghai 200032, China
| | - Weiwei He
- School
of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Jian-Jun Fu
- School
of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Yun-Heng Shen
- Department
of Phytochemistry, School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, China
| | - Ang Li
- State
Key Laboratory of Bioorganic and Natural Products Chemistry, Collaborative
Innovation Center of Chemistry for Life Sciences, Shanghai Institute
of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling
Road, Shanghai 200032, China
| | - Wei-Dong Zhang
- School
of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
- Department
of Phytochemistry, School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, China
| |
Collapse
|
28
|
Lu K, Yang K, Jia X, Gao X, Zhao X, Pan G, Ma Y, Huang Q, Yu P. Total synthesis of I3,II8-biapigenin and ridiculuflavone A. Org Chem Front 2017. [DOI: 10.1039/c6qo00726k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The first total synthesis of I3,II8-biapigenin and ridiculuflavone A was achieved via Sonogashira and rhodium-catalyzed oxidative coupling as the key steps.
Collapse
Affiliation(s)
- Kui Lu
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry
- Key Laboratory of Industrial Microbiology of Ministry of Education
- Tianjin Key Laboratory of Industry Microbiology
- College of Biotechnology
- Tianjin University of Science & Technology
| | - Ke Yang
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry
- Key Laboratory of Industrial Microbiology of Ministry of Education
- Tianjin Key Laboratory of Industry Microbiology
- College of Biotechnology
- Tianjin University of Science & Technology
| | - Xiaoliang Jia
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry
- Key Laboratory of Industrial Microbiology of Ministry of Education
- Tianjin Key Laboratory of Industry Microbiology
- College of Biotechnology
- Tianjin University of Science & Technology
| | - Xing Gao
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry
- Key Laboratory of Industrial Microbiology of Ministry of Education
- Tianjin Key Laboratory of Industry Microbiology
- College of Biotechnology
- Tianjin University of Science & Technology
| | - Xia Zhao
- College of Chemistry
- Tianjin Normal University
- Tianjin 300387
- China
| | - Guojun Pan
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry
- Key Laboratory of Industrial Microbiology of Ministry of Education
- Tianjin Key Laboratory of Industry Microbiology
- College of Biotechnology
- Tianjin University of Science & Technology
| | - Yantao Ma
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry
- Key Laboratory of Industrial Microbiology of Ministry of Education
- Tianjin Key Laboratory of Industry Microbiology
- College of Biotechnology
- Tianjin University of Science & Technology
| | - Qiyao Huang
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry
- Key Laboratory of Industrial Microbiology of Ministry of Education
- Tianjin Key Laboratory of Industry Microbiology
- College of Biotechnology
- Tianjin University of Science & Technology
| | - Peng Yu
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry
- Key Laboratory of Industrial Microbiology of Ministry of Education
- Tianjin Key Laboratory of Industry Microbiology
- College of Biotechnology
- Tianjin University of Science & Technology
| |
Collapse
|
29
|
Dethe DH, Sau SK, Mahapatra S. Biomimetic Enantioselective Total Synthesis of (−)-Mycoleptodiscin A. Org Lett 2016; 18:6392-6395. [DOI: 10.1021/acs.orglett.6b03292] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Dattatraya H. Dethe
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, India rieval
| | - Susanta Kumar Sau
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, India rieval
| | - Samarpita Mahapatra
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, India rieval
| |
Collapse
|
30
|
Li H, Chen Q, Lu Z, Li A. Total Syntheses of Aflavazole and 14-Hydroxyaflavinine. J Am Chem Soc 2016; 138:15555-15558. [DOI: 10.1021/jacs.6b10880] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Hailong Li
- State Key Laboratory of Bioorganic
and Natural Products Chemistry, Collaborative Innovation Center of
Chemistry for Life Sciences, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Qifeng Chen
- State Key Laboratory of Bioorganic
and Natural Products Chemistry, Collaborative Innovation Center of
Chemistry for Life Sciences, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Zhaohong Lu
- State Key Laboratory of Bioorganic
and Natural Products Chemistry, Collaborative Innovation Center of
Chemistry for Life Sciences, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Ang Li
- State Key Laboratory of Bioorganic
and Natural Products Chemistry, Collaborative Innovation Center of
Chemistry for Life Sciences, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| |
Collapse
|
31
|
Gao RD, Xu QL, Dai LX, You SL. Pd-catalyzed cascade allylic alkylation and dearomatization reactions of indoles with vinyloxirane. Org Biomol Chem 2016; 14:8044-6. [PMID: 27511802 DOI: 10.1039/c6ob01523a] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We have developed Pd-catalyzed intermolecular Friedel-Crafts-type allylic alkylation and allylic dearomatization reactions of substituted indoles bearing a nucleophilic group with vinyloxirane, providing an efficient method to synthesize structurally diverse tetrahydrocarboline and spiroindolenine derivatives under mild conditions.
