1
|
Revisiting Thin-Layer Electrochemistry in a Chip-Type Cell for the Study of Electro-organic Reactions. Anal Chem 2021; 94:1248-1255. [PMID: 34964606 DOI: 10.1021/acs.analchem.1c04467] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
It is important but challenging to elucidate the electrochemical reaction mechanisms of organic compounds using electroanalytical methods. Particularly, a rapid and straightforward method that provides information on reaction intermediates or other key electrochemical parameters may be useful. In this work, we exploited the advantages of classic thin-layer electrochemistry to develop a thin-layer electroanalysis microchip (TEAM). The TEAM provided better-resolved voltammetric peaks than under semi-infinite diffusion conditions owing to its small height. Importantly, rapid and accurate determination of the number of electrons transferred, n, was enabled by mechanically confining the microliter-scale volume analyte at the electrode, while securing ionic conduction using polyelectrolyte gels. The performance of the TEAM was validated using voltammetry and coulometry of standard redox couples. Utilizing the TEAM, a (spectro)electrochemical analysis of FM 1-43, an organic dye widely used in neuroscience, was successfully performed. Moreover, the TEAM was applied to study the electrochemical oxidation mechanism of pivanilides and alkyltrifluoroborate salts with different substituents and solvents. This work suggests that TEAM is a promising tool to provide invaluable mechanistic information and promote the rational design of electrosynthetic strategies.
Collapse
|
2
|
Huang J, Chen Z, Wu J. Recent Progress in Methyl-Radical-Mediated Methylation or Demethylation Reactions. ACS Catal 2021. [DOI: 10.1021/acscatal.1c02010] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Jiapian Huang
- Key Laboratory of Functional Small Organic Molecules, Ministry of Education, and Jiangxi Key Laboratory of Green Chemistry, College of Chemistry & Chemical Engineering, Jiangxi Normal University, 99 Ziyang Road, Nanchang, Jiangxi 330022, P. R. China
- School of Pharmaceutical and Materials Engineering & Institute for Advanced Studies, Taizhou University, 1139 Shifu Avenue, Taizhou 318000, China
| | - Zhiyuan Chen
- Key Laboratory of Functional Small Organic Molecules, Ministry of Education, and Jiangxi Key Laboratory of Green Chemistry, College of Chemistry & Chemical Engineering, Jiangxi Normal University, 99 Ziyang Road, Nanchang, Jiangxi 330022, P. R. China
| | - Jie Wu
- School of Pharmaceutical and Materials Engineering & Institute for Advanced Studies, Taizhou University, 1139 Shifu Avenue, Taizhou 318000, China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| |
Collapse
|
3
|
Mantell MA, Lasky MR, Lee M, Remy M, Sanford MS. S NAr and C-H Amination of Electron Rich Arenes with Pyridine as a Nucleophile Using Photoredox Catalysis. Org Lett 2021; 23:5213-5217. [PMID: 34161730 DOI: 10.1021/acs.orglett.1c01749] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
This report describes the development of two photocatalytic methods for the pyridination of electron rich arenes. First, an SNAr-type reaction between aryl halides and pyridine is developed and optimized. This transformation affords selective substitution of C(sp2)-halogen over C(sp2)-OR bonds to afford arylpyridinium products under anaerobic conditions. Under complementary aerobic conditions, analogous substrates are shown to undergo oxidative C(sp2)-H pyridination.
Collapse
Affiliation(s)
- Mark A Mantell
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| | - Matthew R Lasky
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| | - Melissa Lee
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| | - Matthew Remy
- Corporate R&D, Dow, 1710 Building, Midland, Michigan 48667, United States
| | - Melanie S Sanford
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
4
|
Chen J, Zhu M, Xiang F, Li J, Yang H, Mao Z. Research Progress on Microreactor Technology in Oxidation Reactions. CURR ORG CHEM 2021. [DOI: 10.2174/1385272825666210319092545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In recent years, the development of the chemical industry has been moving in a
green, safe and efficient direction. Oxidation reactions are one of the most important types of
reactions and have key applications in food, medicine, cosmetics, and petrochemicals. However,
the occurrence of the oxidation reaction is accompanied by a strong exothermic phenomenon,
and improper control can easily lead to safety problems and even explosions. The
realization of an environmentally friendly oxidation reaction is a key industrial milestone.
The unique structural characteristics of microreactors result in good mass and heat transfer
performance, precise control of the reaction temperature, reduced risk of explosion, improved
safety production and selectivity of products. These unique advantages of the microreactor
determine its significant application value in oxidation reactions. In this paper, the research
progress of several typical oxidation reactions, including alkane oxidation, alcohol oxidation,
aldosterone oxidation, aromatics oxidation and olefin oxidation combined with microreactors,
is reviewed systematically.
Collapse
Affiliation(s)
- Jian Chen
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070,China
| | - Mengjing Zhu
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070,China
| | - Fuwei Xiang
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070,China
| | - Junfeng Li
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070,China
| | - Hongjun Yang
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070,China
| | - Zhipeng Mao
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070,China
| |
Collapse
|
5
|
Blum SP, Karakaya T, Schollmeyer D, Klapars A, Waldvogel SR. Metal-Free Electrochemical Synthesis of Sulfonamides Directly from (Hetero)arenes, SO 2 , and Amines. Angew Chem Int Ed Engl 2021; 60:5056-5062. [PMID: 33372349 PMCID: PMC7985875 DOI: 10.1002/anie.202016164] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Indexed: 12/16/2022]
Abstract
Sulfonamides are among the most important chemical motifs in pharmaceuticals and agrochemicals. However, there is no methodology to directly introduce the sulfonamide group to a non-prefunctionalized aromatic compound. Herein, we present the first dehydrogenative electrochemical sulfonamide synthesis protocol by exploiting the inherent reactivity of (hetero)arenes in a highly convergent reaction with SO2 and amines via amidosulfinate intermediate. The amidosulfinate serves a dual role as reactant and supporting electrolyte. Direct anodic oxidation of the aromatic compound triggers the reaction, followed by nucleophilic attack of the amidosulfinate. Boron-doped diamond (BDD) electrodes and a HFIP-MeCN solvent mixture enable selective formation of the sulfonamides. In total, 36 examples are demonstrated with yields up to 85 %.
Collapse
Affiliation(s)
- Stephan P. Blum
- Department of ChemistryJohannes Gutenberg University MainzDuesbergweg 10–14MainzGermany
| | - Tarik Karakaya
- Department of ChemistryJohannes Gutenberg University MainzDuesbergweg 10–14MainzGermany
| | - Dieter Schollmeyer
- Department of ChemistryJohannes Gutenberg University MainzDuesbergweg 10–14MainzGermany
| | - Artis Klapars
- Department of Process Research and DevelopmentMerck & Co., Inc.P.O. Box 2000RahwayNew Jersey07065USA
| | | |
Collapse
|
6
|
Blum SP, Karakaya T, Schollmeyer D, Klapars A, Waldvogel SR. Metallfreie, elektrochemische Synthese von Sulfonamiden direkt aus (Hetero)arenen, SO
2
und Aminen. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202016164] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Stephan P. Blum
- Department für Chemie Johannes Gutenberg Universität Mainz Duesbergweg 10–14 Mainz Deutschland
| | - Tarik Karakaya
- Department für Chemie Johannes Gutenberg Universität Mainz Duesbergweg 10–14 Mainz Deutschland
| | - Dieter Schollmeyer
- Department für Chemie Johannes Gutenberg Universität Mainz Duesbergweg 10–14 Mainz Deutschland
| | - Artis Klapars
- Department of Process Research and Development Merck & Co., Inc. P.O. Box 2000 Rahway New Jersey 07065 USA
| | - Siegfried R. Waldvogel
- Department für Chemie Johannes Gutenberg Universität Mainz Duesbergweg 10–14 Mainz Deutschland
| |
Collapse
|
7
|
Abstract
The electrochemical reaction at the insulator is extraordinary. Despite its counterintuitiveness, it is made possible by using a silicon oxide dielectric electrode as the cathode. In this study, we use such a dielectric electrode to enable a version of electroorganic reaction. Interestingly, the oxidized products are produced at the cathode in the case of anthracene and its derivatives. Besides, normal reduction also occurred in the case of nitrobenzene. We suggest the electrochemically generated hydrogen species, supposedly the hydrogen atom, is responsible for this phenomenon. This is the first case to use such a reagent in the mild electrochemical system, and this reaction may be applied to a synthetic strategy for organic molecules. The faradaic reaction at the insulator is counterintuitive. For this reason, electroorganic reactions at the dielectric layer have been scarcely investigated despite their interesting aspects and opportunities. In particular, the cathodic reaction at a silicon oxide surface under a negative potential bias remains unexplored. In this study, we utilize defective 200-nm-thick n+-Si/SiO2 as a dielectric electrode for electrolysis in an H-type divided cell to demonstrate the cathodic electroorganic reaction of anthracene and its derivatives. Intriguingly, the oxidized products are generated at the cathode. The experiments under various conditions provide consistent evidence supporting that the electrochemically generated hydrogen species, supposedly the hydrogen atom, is responsible for this phenomenon. The electrogenerated hydrogen species at the dielectric layer suggests a synthetic strategy for organic molecules.
