1
|
Krafft MP, Riess JG. Therapeutic oxygen delivery by perfluorocarbon-based colloids. Adv Colloid Interface Sci 2021; 294:102407. [PMID: 34120037 DOI: 10.1016/j.cis.2021.102407] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 03/18/2021] [Accepted: 03/25/2021] [Indexed: 02/06/2023]
Abstract
After the protocol-related indecisive clinical trial of Oxygent, a perfluorooctylbromide/phospholipid nanoemulsion, in cardiac surgery, that often unduly assigned the observed untoward effects to the product, the development of perfluorocarbon (PFC)-based O2 nanoemulsions ("blood substitutes") has come to a low. Yet, significant further demonstrations of PFC O2-delivery efficacy have continuously been reported, such as relief of hypoxia after myocardial infarction or stroke; protection of vital organs during surgery; potentiation of O2-dependent cancer therapies, including radio-, photodynamic-, chemo- and immunotherapies; regeneration of damaged nerve, bone or cartilage; preservation of organ grafts destined for transplantation; and control of gas supply in tissue engineering and biotechnological productions. PFC colloids capable of augmenting O2 delivery include primarily injectable PFC nanoemulsions, microbubbles and phase-shift nanoemulsions. Careful selection of PFC and other colloid components is critical. The basics of O2 delivery by PFC nanoemulsions will be briefly reminded. Improved knowledge of O2 delivery mechanisms has been acquired. Advanced, size-adjustable O2-delivering nanoemulsions have been designed that have extended room-temperature shelf-stability. Alternate O2 delivery options are being investigated that rely on injectable PFC-stabilized microbubbles or phase-shift PFC nanoemulsions. The latter combine prolonged circulation in the vasculature, capacity for penetrating tumor tissues, and acute responsiveness to ultrasound and other external stimuli. Progress in microbubble and phase-shift emulsion engineering, control of phase-shift activation (vaporization), understanding and control of bubble/ultrasound/tissue interactions is discussed. Control of the phase-shift event and of microbubble size require utmost attention. Further PFC-based colloidal systems, including polymeric micelles, PFC-loaded organic or inorganic nanoparticles and scaffolds, have been devised that also carry substantial amounts of O2. Local, on-demand O2 delivery can be triggered by external stimuli, including focused ultrasound irradiation or tumor microenvironment. PFC colloid functionalization and targeting can help adjust their properties for specific indications, augment their efficacy, improve safety profiles, and expand the range of their indications. Many new medical and biotechnological applications involving fluorinated colloids are being assessed, including in the clinic. Further uses of PFC-based colloidal nanotherapeutics will be briefly mentioned that concern contrast diagnostic imaging, including molecular imaging and immune cell tracking; controlled delivery of therapeutic energy, as for noninvasive surgical ablation and sonothrombolysis; and delivery of drugs and genes, including across the blood-brain barrier. Even when the fluorinated colloids investigated are designed for other purposes than O2 supply, they will inevitably also carry and deliver a certain amount of O2, and may thus be considered for O2 delivery or co-delivery applications. Conversely, O2-carrying PFC nanoemulsions possess by nature a unique aptitude for 19F MR imaging, and hence, cell tracking, while PFC-stabilized microbubbles are ideal resonators for ultrasound contrast imaging and can undergo precise manipulation and on-demand destruction by ultrasound waves, thereby opening multiple theranostic opportunities.
Collapse
Affiliation(s)
- Marie Pierre Krafft
- University of Strasbourg, Institut Charles Sadron (CNRS), 23 rue du Loess, 67034 Strasbourg, France.