Collapse
Affiliation(s)
- Run-Duo Gao
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China.
| | | | | | | |
Collapse
|
32
|
Identification and Mechanistic Studies of a Cell Cycle Regulator JP18 from a Library of Synthetic Indole Terpenoid Mimics. Chem Asian J 2016; 11:2715-2718. [DOI: 10.1002/asia.201600714] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2016] [Revised: 06/21/2016] [Indexed: 11/07/2022]
|
33
|
Asymmetric construction of all-carbon quaternary stereocenters in the total synthesis of natural products. Sci China Chem 2016. [DOI: 10.1007/s11426-016-0055-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
34
|
Yu W, Hjerrild P, Overgaard J, Poulsen TB. A Concise Route to the Strongylophorines. Angew Chem Int Ed Engl 2016; 55:8294-8. [DOI: 10.1002/anie.201602476] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Indexed: 11/08/2022]
Affiliation(s)
- Wanwan Yu
- Department of Chemistry; Aarhus University; Langelandsgade 140 8000 Aarhus C Denmark
| | - Per Hjerrild
- Department of Chemistry; Aarhus University; Langelandsgade 140 8000 Aarhus C Denmark
| | - Jacob Overgaard
- Department of Chemistry; Aarhus University; Langelandsgade 140 8000 Aarhus C Denmark
| | - Thomas B. Poulsen
- Department of Chemistry; Aarhus University; Langelandsgade 140 8000 Aarhus C Denmark
| |
Collapse
|
35
|
Yu W, Hjerrild P, Overgaard J, Poulsen TB. A Concise Route to the Strongylophorines. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201602476] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Wanwan Yu
- Department of Chemistry; Aarhus University; Langelandsgade 140 8000 Aarhus C Denmark
| | - Per Hjerrild
- Department of Chemistry; Aarhus University; Langelandsgade 140 8000 Aarhus C Denmark
| | - Jacob Overgaard
- Department of Chemistry; Aarhus University; Langelandsgade 140 8000 Aarhus C Denmark
| | - Thomas B. Poulsen
- Department of Chemistry; Aarhus University; Langelandsgade 140 8000 Aarhus C Denmark
| |
Collapse
|
36
|
Nagaraju K, Chegondi R, Chandrasekhar S. Expanding Diversity without Protecting Groups: (+)-Sclareolide to Indolosesquiterpene Alkaloid Mycoleptodiscin A and Analogues. Org Lett 2016; 18:2684-7. [PMID: 27181938 DOI: 10.1021/acs.orglett.6b01145] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Short and scalable synthesis of the complex pentacyclic indolosesquiterpene natural product mycoleptodiscin A has been achieved from commercially available diterpenoid (+)-sclareolide in 19% overall yield. This approach allows one to prepare various analogues of mycoleptodiscin using McMurry cyclization as a key reaction with just three chromatographic purifications.