Collapse
|
8
|
Wesenberg LJ, Diehl E, Zähringer TJB, Dörr C, Schollmeyer D, Shimizu A, Yoshida J, Hellmich UA, Waldvogel SR. Metal-Free Twofold Electrochemical C-H Amination of Activated Arenes: Application to Medicinally Relevant Precursor Synthesis. Chemistry 2020; 26:17574-17580. [PMID: 32866328 PMCID: PMC7839481 DOI: 10.1002/chem.202003852] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 08/28/2020] [Indexed: 01/13/2023]
Abstract
The efficient production of many medicinally or synthetically important starting materials suffers from wasteful or toxic precursors for the synthesis. In particular, the aromatic non-protected primary amine function represents a versatile synthetic precursor, but its synthesis typically requires toxic oxidizing agents and transition metal catalysts. The twofold electrochemical amination of activated benzene derivatives via Zincke intermediates provides an alternative sustainable strategy for the formation of new C-N bonds of high synthetic value. As a proof of concept, we use our approach to generate a benzoxazinone scaffold that gained attention as a starting structure against castrate-resistant prostate cancer. Further improvement of the structure led to significantly increased cancer cell line toxicity. Thus, exploiting environmentally benign electrooxidation, we present a new versatile and powerful method based on direct C-H activation that is applicable for example the production of medicinally relevant compounds.
Collapse
Affiliation(s)
- Lars J. Wesenberg
- Department of ChemistryJohannes Gutenberg University MainzDuesbergweg 10–1455128MainzGermany
| | - Erika Diehl
- Department of ChemistryJohannes Gutenberg University MainzJohann-Joachim Becherweg 3055128MainzGermany
- Center for Biomolecular Magnetic Resonance (BMRZ)Goethe-University FrankfurtMax-von-Laue Str. 960438Frankfurt/MGermany
| | - Till J. B. Zähringer
- Department of ChemistryJohannes Gutenberg University MainzDuesbergweg 10–1455128MainzGermany
| | - Carolin Dörr
- Department of ChemistryJohannes Gutenberg University MainzJohann-Joachim Becherweg 3055128MainzGermany
| | - Dieter Schollmeyer
- Department of ChemistryJohannes Gutenberg University MainzDuesbergweg 10–1455128MainzGermany
| | - Akihiro Shimizu
- Department Materials Engineering ScienceGraduate School of Engineering ScienceOsaka UniversityToyonakaOsaka 560–8531Japan
| | - Jun‐ichi Yoshida
- Department of ChemistryJohannes Gutenberg University MainzDuesbergweg 10–1455128MainzGermany
| | - Ute A. Hellmich
- Department of ChemistryJohannes Gutenberg University MainzJohann-Joachim Becherweg 3055128MainzGermany
- Center for Biomolecular Magnetic Resonance (BMRZ)Goethe-University FrankfurtMax-von-Laue Str. 960438Frankfurt/MGermany
| | - Siegfried R. Waldvogel
- Department of ChemistryJohannes Gutenberg University MainzDuesbergweg 10–1455128MainzGermany
| |
Collapse
|
9
|
Blum SP, Schollmeyer D, Turks M, Waldvogel SR. Metal- and Reagent-Free Electrochemical Synthesis of Alkyl Arylsulfonates in a Multi-Component Reaction. Chemistry 2020; 26:8358-8362. [PMID: 32338808 PMCID: PMC7383810 DOI: 10.1002/chem.202001180] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Indexed: 12/12/2022]
Abstract
This work presents the first electrochemical preparation of alkyl arylsulfonates by direct anodic oxidation of electron-rich arenes. The reaction mechanism features a multi-component reaction consisting of electron-rich arenes, an alcohol of choice and excess SO2 in an acetonitrile-HFIP reaction mixture. In-situ formed monoalkyl sulfites are considered as key intermediates with bifunctional purpose. Firstly, this species functions as nucleophile and secondly, excellent conductivity is provided. Several primary and secondary alcohols and electron-rich arenes are implemented in this reaction to form the alkyl arylsulfonates in yields up to 73 % with exquisite selectivity. Boron-doped diamond electrodes (BDD) are employed in divided cells, separated by a simple commercially available glass frit.
Collapse
Affiliation(s)
- Stephan P. Blum
- Department of ChemistryJohannes Gutenberg-University MainzDuesbergweg 10-1455128MainzGermany
| | - Dieter Schollmeyer
- Department of ChemistryJohannes Gutenberg-University MainzDuesbergweg 10-1455128MainzGermany
| | - Maris Turks
- Institute of Technology of Organic ChemistryFaculty of Materials Science and Applied ChemistryRiga Technical UniversityP. Valdena 3Riga1048Latvia
| | - Siegfried R. Waldvogel
- Department of ChemistryJohannes Gutenberg-University MainzDuesbergweg 10-1455128MainzGermany
| |
Collapse
|
10
|
Lv S, Han X, Wang JY, Zhou M, Wu Y, Ma L, Niu L, Gao W, Zhou J, Hu W, Cui Y, Chen J. Tunable Electrochemical C-N versus N-N Bond Formation of Nitrogen-Centered Radicals Enabled by Dehydrogenative Dearomatization: Biological Applications. Angew Chem Int Ed Engl 2020; 59:11583-11590. [PMID: 32203637 DOI: 10.1002/anie.202001510] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 03/08/2020] [Indexed: 12/27/2022]
Abstract
Herein, an environmentally friendly electrochemical approach is reported that takes advantage of the captodative effect and delocalization effect to generate nitrogen-centered radicals (NCRs). By changing the reaction parameters of the electrode material and feedstock solubility, dearomatization enabled a selective dehydrogenative C-N versus N-N bond formation reaction. Hence, pyrido[1,2-a]benzimidazole and tetraarylhydrazine frameworks were prepared through a sustainable transition-metal- and exogenous oxidant-free strategy with broad generality. Bioactivity assays demonstrated that pyrido[1,2-a]benzimidazoles displayed antimicrobial activity and cytotoxicity against human cancer cells. Compound 21 exhibited good photochemical properties with a large Stokes shift (approximately 130 nm) and was successfully applied to subcellular imaging. A preliminary mechanism investigation and density functional theory (DFT) calculations revealed the possible reaction pathway.
Collapse
Affiliation(s)
- Shide Lv
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Pharmaceutical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, P. R. China
| | - Xiaoxin Han
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Pharmaceutical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, P. R. China
| | - Jian-Yong Wang
- School of Light Industry and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, P. R. China
| | - Mingyang Zhou
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Pharmaceutical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, P. R. China
| | - Yanwei Wu
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Pharmaceutical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, P. R. China
| | - Li Ma
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Pharmaceutical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, P. R. China
| | - Liwei Niu
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Pharmaceutical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, P. R. China
| | - Wei Gao
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Pharmaceutical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, P. R. China
| | - Jianhua Zhou
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Pharmaceutical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, P. R. China
| | - Wei Hu
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Pharmaceutical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, P. R. China
| | - Yuezhi Cui
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Pharmaceutical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, P. R. China
| | - Jianbin Chen
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Pharmaceutical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, P. R. China
| |
Collapse
|
11
|
Selt M, Franke R, Waldvogel SR. Supporting-Electrolyte-Free and Scalable Flow Process for the Electrochemical Synthesis of 3,3′,5,5′-Tetramethyl-2,2′-biphenol. Org Process Res Dev 2020. [DOI: 10.1021/acs.oprd.0c00170] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Maximilian Selt
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Robert Franke
- Evonik Performance Materials GmbH, Paul-Baumann-Straße 1, 45772 Marl, Germany
- Lehrstuhl für Theoretische Chemie, Ruhr-Universität Bochum, 44780 Bochum, Germany
| | - Siegfried R. Waldvogel
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| |
Collapse
|
12
|
Pollok D, Waldvogel SR. Electro-organic synthesis - a 21 st century technique. Chem Sci 2020; 11:12386-12400. [PMID: 34123227 PMCID: PMC8162804 DOI: 10.1039/d0sc01848a] [Citation(s) in RCA: 304] [Impact Index Per Article: 60.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 05/18/2020] [Indexed: 12/22/2022] Open
Abstract
The severe limitations of fossil fuels and finite resources influence the scientific community to reconsider chemical synthesis and establish sustainable techniques. Several promising methods have emerged, and electro-organic conversion has attracted particular attention from international academia and industry as an environmentally benign and cost-effective technique. The easy application, precise control, and safe conversion of substrates with intermediates only accessible by this method reveal novel pathways in synthetic organic chemistry. The popularity of electricity as a reagent is accompanied by the feasible conversion of bio-based feedstocks to limit the carbon footprint. Several milestones have been achieved in electro-organic conversion at rapid frequency, which have opened up various perspectives for forthcoming processes.