| | - Jean G Riess
- Harangoutte Institute, 68160 Ste Croix-aux-Mines, France
| |
Collapse
|
2
|
Liu X, Counil C, Shi D, Mendoza-Ortega EE, Vela-Gonzalez AV, Maestro A, Campbell RA, Krafft MP. First quantitative assessment of the adsorption of a fluorocarbon gas on phospholipid monolayers at the air/water interface. J Colloid Interface Sci 2021; 593:1-10. [DOI: 10.1016/j.jcis.2021.02.073] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 02/15/2021] [Accepted: 02/16/2021] [Indexed: 12/19/2022]
|
3
|
Hagimori M, Mendoza-Ortega EE, Krafft MP. Synthesis and physicochemical evaluation of fluorinated lipopeptide precursors of ligands for microbubble targeting. Beilstein J Org Chem 2021; 17:511-518. [PMID: 33727974 PMCID: PMC7934786 DOI: 10.3762/bjoc.17.45] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 01/18/2021] [Indexed: 12/11/2022] Open
Abstract
Ligand-targeted microbubbles are focusing interest for molecular imaging and delivery of chemotherapeutics. Lipid-peptide conjugates (lipopeptides) that feature alternating serine-glycine (SG) n segments rather than classical poly(oxyethylene) linkers between the lipid polar head and a targeting ligand were proposed for the liposome-mediated, selective delivery of anticancer drugs. Here, we report the synthesis of perfluoroalkylated lipopeptides (F-lipopeptides) bearing two hydrophobic chains (C n F2 n +1, n = 6, 7, 8, 1-3) grafted through a lysine moiety on a hydrophilic chain composed of a lysine-serine-serine (KSS) sequence followed by 5 SG sequences. These F-lipopeptides are precursors of targeting lipopeptide conjugates. A hydrocarbon counterpart with a C10H21 chain (4) was synthesized for comparison. The capacity for the F-lipopeptides to spontaneously adsorb at the air/water interface and form monolayers when combined with dipalmitoylphosphatidylcholine (DPPC) was investigated. The F-lipopeptides 1-3 demonstrated a markedly enhanced tendency to form monolayers at the air/water interface, with equilibrium surface pressures reaching ≈7-10 mN m-1 versus less than 1 mN m-1 only for their hydrocarbon analog 4. The F-lipopeptides penetrate in the DPPC monolayers in both liquid expanded (LE) and liquid condensed (LC) phases without interfacial film destabilization. By contrast, 4 provokes delipidation of the interfacial film. The incorporation of the F-lipopeptides 1-3 in microbubbles with a shell of DPPC and dipalmitoylphosphatidylethanolamine-PEG2000 decreased their mean diameter and increased their stability, the best results being obtained for the C8F17-bearing lipopeptide 3. By contrast, the hydrocarbon lipopeptide led to microbubbles with a larger mean diameter and a significantly lower stability.
Collapse
Affiliation(s)
- Masayori Hagimori
- Institut Charles Sadron (CNRS), University of Strasbourg, 23 rue du Loess, 67034 Strasbourg CEDEX 2, France
- Faculty of Pharmaceutical Sciences, Mukogawa Women’s University, 11-68 Koshien Kyubancho, Nishinomiya 663-8179, Japan
- Graduate School of Biomedical Sciences, Nagasaki University, 1-7-1 Sakamoto, Nagasaki 852-8501, Japan
| | - Estefanía E Mendoza-Ortega
- Institut Charles Sadron (CNRS), University of Strasbourg, 23 rue du Loess, 67034 Strasbourg CEDEX 2, France
| | - Marie Pierre Krafft
- Institut Charles Sadron (CNRS), University of Strasbourg, 23 rue du Loess, 67034 Strasbourg CEDEX 2, France
| |
Collapse
|
4
|
Shi D, Wallyn J, Nguyen DV, Perton F, Felder-Flesch D, Bégin-Colin S, Maaloum M, Krafft MP. Microbubbles decorated with dendronized magnetic nanoparticles for biomedical imaging: effective stabilization via fluorous interactions. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2019; 10:2103-2115. [PMID: 31728258 PMCID: PMC6839566 DOI: 10.3762/bjnano.10.205] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 10/02/2019] [Indexed: 05/20/2023]
Abstract