Collapse
Affiliation(s)
- Karre Nagaraju
- Division of Natural Products Chemistry, CSIR-Indian Institute of Chemical Technology , Hyderabad 500007, India
| | - Rambabu Chegondi
- Division of Natural Products Chemistry, CSIR-Indian Institute of Chemical Technology , Hyderabad 500007, India
| | - Srivari Chandrasekhar
- Division of Natural Products Chemistry, CSIR-Indian Institute of Chemical Technology , Hyderabad 500007, India
| |
Collapse
|
37
|
Abstract
The cyclization of polyolefins represents a powerful tool for the rapid generation of molecular complexity. Within the last decade, significant discoveries have been made in the development of methods for converting prochiral polyene substrates into the corresponding polycyclic products with high levels of enantiocontrol. This review highlights advances in the area of enantioselective polyene cyclizations and their use in the synthesis of complex secondary metabolites.
Collapse
Affiliation(s)
- Chad N Ungarean
- Roger Adams Laboratory, Department of Chemistry, University of Illinois, Urbana, Illinois 61801, USA.
| | | | | |
Collapse
|
38
|
Yang P, Yao M, Li J, Li Y, Li A. Total Synthesis of Rubriflordilactone B. Angew Chem Int Ed Engl 2016; 55:6964-8. [DOI: 10.1002/anie.201601915] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Indexed: 11/08/2022]
Affiliation(s)
- Peng Yang
- State Key Laboratory of Bioorganic and Natural Products Chemistry; Collaborative Innovation Center of Chemistry for Life Sciences; Shanghai Institute of Organic Chemistry; Chinese Academy of Sciences; 345 Lingling Road Shanghai 200032 China
| | - Ming Yao
- State Key Laboratory of Bioorganic and Natural Products Chemistry; Collaborative Innovation Center of Chemistry for Life Sciences; Shanghai Institute of Organic Chemistry; Chinese Academy of Sciences; 345 Lingling Road Shanghai 200032 China
| | - Jian Li
- State Key Laboratory of Bioorganic and Natural Products Chemistry; Collaborative Innovation Center of Chemistry for Life Sciences; Shanghai Institute of Organic Chemistry; Chinese Academy of Sciences; 345 Lingling Road Shanghai 200032 China
| | - Yong Li
- State Key Laboratory of Bioorganic and Natural Products Chemistry; Collaborative Innovation Center of Chemistry for Life Sciences; Shanghai Institute of Organic Chemistry; Chinese Academy of Sciences; 345 Lingling Road Shanghai 200032 China
| | - Ang Li
- State Key Laboratory of Bioorganic and Natural Products Chemistry; Collaborative Innovation Center of Chemistry for Life Sciences; Shanghai Institute of Organic Chemistry; Chinese Academy of Sciences; 345 Lingling Road Shanghai 200032 China
| |
Collapse
|
39
|
Affiliation(s)
- Peng Yang
- State Key Laboratory of Bioorganic and Natural Products Chemistry; Collaborative Innovation Center of Chemistry for Life Sciences; Shanghai Institute of Organic Chemistry; Chinese Academy of Sciences; 345 Lingling Road Shanghai 200032 China
| | - Ming Yao
- State Key Laboratory of Bioorganic and Natural Products Chemistry; Collaborative Innovation Center of Chemistry for Life Sciences; Shanghai Institute of Organic Chemistry; Chinese Academy of Sciences; 345 Lingling Road Shanghai 200032 China
| | - Jian Li
- State Key Laboratory of Bioorganic and Natural Products Chemistry; Collaborative Innovation Center of Chemistry for Life Sciences; Shanghai Institute of Organic Chemistry; Chinese Academy of Sciences; 345 Lingling Road Shanghai 200032 China
| | - Yong Li
- State Key Laboratory of Bioorganic and Natural Products Chemistry; Collaborative Innovation Center of Chemistry for Life Sciences; Shanghai Institute of Organic Chemistry; Chinese Academy of Sciences; 345 Lingling Road Shanghai 200032 China
| | - Ang Li
- State Key Laboratory of Bioorganic and Natural Products Chemistry; Collaborative Innovation Center of Chemistry for Life Sciences; Shanghai Institute of Organic Chemistry; Chinese Academy of Sciences; 345 Lingling Road Shanghai 200032 China
| |
Collapse
|
40
|
Sousa JPB, Aguilar-Pérez MM, Arnold AE, Rios N, Coley PD, Kursar TA, Cubilla-Rios L. Chemical constituents and their antibacterial activity from the tropical endophytic fungus Diaporthe sp. F2934. J Appl Microbiol 2016; 120:1501-8. [PMID: 26991693 DOI: 10.1111/jam.13132] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Revised: 03/07/2016] [Accepted: 03/08/2016] [Indexed: 01/28/2023]