Collapse
Affiliation(s)
- Dennis Pollok
- Department of Chemistry, Johannes Gutenberg University Mainz Duesbergweg 10-14 55128 Mainz Germany www.aksw.uni-mainz.de
| | - Siegfried R Waldvogel
- Department of Chemistry, Johannes Gutenberg University Mainz Duesbergweg 10-14 55128 Mainz Germany www.aksw.uni-mainz.de
| |
Collapse
|
13
|
Thobokholt EN, Larghi EL, Bracca ABJ, Kaufman TS. Isolation and synthesis of cryptosanguinolentine (isocryptolepine), a naturally-occurring bioactive indoloquinoline alkaloid. RSC Adv 2020; 10:18978-19002. [PMID: 35518305 PMCID: PMC9054090 DOI: 10.1039/d0ra03096a] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 05/04/2020] [Indexed: 11/28/2022] Open
Abstract
Cryptosanguinolentine (isocryptolepine) is one of the minor naturally-occurring monomeric indoloquinoline alkaloids, isolated from the West African climbing shrub Cryptolepis sanguinolenta. The natural product displays such a simple and unique skeleton, which chemists became interested in well before it was found in Nature. Because of its structure and biological activity, the natural product has been targeted for synthesis on numerous occasions, employing a wide range of different strategies. Hence, discussed here are aspects related to the isolation of isocryptolepine, as well as the various approaches toward its total synthesis.
Collapse
Affiliation(s)
- Elida N Thobokholt
- Instituto de Química Rosario (IQUIR, CONICET-UNR), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario Suipacha 531 S2002LRK Rosario Argentina +54-341-4370477 +54-341-4370477
| | - Enrique L Larghi
- Instituto de Química Rosario (IQUIR, CONICET-UNR), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario Suipacha 531 S2002LRK Rosario Argentina +54-341-4370477 +54-341-4370477
| | - Andrea B J Bracca
- Instituto de Química Rosario (IQUIR, CONICET-UNR), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario Suipacha 531 S2002LRK Rosario Argentina +54-341-4370477 +54-341-4370477
| | - Teodoro S Kaufman
- Instituto de Química Rosario (IQUIR, CONICET-UNR), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario Suipacha 531 S2002LRK Rosario Argentina +54-341-4370477 +54-341-4370477
| |
Collapse
|
14
|
Gutmann A, Wesenberg LJ, Peez N, Waldvogel SR, Hoffmann T. Charged Tags for the Identification of Oxidative Drug Metabolites Based on Electrochemistry and Mass Spectrometry. ChemistryOpen 2020; 9:568-572. [PMID: 32382470 PMCID: PMC7202420 DOI: 10.1002/open.202000084] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Indexed: 01/10/2023] Open
Abstract
Most of the active pharmaceutical ingredients like Metoprolol are oxidatively metabolized by liver enzymes, such as Cytochrome P450 monooxygenases into oxygenates and therefore hydrophilic products. It is of utmost importance to identify the metabolites and to gain knowledge on their toxic impacts. By using electrochemistry, it is possible to mimic enzymatic transformations and to identify metabolic hot spots. By introducing charged-tags into the intermediate, it is possible to detect and isolate metabolic products. The identification and synthesis of initially oxidized metabolites are important to understand possible toxic activities. The gained knowledge about the metabolism will simplify interpretation and predictions of metabolitic pathways. The oxidized products were analyzed with high performance liquid chromatography-mass spectrometry using electrospray ionization (HPLC-ESI-MS) and nuclear magnetic resonance (NMR) spectroscopy. For proof-of-principle, we present a synthesis of one pyridinated main oxidation product of Metoprolol.
Collapse
Affiliation(s)
- Alexandra Gutmann
- Department of ChemistryJohannes Gutenberg University MainzDuesbergweg 10–1455128MainzGermany
| | - Lars Julian Wesenberg
- Department of ChemistryJohannes Gutenberg University MainzDuesbergweg 10–1455128MainzGermany
| | - Nadine Peez
- Department of ChemistryJohannes Gutenberg University MainzDuesbergweg 10–1455128MainzGermany
- Institute for Integrated Natural SciencesUniversity of KoblenzUniversitätsstraße 156072KoblenzGermany
| | - Siegfried R. Waldvogel
- Department of ChemistryJohannes Gutenberg University MainzDuesbergweg 10–1455128MainzGermany
| | - Thorsten Hoffmann
- Department of ChemistryJohannes Gutenberg University MainzDuesbergweg 10–1455128MainzGermany
| |
Collapse
|
15
|
Lv S, Han X, Wang J, Zhou M, Wu Y, Ma L, Niu L, Gao W, Zhou J, Hu W, Cui Y, Chen J. Tunable Electrochemical C−N versus N−N Bond Formation of Nitrogen‐Centered Radicals Enabled by Dehydrogenative Dearomatization: Biological Applications. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202001510] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Shide Lv
- Shandong Provincial Key Laboratory of Molecular Engineering School of Chemistry and Pharmaceutical Engineering Qilu University of Technology (Shandong Academy of Sciences) Jinan 250353 P. R. China
| | - Xiaoxin Han
- Shandong Provincial Key Laboratory of Molecular Engineering School of Chemistry and Pharmaceutical Engineering Qilu University of Technology (Shandong Academy of Sciences) Jinan 250353 P. R. China
| | - Jian‐Yong Wang
- School of Light Industry and Engineering Qilu University of Technology (Shandong Academy of Sciences) Jinan 250353 P. R. China
| | - Mingyang Zhou
- Shandong Provincial Key Laboratory of Molecular Engineering School of Chemistry and Pharmaceutical Engineering Qilu University of Technology (Shandong Academy of Sciences) Jinan 250353 P. R. China
| | - Yanwei Wu
- Shandong Provincial Key Laboratory of Molecular Engineering School of Chemistry and Pharmaceutical Engineering Qilu University of Technology (Shandong Academy of Sciences) Jinan 250353 P. R. China
| | - Li Ma
- Shandong Provincial Key Laboratory of Molecular Engineering School of Chemistry and Pharmaceutical Engineering Qilu University of Technology (Shandong Academy of Sciences) Jinan 250353 P. R. China
| | - Liwei Niu
- Shandong Provincial Key Laboratory of Molecular Engineering School of Chemistry and Pharmaceutical Engineering Qilu University of Technology (Shandong Academy of Sciences) Jinan 250353 P. R. China
| | - Wei Gao
- Shandong Provincial Key Laboratory of Molecular Engineering School of Chemistry and Pharmaceutical Engineering Qilu University of Technology (Shandong Academy of Sciences) Jinan 250353 P. R. China
| | - Jianhua Zhou
- Shandong Provincial Key Laboratory of Molecular Engineering School of Chemistry and Pharmaceutical Engineering Qilu University of Technology (Shandong Academy of Sciences) Jinan 250353 P. R. China
| | - Wei Hu
- Shandong Provincial Key Laboratory of Molecular Engineering School of Chemistry and Pharmaceutical Engineering Qilu University of Technology (Shandong Academy of Sciences) Jinan 250353 P. R. China
| | - Yuezhi Cui
- Shandong Provincial Key Laboratory of Molecular Engineering School of Chemistry and Pharmaceutical Engineering Qilu University of Technology (Shandong Academy of Sciences) Jinan 250353 P. R. China
| | - Jianbin Chen
- Shandong Provincial Key Laboratory of Molecular Engineering School of Chemistry and Pharmaceutical Engineering Qilu University of Technology (Shandong Academy of Sciences) Jinan 250353 P. R. China
| |
Collapse
|
16
|
Röckl JL, Schollmeyer D, Franke R, Waldvogel SR. Dehydrogenative Anodic C-C Coupling of Phenols Bearing Electron-Withdrawing Groups. Angew Chem Int Ed Engl 2020; 59:315-319. [PMID: 31498544 PMCID: PMC6973026 DOI: 10.1002/anie.201910077] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Indexed: 01/24/2023]
Abstract
We herein present a metal-free, electrosynthetic method that enables the direct dehydrogenative coupling reactions of phenols carrying electron-withdrawing groups for the first time. The reactions are easy to conduct and scalable, as they are carried out in undivided cells and obviate the necessity for additional supporting electrolyte. As such, this conversion is efficient, practical, and thereby environmentally friendly, as production of waste is minimized. The method features a broad substrate scope, and a variety of functional groups are tolerated, providing easy access to precursors for novel polydentate ligands and even heterocycles such as dibenzofurans.
Collapse
Affiliation(s)
- Johannes L. Röckl
- Institute of Organic ChemistryJohannes Gutenberg University MainzDuesbergweg 10–1455128Mainz (Germany)
- Graduate School Materials Science in MainzGermany
| | - Dieter Schollmeyer
- Institute of Organic ChemistryJohannes Gutenberg University MainzDuesbergweg 10–1455128Mainz (Germany)
| | - Robert Franke
- Evonik Performance Materials GmbHPaul-Baumann-Str. 145772MarlGermany
- Lehrstuhl für Theoretische ChemieRuhr-Universität BochumUniversitätstraße 15044801BochumGermany
| | - Siegfried R. Waldvogel
- Institute of Organic ChemistryJohannes Gutenberg University MainzDuesbergweg 10–1455128Mainz (Germany)
- Graduate School Materials Science in MainzGermany
| |
Collapse
|
17
|
Wang ZQ, Hou C, Zhong YF, Lu YX, Mo ZY, Pan YM, Tang HT. Electrochemically Enabled Double C-H Activation of Amides: Chemoselective Synthesis of Polycyclic Isoquinolinones. Org Lett 2019; 21:9841-9845. [PMID: 31829020 DOI: 10.1021/acs.orglett.9b03682] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
We developed an electrochemically enabled dehydrogenative annulation reaction of amides and alkynes for the synthesis of antitumor polycyclic isoquinolinones through a double C-H activation route. No external oxidant is required in this reaction, and electricity is used for Ru catalyst circulation. The most remarkable feature of this reaction is the effective improvement of product regioselectivity under mild electrolytic conditions in comparison with previously set strong oxidant conditions.
Collapse
Affiliation(s)
- Zi-Qiang Wang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources , School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University , Guilin 541004 , People's Republic of China
| | - Cheng Hou
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources , School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University , Guilin 541004 , People's Republic of China
| | - Yuan-Fang Zhong
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources , School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University , Guilin 541004 , People's Republic of China
| | - Yu-Xuan Lu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources , School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University , Guilin 541004 , People's Republic of China
| | - Zu-Yu Mo
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources , School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University , Guilin 541004 , People's Republic of China
| | - Ying-Ming Pan
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources , School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University , Guilin 541004 , People's Republic of China
| | - Hai-Tao Tang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources , School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University , Guilin 541004 , People's Republic of China
| |
Collapse
|
18
|
Röckl JL, Schollmeyer D, Franke R, Waldvogel SR. Dehydrierende anodische C‐C‐Kupplung von Phenolen mit elektronenziehenden Substituenten. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201910077] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Johannes L. Röckl
- Institut für Organische Chemie Johannes Gutenberg Universität Mainz Duesbergweg 10–14 55128 Mainz Deutschland
- Graduate School Materials Science in Mainz Deutschland
| | - Dieter Schollmeyer
- Institut für Organische Chemie Johannes Gutenberg Universität Mainz Duesbergweg 10–14 55128 Mainz Deutschland
| | - Robert Franke
- Evonik Performance Materials GmbH Paul-Baumann-Straße 1 45772 Marl Deutschland
- Lehrstuhl für Theoretische Chemie Ruhr-Universität Bochum Universitätstraße 150 44801 Bochum Deutschland
| | - Siegfried R. Waldvogel
- Institut für Organische Chemie Johannes Gutenberg Universität Mainz Duesbergweg 10–14 55128 Mainz Deutschland
- Graduate School Materials Science in Mainz Deutschland
| |
Collapse
|
19
|
Tian S, Lv S, Jia X, Ma L, Li B, Zhang G, Gao W, Wei Y, Chen J. CV‐driven Optimization: Cobalt‐Catalyzed Electrochemical Expedient Oxychlorination of Alkenes via ORR. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201901260] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Siyu Tian
- Shandong Provincial Key Laboratory of Molecular EngineeringState Key Laboratory of Biobased Material and Green PapermakingSchool of Chemistry and Pharmaceutical Engineering Qilu University of Technology (Shandong Academy of Sciences) Jinan 250353 People's Republic of China
| | - Shide Lv
- Shandong Provincial Key Laboratory of Molecular EngineeringState Key Laboratory of Biobased Material and Green PapermakingSchool of Chemistry and Pharmaceutical Engineering Qilu University of Technology (Shandong Academy of Sciences) Jinan 250353 People's Republic of China
| | - Xiaofei Jia
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOECollege of Chemistry and Molecular Engineering. Qingdao University of Science and Technology Qingdao 266042 People's Republic of China
| | - Li Ma
- Shandong Provincial Key Laboratory of Molecular EngineeringState Key Laboratory of Biobased Material and Green PapermakingSchool of Chemistry and Pharmaceutical Engineering Qilu University of Technology (Shandong Academy of Sciences) Jinan 250353 People's Republic of China
| | - Baoying Li
- Shandong Provincial Key Laboratory of Molecular EngineeringState Key Laboratory of Biobased Material and Green PapermakingSchool of Chemistry and Pharmaceutical Engineering Qilu University of Technology (Shandong Academy of Sciences) Jinan 250353 People's Republic of China
| | - Guofeng Zhang
- Shandong Provincial Key Laboratory of Molecular EngineeringState Key Laboratory of Biobased Material and Green PapermakingSchool of Chemistry and Pharmaceutical Engineering Qilu University of Technology (Shandong Academy of Sciences) Jinan 250353 People's Republic of China
| | - Wei Gao
- Shandong Provincial Key Laboratory of Molecular EngineeringState Key Laboratory of Biobased Material and Green PapermakingSchool of Chemistry and Pharmaceutical Engineering Qilu University of Technology (Shandong Academy of Sciences) Jinan 250353 People's Republic of China
| | - Yingqin Wei
- Shandong Provincial Key Laboratory of Molecular EngineeringState Key Laboratory of Biobased Material and Green PapermakingSchool of Chemistry and Pharmaceutical Engineering Qilu University of Technology (Shandong Academy of Sciences) Jinan 250353 People's Republic of China
| | - Jianbin Chen
- Shandong Provincial Key Laboratory of Molecular EngineeringState Key Laboratory of Biobased Material and Green PapermakingSchool of Chemistry and Pharmaceutical Engineering Qilu University of Technology (Shandong Academy of Sciences) Jinan 250353 People's Republic of China
| |
Collapse
|
20
|
Lv S, Zhang G, Chen J, Gao W. Electrochemical Dearomatization: Evolution from Chemicals to Traceless Electrons. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201900750] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Shide Lv
- Shandong Provincial Key Laboratory of Molecular Engineering School of Chemistry and Pharmaceutical Engineering Qilu University of Technology (Shandong Academy of Sciences) Jinan 250353 People's Republic of China
| | - Guofeng Zhang
- Shandong Provincial Key Laboratory of Molecular Engineering School of Chemistry and Pharmaceutical Engineering Qilu University of Technology (Shandong Academy of Sciences) Jinan 250353 People's Republic of China
| | - Jianbin Chen
- Shandong Provincial Key Laboratory of Molecular Engineering School of Chemistry and Pharmaceutical Engineering Qilu University of Technology (Shandong Academy of Sciences) Jinan 250353 People's Republic of China
| | - Wei Gao
- Shandong Provincial Key Laboratory of Molecular Engineering School of Chemistry and Pharmaceutical Engineering Qilu University of Technology (Shandong Academy of Sciences) Jinan 250353 People's Republic of China
| |
Collapse
|
21
|
Song C, Liu K, Wang Z, Ding B, Wang S, Weng Y, Chiang CW, Lei A. Electrochemical oxidation induced selective tyrosine bioconjugation for the modification of biomolecules. Chem Sci 2019; 10:7982-7987. [PMID: 31673320 PMCID: PMC6788519 DOI: 10.1039/c9sc02218j] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 07/07/2019] [Indexed: 12/26/2022] Open
Abstract
Directly introducing a beneficial functional group into biomolecules under mild, clean and easy-to-handle conditions is of great importance in the field of chemical biology and pharmacology. Herein, we described an electrochemical strategy to perform the bioconjugation of tyrosine residues with phenothiazine derivatives in a rapid and simple manner. In this electrochemical system, various polypeptides and proteins were successfully labelled with excellent site- and chemo-selectivity, and metals, oxidants or additives were also avoided.
Collapse
Affiliation(s)
- Chunlan Song
- College of Chemistry and Molecular Sciences , Institute for Advanced Studies (IAS) , Wuhan University , Wuhan 430072 , P. R. China .
| | - Kun Liu
- College of Chemistry and Molecular Sciences , Institute for Advanced Studies (IAS) , Wuhan University , Wuhan 430072 , P. R. China .
| | - Zhongjie Wang
- College of Chemistry and Molecular Sciences , Institute for Advanced Studies (IAS) , Wuhan University , Wuhan 430072 , P. R. China .
| | - Bo Ding
- College of Chemistry and Molecular Sciences , Institute for Advanced Studies (IAS) , Wuhan University , Wuhan 430072 , P. R. China .
| | - Shengchun Wang
- College of Chemistry and Molecular Sciences , Institute for Advanced Studies (IAS) , Wuhan University , Wuhan 430072 , P. R. China .
| | - Yue Weng
- College of Chemistry and Molecular Sciences , Institute for Advanced Studies (IAS) , Wuhan University , Wuhan 430072 , P. R. China .
- National Synchrotron Radiation Research Center (NSRRC) , Hsinchu Science Park , Hsinchu , Taiwan
| | - Chien-Wei Chiang
- College of Chemistry and Molecular Sciences , Institute for Advanced Studies (IAS) , Wuhan University , Wuhan 430072 , P. R. China .
| | - Aiwen Lei
- College of Chemistry and Molecular Sciences , Institute for Advanced Studies (IAS) , Wuhan University , Wuhan 430072 , P. R. China .