Abstract
AIMS To isolate, characterize and determine the antibacterial activities of compounds produced by the endophytic fungus Diaporthe sp. F2934, cultivated on malt extract agar. METHODS AND RESULTS The fungus was cultivated aseptically in Petri dishes containing malt extract agar at 25°C for 15 days. Crude extract was obtained from mycelium using ethyl acetate and sonication, and was fractioned using classic chromatography and HPLC. The structures of phomosines and chromanones were established by NMR experiments including HMQC, HMBC and COSY. Their molecular formulas were determined by ESI-TOFMS. We obtained six compounds: (1) 4H-1-benzopyra-4-one-2,3-dihydro-5-hydroxy-2,8-dimetyl, (2) 4H-1-benzopyran-4-one-2,3-dihydro-5-hydroxy-8-(hydroxylmethyl)-2-methyl, (3) 4H-1-benzopyra-4-one-2,3-dihydro-5-methoxyl-2,8-dimetyl, (4) phomosine A, (5) phomosine D and (6) phomosine C. Isolated compounds 1, 2 and 5 were inactive against 15 micro-organisms, but phomosines A and C were active against diverse Gram-negative and Gram-positive bacteria. CONCLUSIONS A group of new chromanones and known phomosines have been isolated from the genus Diaporthe (Diaporthe sp. F2934). The results obtained confirm the wide chemical diversity produced by endophytic fungi, specifically the genus Diaporthe. In addition, phomosines A and C may be considered as antimicrobial agents that can be used to guide the development of new antibiotics. SIGNIFICANCE AND IMPACT OF THE STUDY Our phylogenetic analysis places Diaporthe sp. F2934 as sister to the Diaporthe cynaroidis clade. Three chromanones were isolated and identified, for the first time, using crude extract obtained from Diaporthe F2934. From this extract phomosines A, C and D were also purified. Regarding Staphylococcus aureus, the inhibition zone diameter (IZD) for phomosine A was 20% higher than the standard drug, vancomycin. When cultivated as described here, Diaporthe sp. F2934 produced new and antimicrobial compounds.
Collapse
Affiliation(s)
- J P B Sousa
- Smithsonian Tropical Research Institute, Panama City, Panama
| | - M M Aguilar-Pérez
- Smithsonian Tropical Research Institute, Panama City, Panama.,Laboratory of Tropical Bioorganic Chemistry, Faculty of Natural and Exact Sciences and Technology, University of Panama, Panama City, Panama
| | - A E Arnold
- School of Plant Sciences and Department of Ecology and Evolutionary Biology, The University of Arizona, Tucson, AZ, USA
| | - N Rios
- Department of Microbiology, University of Panama, Panama City, Panama
| | - P D Coley
- Department of Biology, University of Utah, Salt Lake City, UT, USA
| | - T A Kursar
- Department of Biology, University of Utah, Salt Lake City, UT, USA
| | - L Cubilla-Rios
- Smithsonian Tropical Research Institute, Panama City, Panama.,Laboratory of Tropical Bioorganic Chemistry, Faculty of Natural and Exact Sciences and Technology, University of Panama, Panama City, Panama
| |
Collapse
|
41
|
Li Y, Zhu S, Li J, Li A. Asymmetric Total Syntheses of Aspidodasycarpine, Lonicerine, and the Proposed Structure of Lanciferine. J Am Chem Soc 2016; 138:3982-5. [PMID: 26961469 DOI: 10.1021/jacs.6b00764] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Aspidodasycarpine and lonicerine are a pair of epimeric aspidophylline-type alkaloids bearing vicinal quaternary C7 and C16. The first and enantioselective total syntheses of these molecules are described here. A Ru-catalyzed asymmetric transfer hydrogenation established the first stereocenter. An Au-promoted Toste cyclization was exploited to assemble the bridged tetracyclic core and define the geometry of the exocyclic olefin; electron deficient (p-CF3C6H4)3P was a suitable ligand for this transformation. An aldol condensation followed by an intramolecular indole C3 alkylation constructed the adjacent quaternary C7 and C16 diastereoselectively, leading to a pentacyclic lactol as an advanced common intermediate for synthesizing both alkaloids. The proposed structure of lanciferine, a highly oxidized congener of aspidodasycarpine, was synthesized from the lactol by tuning the oxidation states of various carbons.