- National Research Center for Carbohydrate Synthesis , Jiangxi Normal University , Nanchang 330022 , P. R. China
| |
Collapse
|
22
|
Shao X, Tian L, Wang Y. C-N Coupling of Azoles or Imides with Carbocations Generated by Electrochemical Oxidation. European J Org Chem 2019. [DOI: 10.1002/ejoc.201900714] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Xiaoqing Shao
- Institute of Advanced Synthesis (IAS); School of Chemistry and Molecular Engineering (SCME); Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM); Nanjing Tech University; 30 South Puzhu Road 211816 Nanjing China
| | - Lifang Tian
- Institute of Advanced Synthesis (IAS); School of Chemistry and Molecular Engineering (SCME); Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM); Nanjing Tech University; 30 South Puzhu Road 211816 Nanjing China
| | - Yahui Wang
- Institute of Advanced Synthesis (IAS); School of Chemistry and Molecular Engineering (SCME); Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM); Nanjing Tech University; 30 South Puzhu Road 211816 Nanjing China
| |
Collapse
|
23
|
Jian W, Wang H, Du K, Zhong W, Huang J. Electrochemical Synthesis of 3‐Bromoimidazo[1,2‐a]pyridines Directly from 2‐Aminopyridines and
alpha
‐Bromoketones. ChemElectroChem 2019. [DOI: 10.1002/celc.201900406] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Wen‐Qian Jian
- Key Laboratory of Functional Molecular Engineering of Guangdong Province School of Chemistry and Chemical EngineeringSouth China University of Technology Guangzhou 510640 P. R. CHINA
| | - Hai‐Bin Wang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province School of Chemistry and Chemical EngineeringSouth China University of Technology Guangzhou 510640 P. R. CHINA
| | - Ke‐Si Du
- Key Laboratory of Functional Molecular Engineering of Guangdong Province School of Chemistry and Chemical EngineeringSouth China University of Technology Guangzhou 510640 P. R. CHINA
| | - Wei‐Qiang Zhong
- Key Laboratory of Functional Molecular Engineering of Guangdong Province School of Chemistry and Chemical EngineeringSouth China University of Technology Guangzhou 510640 P. R. CHINA
| | - Jing‐Mei Huang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province School of Chemistry and Chemical EngineeringSouth China University of Technology Guangzhou 510640 P. R. CHINA
| |
Collapse
|
24
|
Han X, Wang K, Zhang G, Gao W, Chen J. Application of the Electrochemical Oxygen Reduction Reaction (ORR) in Organic Synthesis. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201900003] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Xiaoxin Han
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Pharmaceutical EngineeringQilu University of Technology (Shandong Academy of Sciences) Jinan 250353 People's Republic of China
| | - Kui Wang
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Pharmaceutical EngineeringQilu University of Technology (Shandong Academy of Sciences) Jinan 250353 People's Republic of China
| | - Guofeng Zhang
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Pharmaceutical EngineeringQilu University of Technology (Shandong Academy of Sciences) Jinan 250353 People's Republic of China
| | - Wei Gao
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Pharmaceutical EngineeringQilu University of Technology (Shandong Academy of Sciences) Jinan 250353 People's Republic of China
| | - Jianbin Chen
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Pharmaceutical EngineeringQilu University of Technology (Shandong Academy of Sciences) Jinan 250353 People's Republic of China
| |
Collapse
|
25
|
Liu K, Wu J, Deng Y, Song C, Song W, Lei A. Electrochemical C−H/N−H Oxidative Cross Coupling of Imidazopyridines with Diarylamines to Synthesize Triarylamine Derivatives. ChemElectroChem 2019. [DOI: 10.1002/celc.201900138] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Kun Liu
- College of Chemistry and Molecular Sciences Institute for Advanced Studies (IAS)Wuhan University Wuhan 430072 Hubei P. R. China
| | - Jiarong Wu
- College of Chemistry and Molecular Sciences Institute for Advanced Studies (IAS)Wuhan University Wuhan 430072 Hubei P. R. China
| | - Yuqi Deng
- College of Chemistry and Molecular Sciences Institute for Advanced Studies (IAS)Wuhan University Wuhan 430072 Hubei P. R. China
| | - Chunlan Song
- College of Chemistry and Molecular Sciences Institute for Advanced Studies (IAS)Wuhan University Wuhan 430072 Hubei P. R. China
| | - Wenxu Song
- College of Chemistry and Molecular Sciences Institute for Advanced Studies (IAS)Wuhan University Wuhan 430072 Hubei P. R. China
| | - Aiwen Lei
- College of Chemistry and Molecular Sciences Institute for Advanced Studies (IAS)Wuhan University Wuhan 430072 Hubei P. R. China
- National Research Center for Carbohydrate SynthesisJiangxi Normal University Nanchang 330022 Peoples Republic of China
| |
Collapse
|
26
|
Xie W, Liu N, Gong B, Ning S, Che X, Cui L, Xiang J. Electrochemical Cross-Dehydrogenative Coupling of N
-Aryl-tetrahydroisoquinolines with Phosphites and Indole. European J Org Chem 2019. [DOI: 10.1002/ejoc.201801883] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Wenxia Xie
- The Center for Combinatorial Chemistry and Drug Discovery of Jilin University; The School of Pharmaceutical Sciences; Jilin University; 1266 Fujin Road Changchun, Jilin 130021 P. R. China
| | - Nian Liu
- The Center for Combinatorial Chemistry and Drug Discovery of Jilin University; The School of Pharmaceutical Sciences; Jilin University; 1266 Fujin Road Changchun, Jilin 130021 P. R. China
| | - Bowen Gong
- The Center for Combinatorial Chemistry and Drug Discovery of Jilin University; The School of Pharmaceutical Sciences; Jilin University; 1266 Fujin Road Changchun, Jilin 130021 P. R. China
| | - Shulin Ning
- The Center for Combinatorial Chemistry and Drug Discovery of Jilin University; The School of Pharmaceutical Sciences; Jilin University; 1266 Fujin Road Changchun, Jilin 130021 P. R. China
| | - Xin Che
- The Center for Combinatorial Chemistry and Drug Discovery of Jilin University; The School of Pharmaceutical Sciences; Jilin University; 1266 Fujin Road Changchun, Jilin 130021 P. R. China
| | - Lili Cui
- Department of Chemistry and Chemical Engineering; Changchun University of Science and Technology; 7989 Weixing Road Changchun, Jilin 130022 P. R. China
| | - Jinbao Xiang
- The Center for Combinatorial Chemistry and Drug Discovery of Jilin University; The School of Pharmaceutical Sciences; Jilin University; 1266 Fujin Road Changchun, Jilin 130021 P. R. China
| |
Collapse
|
27
|
Yang SM, He TJ, Lin DZ, Huang JM. Electrosynthesis of (E)-Vinyl Thiocyanates from Cinnamic Acids via Decarboxylative Coupling Reaction. Org Lett 2019; 21:1958-1962. [DOI: 10.1021/acs.orglett.8b04136] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Shun-Ming Yang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, Guangdong 510640, China
| | - Tian-Jun He
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, Guangdong 510640, China
| | - Dian-Zhao Lin
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, Guangdong 510640, China
| | - Jing-Mei Huang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, Guangdong 510640, China
| |
Collapse
|
28
|
Rodrigo E, Waldvogel SR. Simple electrochemical reduction of nitrones to amines. Chem Sci 2019; 10:2044-2047. [PMID: 30842861 PMCID: PMC6375361 DOI: 10.1039/c8sc04337j] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Accepted: 12/08/2018] [Indexed: 11/21/2022] Open
Abstract
The use of electricity allows the reduction of nitrones containing aromatic and heteroaromatic rings to the corresponding amines. The main advantage of this protocol relies on the fact that only electrons are needed, avoiding the use of different chemicals and harsh procedures, something that reinforces some green aspects. The conversion tolerates different moieties and a large variety of functional groups. In addition, this electrolysis can be performed on a simple undivided beaker-type cell with constant current conditions.
Collapse
Affiliation(s)
- Eduardo Rodrigo
- Institut für Organische Chemie , Johannes-Gutenberg-Universität Mainz , Duesbergweg 10-14 , 55128 Mainz , Germany .
| | - Siegfried R Waldvogel
- Institut für Organische Chemie , Johannes-Gutenberg-Universität Mainz , Duesbergweg 10-14 , 55128 Mainz , Germany .
| |
Collapse
|
29
|
Electrochemical Umpolung of Bromide: Transition-Metal-Free Bromination of Indole C⁻H Bond. Molecules 2019; 24:molecules24040696. [PMID: 30769954 PMCID: PMC6412264 DOI: 10.3390/molecules24040696] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Revised: 02/07/2019] [Accepted: 02/12/2019] [Indexed: 11/17/2022] Open
Abstract
A facile and sustainable electrochemical umpolung of bromide ion protocol was developed under mild reaction conditions. Transition metal catalysts and exogenous chemical oxidants were obviated for the bromination of C⁻H bond. Notably, graphite rod, which is commercially available at supermarkets and is inexpensive, was employed as the electrode material. This operationally easy and environmentally friendly approach accomplished the synthesis of 3-bromoindole in excellent yield and regioselectivity.
Collapse
|
30
|
Lips S, Waldvogel SR. Use of Boron‐Doped Diamond Electrodes in Electro‐Organic Synthesis. ChemElectroChem 2019. [DOI: 10.1002/celc.201801620] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Sebastian Lips
- Institut für Organische ChemieJohannes Gutenberg-Universität Mainz Duesbergweg 10–14 55128 Mainz Germany) Homepage: http//www.chemie.uni-mainz.de/OC/AK-Waldvogel/
| | - Siegfried R. Waldvogel
- Institut für Organische ChemieJohannes Gutenberg-Universität Mainz Duesbergweg 10–14 55128 Mainz Germany) Homepage: http//www.chemie.uni-mainz.de/OC/AK-Waldvogel/
| |
Collapse
|
31
|
Chen J, Lv S, Tian S. Electrochemical Transition-Metal-Catalyzed C-H Bond Functionalization: Electricity as Clean Surrogates of Chemical Oxidants. CHEMSUSCHEM 2019; 12:115-132. [PMID: 30280508 DOI: 10.1002/cssc.201801946] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 10/01/2018] [Indexed: 06/08/2023]
Abstract
Transition-metal-catalyzed C-H activation has attracted much attention from the organic synthetic community because it obviates the need to prefunctionalize substrates. However, superstoichiometric chemical oxidants, such as copper- or silver-based metal oxidants, benzoquinones, organic peroxides, K2 S2 O8 , hypervalent iodine, and O2 , are required for most of the reactions. Thus, the development of environmentally benign and user-friendly C-H bond activation protocols, in the absence of chemical oxidants, are urgently desired. The inherent advantages and unique characteristics of organic electrosynthesis make fill this gap. Herein, recent progress in this area (until the end of September 2018) is summarized for different transition metals to highlight the potential sustainability of electro-organic chemistry.
Collapse
Affiliation(s)
- Jianbin Chen
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Pharmaceutical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, PR China
| | - Shide Lv
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Pharmaceutical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, PR China
| | - Siyu Tian
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Pharmaceutical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, PR China
| |
Collapse
|
32
|
Tian S, Jia X, Wang L, Li B, Liu S, Ma L, Gao W, Wei Y, Chen J. The Mn-catalyzed paired electrochemical facile oxychlorination of styrenes via the oxygen reduction reaction. Chem Commun (Camb) 2019; 55:12104-12107. [DOI: 10.1039/c9cc06746a] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Reported herein is the electrochemical engendering of chlorine radicals by a manganese catalyst with a controllable pattern, and inexpensive MgCl2 as the chlorine source.
Collapse
Affiliation(s)
- Siyu Tian
- Shandong Provincial Key Laboratory of Molecular Engineering
- School of Chemistry and Pharmaceutical Engineering
- Qilu University of Technology (Shandong Academy of Sciences)
- Jinan
- P. R. China
| | - Xiaofei Jia
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE
- College of Chemistry and Molecular Engineering
- Qingdao University of Science and Technology
- Qingdao 266042
- P. R. China
| | - Ling Wang
- Shandong Provincial Key Laboratory of Molecular Engineering
- School of Chemistry and Pharmaceutical Engineering
- Qilu University of Technology (Shandong Academy of Sciences)
- Jinan
- P. R. China
| | - Baoying Li
- Shandong Provincial Key Laboratory of Molecular Engineering
- School of Chemistry and Pharmaceutical Engineering
- Qilu University of Technology (Shandong Academy of Sciences)
- Jinan
- P. R. China
| | - Siyuan Liu
- Shandong Provincial Key Laboratory of Molecular Engineering
- School of Chemistry and Pharmaceutical Engineering
- Qilu University of Technology (Shandong Academy of Sciences)
- Jinan
- P. R. China
| | - Li Ma
- Shandong Provincial Key Laboratory of Molecular Engineering
- School of Chemistry and Pharmaceutical Engineering
- Qilu University of Technology (Shandong Academy of Sciences)
- Jinan
- P. R. China
| | - Wei Gao
- Shandong Provincial Key Laboratory of Molecular Engineering
- School of Chemistry and Pharmaceutical Engineering
- Qilu University of Technology (Shandong Academy of Sciences)
- Jinan
- P. R. China
| | - Yingqin Wei
- Shandong Provincial Key Laboratory of Molecular Engineering
- School of Chemistry and Pharmaceutical Engineering
- Qilu University of Technology (Shandong Academy of Sciences)
- Jinan
- P. R. China
| | - Jianbin Chen
- Shandong Provincial Key Laboratory of Molecular Engineering
- School of Chemistry and Pharmaceutical Engineering
- Qilu University of Technology (Shandong Academy of Sciences)
- Jinan
- P. R. China
| |
Collapse
|
33
|
Kehl A, Breising VM, Schollmeyer D, Waldvogel SR. Electrochemical Synthesis of 5-Aryl-phenanthridin-6-one by Dehydrogenative N,C Bond Formation. Chemistry 2018; 24:17230-17233. [DOI: 10.1002/chem.201804638] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Indexed: 01/19/2023]
Affiliation(s)
- Anton Kehl
- Johannes Gutenberg-Universität Mainz; Institut für Organische Chemie; Duesbergweg 10-14 55128 Mainz Germany
| | - Valentina M. Breising
- Johannes Gutenberg-Universität Mainz; Institut für Organische Chemie; Duesbergweg 10-14 55128 Mainz Germany
| | - Dieter Schollmeyer
- Johannes Gutenberg-Universität Mainz; Institut für Organische Chemie; Duesbergweg 10-14 55128 Mainz Germany
| | - Siegfried R. Waldvogel
- Johannes Gutenberg-Universität Mainz; Institut für Organische Chemie; Duesbergweg 10-14 55128 Mainz Germany
| |
Collapse
|
34
|
Kärkäs MD. Electrochemical strategies for C-H functionalization and C-N bond formation. Chem Soc Rev 2018; 47:5786-5865. [PMID: 29911724 DOI: 10.1039/c7cs00619e] [Citation(s) in RCA: 627] [Impact Index Per Article: 89.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Conventional methods for carrying out carbon-hydrogen functionalization and carbon-nitrogen bond formation are typically conducted at elevated temperatures, and rely on expensive catalysts as well as the use of stoichiometric, and perhaps toxic, oxidants. In this regard, electrochemical synthesis has recently been recognized as a sustainable and scalable strategy for the construction of challenging carbon-carbon and carbon-heteroatom bonds. Here, electrosynthesis has proven to be an environmentally benign, highly effective and versatile platform for achieving a wide range of nonclassical bond disconnections via generation of radical intermediates under mild reaction conditions. This review provides an overview on the use of anodic electrochemical methods for expediting the development of carbon-hydrogen functionalization and carbon-nitrogen bond formation strategies. Emphasis is placed on methodology development and mechanistic insight and aims to provide inspiration for future synthetic applications in the field of electrosynthesis.
Collapse
Affiliation(s)
- Markus D Kärkäs
- Department of Chemistry, Organic Chemistry, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden.
| |
Collapse
|
35
|
Möhle S, Herold S, Hillerson ND, Waldvogel SR. Anodic Formation of Aryl Mesylates through Dehydrogenative Coupling Reaction. ChemElectroChem 2018. [DOI: 10.1002/celc.201800498] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Sabine Möhle
- Institut für Organische Chemie; Johannes Gutenberg-Universität Mainz; Duesbergweg 10-14 55128 Mainz Germany
| | - Sebastian Herold
- Institut für Organische Chemie; Johannes Gutenberg-Universität Mainz; Duesbergweg 10-14 55128 Mainz Germany
- Graduate School Material Science in Mainz; Johannes Gutenberg-Universität Mainz; Staudingerweg 9 55128 Mainz Germany
| | - Natalie D. Hillerson
- Institut für Organische Chemie; Johannes Gutenberg-Universität Mainz; Duesbergweg 10-14 55128 Mainz Germany
| | - Siegfried R. Waldvogel
- Institut für Organische Chemie; Johannes Gutenberg-Universität Mainz; Duesbergweg 10-14 55128 Mainz Germany
- Graduate School Material Science in Mainz; Johannes Gutenberg-Universität Mainz; Staudingerweg 9 55128 Mainz Germany
| |
Collapse
|
36
|
Möhle S, Zirbes M, Rodrigo E, Gieshoff T, Wiebe A, Waldvogel SR. Modern Electrochemical Aspects for the Synthesis of Value-Added Organic Products. Angew Chem Int Ed Engl 2018; 57:6018-6041. [PMID: 29359378 PMCID: PMC6001547 DOI: 10.1002/anie.201712732] [Citation(s) in RCA: 617] [Impact Index Per Article: 88.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Indexed: 11/11/2022]
Abstract
The use of electricity instead of stoichiometric amounts of oxidizers or reducing agents in synthesis is very appealing for economic and ecological reasons, and represents a major driving force for research efforts in this area. To use electron transfer at the electrode for a successful transformation in organic synthesis, the intermediate radical (cation/anion) has to be stabilized. Its combination with other approaches in organic chemistry or concepts of contemporary synthesis allows the establishment of powerful synthetic methods. The aim in the 21st Century will be to use as little fossil carbon as possible and, for this reason, the use of renewable sources is becoming increasingly important. The direct conversion of renewables, which have previously mainly been incinerated, is of increasing interest. This Review surveys many of the recent seminal important developments which will determine the future of this dynamic emerging field.