Collapse
Affiliation(s)
- Yong Li
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Collaborative Innovation Center of Chemistry for Life Sciences, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences , 345 Lingling Road, Shanghai 200032, China.,Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process, Shaoxing University , Shaoxing 312000, China
| | - Shugao Zhu
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Collaborative Innovation Center of Chemistry for Life Sciences, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences , 345 Lingling Road, Shanghai 200032, China
| | - Jian Li
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Collaborative Innovation Center of Chemistry for Life Sciences, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences , 345 Lingling Road, Shanghai 200032, China
| | - Ang Li
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Collaborative Innovation Center of Chemistry for Life Sciences, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences , 345 Lingling Road, Shanghai 200032, China
| |
Collapse
|
42
|
Jiang SZ, Zeng XY, Liang X, Lei T, Wei K, Yang YR. Iridium-Catalyzed Enantioselective Indole Cyclization: Application to the Total Synthesis and Absolute Stereochemical Assignment of (−)-Aspidophylline A. Angew Chem Int Ed Engl 2016; 55:4044-8. [PMID: 26891145 DOI: 10.1002/anie.201511549] [Citation(s) in RCA: 125] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2015] [Revised: 01/30/2016] [Indexed: 11/10/2022]
Affiliation(s)
- Shi-Zhi Jiang
- State Key Laboratory of Phytochemistry and Plant Resources in West China; Kunming Institute of Botany; Chinese Academy of Sciences, Lanhei 132#; Kunming 650201 China
| | - Xue-Yi Zeng
- State Key Laboratory of Phytochemistry and Plant Resources in West China; Kunming Institute of Botany; Chinese Academy of Sciences, Lanhei 132#; Kunming 650201 China
- University of Chinese Academy of Sciences; Beijing 100039 China
| | - Xiao Liang
- State Key Laboratory of Phytochemistry and Plant Resources in West China; Kunming Institute of Botany; Chinese Academy of Sciences, Lanhei 132#; Kunming 650201 China
- University of Chinese Academy of Sciences; Beijing 100039 China
| | - Ting Lei
- State Key Laboratory of Phytochemistry and Plant Resources in West China; Kunming Institute of Botany; Chinese Academy of Sciences, Lanhei 132#; Kunming 650201 China
| | - Kun Wei
- State Key Laboratory of Phytochemistry and Plant Resources in West China; Kunming Institute of Botany; Chinese Academy of Sciences, Lanhei 132#; Kunming 650201 China
| | - Yu-Rong Yang
- State Key Laboratory of Phytochemistry and Plant Resources in West China; Kunming Institute of Botany; Chinese Academy of Sciences, Lanhei 132#; Kunming 650201 China
| |
Collapse
|
43
|
Jiang SZ, Zeng XY, Liang X, Lei T, Wei K, Yang YR. Iridium-Catalyzed Enantioselective Indole Cyclization: Application to the Total Synthesis and Absolute Stereochemical Assignment of (−)-Aspidophylline A. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201511549] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Shi-Zhi Jiang
- State Key Laboratory of Phytochemistry and Plant Resources in West China; Kunming Institute of Botany; Chinese Academy of Sciences, Lanhei 132#; Kunming 650201 China
| | - Xue-Yi Zeng
- State Key Laboratory of Phytochemistry and Plant Resources in West China; Kunming Institute of Botany; Chinese Academy of Sciences, Lanhei 132#; Kunming 650201 China
- University of Chinese Academy of Sciences; Beijing 100039 China
| | - Xiao Liang