Collapse
Affiliation(s)
- Sabine Möhle
- Institut für Organische ChemieJohannes Gutenberg-Universität MainzDuesbergweg 10–1455128MainzGermany
| | - Michael Zirbes
- Institut für Organische ChemieJohannes Gutenberg-Universität MainzDuesbergweg 10–1455128MainzGermany
| | - Eduardo Rodrigo
- Institut für Organische ChemieJohannes Gutenberg-Universität MainzDuesbergweg 10–1455128MainzGermany
| | - Tile Gieshoff
- Institut für Organische ChemieJohannes Gutenberg-Universität MainzDuesbergweg 10–1455128MainzGermany
- Graduate School Materials Science in MainzStaudingerweg 955128MainzGermany
| | - Anton Wiebe
- Institut für Organische ChemieJohannes Gutenberg-Universität MainzDuesbergweg 10–1455128MainzGermany
- Max Planck Graduate CenterStaudingerweg 955128MainzGermany
| | - Siegfried R. Waldvogel
- Institut für Organische ChemieJohannes Gutenberg-Universität MainzDuesbergweg 10–1455128MainzGermany
- Graduate School Materials Science in MainzStaudingerweg 955128MainzGermany
- Max Planck Graduate CenterStaudingerweg 955128MainzGermany
| |
Collapse
|
37
|
Jin R, Bub CL, Patureau FW. Phenothiazinimides: Atom-Efficient Electrophilic Amination Reagents. Org Lett 2018; 20:2884-2887. [PMID: 29701985 PMCID: PMC6045521 DOI: 10.1021/acs.orglett.8b00914] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Indexed: 11/29/2022]
Abstract
Phenothiazinimides, a fairly unknown class of imines, were prepared and found to be very reactive as ultrasimple atom-efficient electrophilic amination reagents for phenols and indoles under metal-free conditions.
Collapse
Affiliation(s)
| | | | - Frederic W. Patureau
- Fachbereich Chemie, Technische Universität Kaiserslautern, Erwin-Schrödinger Strasse
Geb. 52, 67663 Kaiserslautern, Germany
| |
Collapse
|
38
|
Wiebe A, Gieshoff T, Möhle S, Rodrigo E, Zirbes M, Waldvogel SR. Electrifying Organic Synthesis. Angew Chem Int Ed Engl 2018; 57:5594-5619. [PMID: 29292849 PMCID: PMC5969240 DOI: 10.1002/anie.201711060] [Citation(s) in RCA: 864] [Impact Index Per Article: 123.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 12/29/2017] [Indexed: 11/21/2022]
Abstract
The direct synthetic organic use of electricity is currently experiencing a renaissance. More synthetically oriented laboratories working in this area are exploiting both novel and more traditional concepts, paving the way to broader applications of this niche technology. As only electrons serve as reagents, the generation of reagent waste is efficiently avoided. Moreover, stoichiometric reagents can be regenerated and allow a transformation to be conducted in an electrocatalytic fashion. However, the application of electroorganic transformations is more than minimizing the waste footprint, it rather gives rise to inherently safe processes, reduces the number of steps of many syntheses, allows for milder reaction conditions, provides alternative means to access desired structural entities, and creates intellectual property (IP) space. When the electricity originates from renewable resources, this surplus might be directly employed as a terminal oxidizing or reducing agent, providing an ultra-sustainable and therefore highly attractive technique. This Review surveys recent developments in electrochemical synthesis that will influence the future of this area.
Collapse
Affiliation(s)
- Anton Wiebe
- Max Planck Graduate CenterStaudingerweg 955128MainzGermany
- Institut für Organische ChemieJohannes Gutenberg-Universität MainzDuesbergweg 10–1455128MainzGermany
| | - Tile Gieshoff
- Graduate School Materials Science in MainzStaudingerweg 955128MainzGermany
- Institut für Organische ChemieJohannes Gutenberg-Universität MainzDuesbergweg 10–1455128MainzGermany
| | - Sabine Möhle
- Institut für Organische ChemieJohannes Gutenberg-Universität MainzDuesbergweg 10–1455128MainzGermany
| | - Eduardo Rodrigo
- Institut für Organische ChemieJohannes Gutenberg-Universität MainzDuesbergweg 10–1455128MainzGermany
| | - Michael Zirbes
- Institut für Organische ChemieJohannes Gutenberg-Universität MainzDuesbergweg 10–1455128MainzGermany
| | - Siegfried R. Waldvogel
- Max Planck Graduate CenterStaudingerweg 955128MainzGermany
- Graduate School Materials Science in MainzStaudingerweg 955128MainzGermany
- Institut für Organische ChemieJohannes Gutenberg-Universität MainzDuesbergweg 10–1455128MainzGermany
| |
Collapse
|
39
|
Sun L, Zhang X, Li Z, Ma J, Zeng Z, Jiang H. A Versatile C-H Halogenation Strategy for Indole Derivatives under Electrochemical Catalyst- and Oxidant-Free Conditions. European J Org Chem 2018. [DOI: 10.1002/ejoc.201800267] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Linhao Sun
- Department of Chemistry; College of Science; Huazhong Agricultural University; 430070 Wuhan Hubei China
| | - Xing Zhang
- Department of Chemistry; College of Science; Huazhong Agricultural University; 430070 Wuhan Hubei China
| | - Zilong Li
- Department of Chemistry; College of Science; Huazhong Agricultural University; 430070 Wuhan Hubei China
| | - Jimei Ma
- Department of Chemistry; College of Science; Huazhong Agricultural University; 430070 Wuhan Hubei China
| | - Zhen Zeng
- Department of Chemistry; College of Science; Huazhong Agricultural University; 430070 Wuhan Hubei China
| | - Hong Jiang
- Department of Chemistry; College of Science; Huazhong Agricultural University; 430070 Wuhan Hubei China
| |
Collapse
|
40
|
Abstract
An electrochemical bisindolylation of ethers was developed. Carried out under ambient conditions and in the absence of any chemical oxidants, this reaction exhibits a broad substrate scope and good functional group compatibility.
Collapse
Affiliation(s)
- Ke-Si Du
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering , South China University of Technology , Guangzhou , Guangdong 510640 , China
| | - Jing-Mei Huang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering , South China University of Technology , Guangzhou , Guangdong 510640 , China
| |
Collapse
|
41
|
Tao XZ, Dai JJ, Zhou J, Xu J, Xu HJ. Electrochemical C−O Bond Formation: Facile Access to Aromatic Lactones. Chemistry 2018. [DOI: 10.1002/chem.201801108] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Xiang-Zhang Tao
- School of Biological and Medical Engineering, Anhui Province Key Laboratory of Advance Catalytic Materials and Reaction Engineering; Hefei University of Technology; Hefei 230009 P.R. China
| | - Jian-Jun Dai
- School of Biological and Medical Engineering, Anhui Province Key Laboratory of Advance Catalytic Materials and Reaction Engineering; Hefei University of Technology; Hefei 230009 P.R. China
| | - Jie Zhou
- School of Biological and Medical Engineering, Anhui Province Key Laboratory of Advance Catalytic Materials and Reaction Engineering; Hefei University of Technology; Hefei 230009 P.R. China
| | - Jun Xu
- School of Biological and Medical Engineering, Anhui Province Key Laboratory of Advance Catalytic Materials and Reaction Engineering; Hefei University of Technology; Hefei 230009 P.R. China
| | - Hua-Jian Xu
- School of Biological and Medical Engineering, Anhui Province Key Laboratory of Advance Catalytic Materials and Reaction Engineering; Hefei University of Technology; Hefei 230009 P.R. China
| |
Collapse
|
42
|
Möhle S, Zirbes M, Rodrigo E, Gieshoff T, Wiebe A, Waldvogel SR. Moderne Aspekte der Elektrochemie zur Synthese hochwertiger organischer Produkte. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201712732] [Citation(s) in RCA: 204] [Impact Index Per Article: 29.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Sabine Möhle
- Institut für Organische Chemie Johannes-Gutenberg-Universität Mainz Duesbergweg 10–14 55128 Mainz Deutschland
| | - Michael Zirbes
- Institut für Organische Chemie Johannes-Gutenberg-Universität Mainz Duesbergweg 10–14 55128 Mainz Deutschland
| | - Eduardo Rodrigo
- Institut für Organische Chemie Johannes-Gutenberg-Universität Mainz Duesbergweg 10–14 55128 Mainz Deutschland
| | - Tile Gieshoff
- Institut für Organische Chemie Johannes-Gutenberg-Universität Mainz Duesbergweg 10–14 55128 Mainz Deutschland
- Graduate School Materials Science in Mainz Staudingerweg 9 55128 Mainz Deutschland
| | - Anton Wiebe
- Institut für Organische Chemie Johannes-Gutenberg-Universität Mainz Duesbergweg 10–14 55128 Mainz Deutschland
- Max Planck Graduate Center Staudingerweg 9 55128 Mainz Deutschland
| | - Siegfried R. Waldvogel
- Institut für Organische Chemie Johannes-Gutenberg-Universität Mainz Duesbergweg 10–14 55128 Mainz Deutschland
- Graduate School Materials Science in Mainz Staudingerweg 9 55128 Mainz Deutschland
- Max Planck Graduate Center Staudingerweg 9 55128 Mainz Deutschland
| |
Collapse
|
43
|
Tang S, Wang S, Liu Y, Cong H, Lei A. Electrochemical Oxidative C-H Amination of Phenols: Access to Triarylamine Derivatives. Angew Chem Int Ed Engl 2018; 57:4737-4741. [PMID: 29498166 DOI: 10.1002/anie.201800240] [Citation(s) in RCA: 127] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Revised: 01/11/2018] [Indexed: 01/07/2023]
Abstract
Dehydrogenative C-H/N-H cross-coupling serves as one of the most straightforward and atom-economical approaches for C-N bond formation. In this work, an electrochemical reaction protocol has been developed for the oxidative C-H amination of unprotected phenols under undivided electrolytic conditions. Neither metal catalysts nor chemical oxidants are needed to facilitate the dehydrogenation process. A series of triarylamine derivatives could be obtained with good functional-group tolerance. The electrolysis is scalable and can be performed at ambient conditions.