- State Key Laboratory of Phytochemistry and Plant Resources in West China; Kunming Institute of Botany; Chinese Academy of Sciences, Lanhei 132#; Kunming 650201 China
- University of Chinese Academy of Sciences; Beijing 100039 China
| | - Ting Lei
- State Key Laboratory of Phytochemistry and Plant Resources in West China; Kunming Institute of Botany; Chinese Academy of Sciences, Lanhei 132#; Kunming 650201 China
| | - Kun Wei
- State Key Laboratory of Phytochemistry and Plant Resources in West China; Kunming Institute of Botany; Chinese Academy of Sciences, Lanhei 132#; Kunming 650201 China
| | - Yu-Rong Yang
- State Key Laboratory of Phytochemistry and Plant Resources in West China; Kunming Institute of Botany; Chinese Academy of Sciences, Lanhei 132#; Kunming 650201 China
| |
Collapse
|
44
|
Ardkhean R, Caputo DFJ, Morrow SM, Shi H, Xiong Y, Anderson EA. Cascade polycyclizations in natural product synthesis. Chem Soc Rev 2016; 45:1557-69. [DOI: 10.1039/c5cs00105f] [Citation(s) in RCA: 185] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Cascade (domino) reactions have an unparalleled ability to generate molecular complexity from relatively simple starting materials; these transformations are particularly appealing when multiple rings are forged during this process.
Collapse
Affiliation(s)
| | | | | | - H. Shi
- Chemistry Research Laboratory
- Oxford
- UK
| | - Y. Xiong
- Chemistry Research Laboratory
- Oxford
- UK
| | | |
Collapse
|
45
|
Sun Y, Meng Z, Chen P, Zhang D, Baunach M, Hertweck C, Li A. A concise total synthesis of sespenine, a structurally unusual indole terpenoid from Streptomyces. Org Chem Front 2016. [DOI: 10.1039/c5qo00416k] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
A ten-step (the longest linear sequence) total synthesis of sespenine was accomplished.
Collapse
Affiliation(s)
- Yu Sun
- State Key Laboratory of Bioorganic and Natural Products Chemistry
- Collaborative Innovation Center of Chemistry for Life Sciences
- Shanghai Institute of Organic Chemistry
- Chinese Academy of Sciences
- Shanghai 200032
| | - Zhanchao Meng
- State Key Laboratory of Bioorganic and Natural Products Chemistry
- Collaborative Innovation Center of Chemistry for Life Sciences
- Shanghai Institute of Organic Chemistry
- Chinese Academy of Sciences
- Shanghai 200032
| | - Pengxi Chen
- State Key Laboratory of Bioorganic and Natural Products Chemistry
- Collaborative Innovation Center of Chemistry for Life Sciences
- Shanghai Institute of Organic Chemistry
- Chinese Academy of Sciences
- Shanghai 200032
| | - Deliang Zhang
- State Key Laboratory of Bioorganic and Natural Products Chemistry
- Collaborative Innovation Center of Chemistry for Life Sciences
- Shanghai Institute of Organic Chemistry
- Chinese Academy of Sciences
- Shanghai 200032
| | - Martin Baunach
- Leibniz Institute for Natural Product Research and Infection Biology
- HKI
- Jena
- Germany
| | - Christian Hertweck
- Leibniz Institute for Natural Product Research and Infection Biology
- HKI
- Jena
- Germany
| | - Ang Li
- State Key Laboratory of Bioorganic and Natural Products Chemistry
- Collaborative Innovation Center of Chemistry for Life Sciences
- Shanghai Institute of Organic Chemistry
- Chinese Academy of Sciences
- Shanghai 200032
| |
Collapse
|
46
|
Yang X, Wu D, Lu Z, Sun H, Li A. A mild preparation of alkynes from alkenyl triflates. Org Biomol Chem 2016; 14:5591-4. [DOI: 10.1039/c6ob00345a] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report herein a protocol for preparing alkynes from alkenyl triflates at ambient temperature with LiCl as a promoter.