Collapse
Affiliation(s)
- Shan Tang
- College of Chemistry and Molecular Sciences, Institute for Advanced Studies (IAS), Wuhan University, Wuhan, 430072, Hubei, P. R. China
| | - Siyuan Wang
- College of Chemistry and Molecular Sciences, Institute for Advanced Studies (IAS), Wuhan University, Wuhan, 430072, Hubei, P. R. China
| | - Yichang Liu
- College of Chemistry and Molecular Sciences, Institute for Advanced Studies (IAS), Wuhan University, Wuhan, 430072, Hubei, P. R. China
| | - Hengjiang Cong
- College of Chemistry and Molecular Sciences, Institute for Advanced Studies (IAS), Wuhan University, Wuhan, 430072, Hubei, P. R. China
| | - Aiwen Lei
- College of Chemistry and Molecular Sciences, Institute for Advanced Studies (IAS), Wuhan University, Wuhan, 430072, Hubei, P. R. China.,State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, P. R. China
| |
Collapse
|
44
|
Tang S, Wang S, Liu Y, Cong H, Lei A. Electrochemical Oxidative C−H Amination of Phenols: Access to Triarylamine Derivatives. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201800240] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Shan Tang
- College of Chemistry and Molecular Sciences; Institute for Advanced Studies (IAS); Wuhan University; Wuhan 430072 Hubei P. R. China
| | - Siyuan Wang
- College of Chemistry and Molecular Sciences; Institute for Advanced Studies (IAS); Wuhan University; Wuhan 430072 Hubei P. R. China
| | - Yichang Liu
- College of Chemistry and Molecular Sciences; Institute for Advanced Studies (IAS); Wuhan University; Wuhan 430072 Hubei P. R. China
| | - Hengjiang Cong
- College of Chemistry and Molecular Sciences; Institute for Advanced Studies (IAS); Wuhan University; Wuhan 430072 Hubei P. R. China
| | - Aiwen Lei
- College of Chemistry and Molecular Sciences; Institute for Advanced Studies (IAS); Wuhan University; Wuhan 430072 Hubei P. R. China
- State Key Laboratory for Oxo Synthesis and Selective Oxidation; Lanzhou Institute of Chemical Physics; Chinese Academy of Sciences; Lanzhou 730000 P. R. China
| |
Collapse
|
45
|
Lin DZ, Huang JM. Electrochemical N-Formylation of Amines via Decarboxylation of Glyoxylic Acid. Org Lett 2018; 20:2112-2115. [DOI: 10.1021/acs.orglett.8b00698] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Dian-Zhao Lin
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, Guangdong 510640, China
| | - Jing-Mei Huang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, Guangdong 510640, China
| |
Collapse
|
46
|
Wiebe A, Gieshoff T, Möhle S, Rodrigo E, Zirbes M, Waldvogel SR. Elektrifizierung der organischen Synthese. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201711060] [Citation(s) in RCA: 259] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Anton Wiebe
- Max Planck Graduate Center; Staudingerweg 9 55128 Mainz Deutschland
- Institut für Organische Chemie; Johannes Gutenberg-Universität Mainz; Duesbergweg 10-14 55128 Mainz Deutschland
| | - Tile Gieshoff
- Graduate School Materials Science in Mainz; Staudingerweg 9 55128 Mainz Deutschland
- Institut für Organische Chemie; Johannes Gutenberg-Universität Mainz; Duesbergweg 10-14 55128 Mainz Deutschland
| | - Sabine Möhle
- Institut für Organische Chemie; Johannes Gutenberg-Universität Mainz; Duesbergweg 10-14 55128 Mainz Deutschland
| | - Eduardo Rodrigo
- Institut für Organische Chemie; Johannes Gutenberg-Universität Mainz; Duesbergweg 10-14 55128 Mainz Deutschland
| | - Michael Zirbes
- Institut für Organische Chemie; Johannes Gutenberg-Universität Mainz; Duesbergweg 10-14 55128 Mainz Deutschland
| | - Siegfried R. Waldvogel
- Max Planck Graduate Center; Staudingerweg 9 55128 Mainz Deutschland
- Graduate School Materials Science in Mainz; Staudingerweg 9 55128 Mainz Deutschland
- Institut für Organische Chemie; Johannes Gutenberg-Universität Mainz; Duesbergweg 10-14 55128 Mainz Deutschland
| |
Collapse
|
47
|
Yi H, Tang Z, Bian C, Chen H, Qi X, Yue X, Lan Y, Lee JF, Lei A. Oxidation-induced C-H amination leads to a new avenue to build C-N bonds. Chem Commun (Camb) 2018; 53:8984-8987. [PMID: 28744532 DOI: 10.1039/c7cc04955b] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
In this work, we develop an oxidation-induced C-H functionalization strategy, which not only leads to a new avenue to build C-N bonds, but also leads to different site-selectivity compared with "classic directing-groups". The high selectivity of our new catalytic system originates from the heterogeneous electron-density distribution of the radical cation species which are induced by single electron transfer between the aromatics and oxidant-Cu(ii) species.
Collapse
Affiliation(s)
- Hong Yi
- College of Chemistry and Molecular Sciences, the Institute for Advanced Studies, Wuhan University, Wuhan, Hubei 430072, People's Republic of China.
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Kehl A, Gieshoff T, Schollmeyer D, Waldvogel SR. Electrochemical Conversion of Phthaldianilides to Phthalazin-1,4-diones by Dehydrogenative N−N Bond Formation. Chemistry 2017; 24:590-593. [DOI: 10.1002/chem.201705578] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Indexed: 12/13/2022]
Affiliation(s)
- Anton Kehl
- Institut für Organische Chemie; Duesbergweg 10-14 55128 Mainz Germany
| | - Tile Gieshoff
- Institut für Organische Chemie; Duesbergweg 10-14 55128 Mainz Germany
- Graduate School Materials Science in Mainz; Staudingerweg 9 55128 Mainz Germany
| | | | - Siegfried R. Waldvogel
- Institut für Organische Chemie; Duesbergweg 10-14 55128 Mainz Germany
- Graduate School Materials Science in Mainz; Staudingerweg 9 55128 Mainz Germany
| |
Collapse
|
49
|
Xu F, Qian XY, Li YJ, Xu HC. Synthesis of 4H-1,3-Benzoxazines via Metal- and Oxidizing Reagent-Free Aromatic C–H Oxygenation. Org Lett 2017; 19:6332-6335. [DOI: 10.1021/acs.orglett.7b03152] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Fan Xu
- State Key Laboratory of Physical Chemistry of Solid Surfaces,
Key Laboratory of Chemical Biology of Fujian Province, iChEM and College
of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, PR China
| | - Xiang-Yang Qian
- State Key Laboratory of Physical Chemistry of Solid Surfaces,
Key Laboratory of Chemical Biology of Fujian Province, iChEM and College
of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, PR China
| | - Yan-Jie Li
- State Key Laboratory of Physical Chemistry of Solid Surfaces,
Key Laboratory of Chemical Biology of Fujian Province, iChEM and College
of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, PR China
| | - Hai-Chao Xu
- State Key Laboratory of Physical Chemistry of Solid Surfaces,
Key Laboratory of Chemical Biology of Fujian Province, iChEM and College
of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, PR China
| |
Collapse
|
50
|
Zhang L, Meng XH, Liu P, Chen J, Zhao YL. t
BuLi-Promoted Intermolecular Regioselective Nucleophilic Addition of Arenes to Diazo Compounds as N-Terminal Electrophiles: Efficient Synthesis of Hydrazine Derivatives. European J Org Chem 2017. [DOI: 10.1002/ejoc.201700864] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Lu Zhang
- Jilin Province Key Laboratory of Organic Functional Molecular Design and Synthesis; Faculty of Chemistry; Northeast Normal University; 130024 Changchun China
| | - Xiang-He Meng
- Jilin Province Key Laboratory of Organic Functional Molecular Design and Synthesis; Faculty of Chemistry; Northeast Normal University; 130024 Changchun China
| | - Pei Liu
- Jilin Province Key Laboratory of Organic Functional Molecular Design and Synthesis; Faculty of Chemistry; Northeast Normal University; 130024 Changchun China
| | - Jie Chen
- Research Institute of Exploration and Development; PetroChina Daqing Oilfield Company Limited; 163712 Daqing China
| | - Yu-Long Zhao
- Jilin Province Key Laboratory of Organic Functional Molecular Design and Synthesis; Faculty of Chemistry; Northeast Normal University; 130024 Changchun China
| |
Collapse
|