Collapse
Affiliation(s)
- Xiaowen Yang
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease and State Key Laboratory of Natural Medicines
- China Pharmaceutical University
- Nanjing 210009
- China
- State Key Laboratory of Bioorganic and Natural Products Chemistry
| | - Dimin Wu
- State Key Laboratory of Bioorganic and Natural Products Chemistry
- Collaborative Innovation Center of Chemistry for Life Sciences
- Shanghai Institute of Organic Chemistry
- Chinese Academy of Sciences
- Shanghai 200032
| | - Zhaohong Lu
- State Key Laboratory of Bioorganic and Natural Products Chemistry
- Collaborative Innovation Center of Chemistry for Life Sciences
- Shanghai Institute of Organic Chemistry
- Chinese Academy of Sciences
- Shanghai 200032
| | - Hongbin Sun
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease and State Key Laboratory of Natural Medicines
- China Pharmaceutical University
- Nanjing 210009
- China
| | - Ang Li
- State Key Laboratory of Bioorganic and Natural Products Chemistry
- Collaborative Innovation Center of Chemistry for Life Sciences
- Shanghai Institute of Organic Chemistry
- Chinese Academy of Sciences
- Shanghai 200032
| |
Collapse
|
47
|
Abstract
The total synthesis of epoxyeujindole A, a structurally unusual indole diterpenoid isolated from Eupenicillium javanicum, has been accomplished for the first time. The synthesis features a late-stage cationic cyclization strategy, which took advantage of an electron-rich olefinic substrate. The CDE ring system was assembled via an enantioselective conjugate addition/alkylation, a Luche cyclization, and a Nozaki-Hiyama-Kishi reaction. The heavily substituted A ring was constructed through a Suzuki-Miyaura coupling and a cationic cyclization, and the bridged fused B ring was formed through a Prins reaction.
Collapse
Affiliation(s)
- Zhaohong Lu
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Collaborative Innovation Center of Chemistry for Life Sciences, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences , 345 Lingling Road, Shanghai 200032, China
| | - Hailong Li
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Collaborative Innovation Center of Chemistry for Life Sciences, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences , 345 Lingling Road, Shanghai 200032, China
| | - Ming Bian
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Collaborative Innovation Center of Chemistry for Life Sciences, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences , 345 Lingling Road, Shanghai 200032, China
| | - Ang Li
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Collaborative Innovation Center of Chemistry for Life Sciences, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences , 345 Lingling Road, Shanghai 200032, China
| |
Collapse
|
48
|
Tang MC, Lin HC, Li D, Zou Y, Li J, Xu W, Cacho RA, Hillenmeyer ME, Garg NK, Tang Y. Discovery of Unclustered Fungal Indole Diterpene Biosynthetic Pathways through Combinatorial Pathway Reassembly in Engineered Yeast. J Am Chem Soc 2015; 137:13724-7. [PMID: 26469304 DOI: 10.1021/jacs.5b06108] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The structural diversity and biological activities of fungal indole diterpenes (IDTs) are generated in large part by the IDT cyclases (IDTCs). Identifying different IDTCs from IDT biosynthetic pathways is therefore important toward understanding how these enzymes introduce chemical diversity from a common linear precursor. However, IDTCs involved in the cyclization of the well-known aflavinine subgroup of IDTs have not been discovered. Here, using Saccharomyces cerevisiae as a heterologous host and a phylogenetically guided enzyme mining approach, we combinatorially assembled IDT biosynthetic pathways using IDTCs homologues identified from different fungal hosts. We identified the genetically standalone IDTCs involved in the cyclization of aflavinine and anominine and produced new IDTs not previously isolated. The cyclization mechanisms of the new IDTCs were proposed based on the yeast reconstitution results. Our studies demonstrate heterologous pathway assembly is a useful tool in the reconstitution of unclustered biosynthetic pathways.
Collapse
Affiliation(s)
| | | | - Dehai Li
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China , Qingdao, Shandong 266003, P. R. China
| | | | - Jian Li
- Stanford Genome Technology Center, Stanford University , Palo Alto, California 94304, United States
| | | | | | - Maureen E Hillenmeyer
- Stanford Genome Technology Center, Stanford University , Palo Alto, California 94304, United States
| | | | | |
Collapse
|
49
|
|