Dendrons fitted with three oligo(ethylene glycol) (OEG) chains, one of which contains a fluorinated or hydrogenated end group and bears a bisphosphonate polar head (C n X2 n +1OEG8Den, X = F or H; n = 2 or 4), were synthesized and grafted on the surface of iron oxide nanoparticles (IONPs) for microbubble-mediated imaging and therapeutic purposes. The size and stability of the dendronized IONPs (IONP@C n X2 n +1OEG8Den) in aqueous dispersions were monitored by dynamic light scattering. The investigation of the spontaneous adsorption of IONP@C n X2 n +1OEG8Den at the interface between air or air saturated with perfluorohexane and an aqueous phase establishes that exposure to the fluorocarbon gas markedly increases the rate of adsorption of the dendronized IONPs to the gas/water interface and decreases the equilibrium interfacial tension. This suggests that fluorous interactions are at play between the supernatant fluorocarbon gas and the fluorinated end groups of the dendrons. Furthermore, small perfluorohexane-stabilized microbubbles (MBs) with a dipalmitoylphosphatidylcholine (DPPC) shell that incorporates IONP@C n X2 n +1OEG8Den (DPPC/Fe molar ratio 28:1) were prepared and subsequently characterized using both optical microscopy and an acoustical method of size determination. The dendrons fitted with fluorinated end groups lead to smaller and more stable MBs than those fitted with hydrogenated groups. The most effective result is already obtained with C2F5, for which MBs of ≈1.0 μm in radius reach a half-life of ≈6.0 h. An atomic force microscopy investigation of spin-coated mixed films of DPPC/IONP@C2X5OEG8Den combinations (molar ratio 28:1) shows that the IONPs grafted with the fluorinated dendrons are located within the phospholipid film, while those grafted with the hydrocarbon dendrons are located at the surface of the phospholipid film.
Collapse
Affiliation(s)
- Da Shi
- Institut Charles Sadron (CNRS), University of Strasbourg, 23 rue du Loess, 67034 Strasbourg, France
| | - Justine Wallyn
- Institut Charles Sadron (CNRS), University of Strasbourg, 23 rue du Loess, 67034 Strasbourg, France
| | - Dinh-Vu Nguyen
- Institut de Physique et de Chimie des Matériaux de Strasbourg (IPCMS), University of Strasbourg, 23 rue du Loess, 67034 Strasbourg, France
| | - Francis Perton
- Institut de Physique et de Chimie des Matériaux de Strasbourg (IPCMS), University of Strasbourg, 23 rue du Loess, 67034 Strasbourg, France
| | - Delphine Felder-Flesch
- Institut de Physique et de Chimie des Matériaux de Strasbourg (IPCMS), University of Strasbourg, 23 rue du Loess, 67034 Strasbourg, France
| | - Sylvie Bégin-Colin
- Institut de Physique et de Chimie des Matériaux de Strasbourg (IPCMS), University of Strasbourg, 23 rue du Loess, 67034 Strasbourg, France
| | - Mounir Maaloum
- Institut Charles Sadron (CNRS), University of Strasbourg, 23 rue du Loess, 67034 Strasbourg, France
| | - Marie Pierre Krafft
- Institut Charles Sadron (CNRS), University of Strasbourg, 23 rue du Loess, 67034 Strasbourg, France
| |
Collapse
|
5
|
Tummino A, Toscano J, Sebastiani F, Noskov BA, Varga I, Campbell RA. Effects of Aggregate Charge and Subphase Ionic Strength on the Properties of Spread Polyelectrolyte/Surfactant Films at the Air/Water Interface under Static and Dynamic Conditions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:2312-2323. [PMID: 29323919 DOI: 10.1021/acs.langmuir.7b03960] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
We demonstrate the ability to tune the formation of extended structures in films of poly(sodium styrenesulfonate)/dodecyltrimethylammonium bromide at the air/water interface through control over the charge/structure of aggregates as well as the ionic strength of the subphase. Our methodology to prepare loaded polyelectrolyte/surfactant films from self-assembled liquid crystalline aggregates exploits their fast dissociation and Marangoni spreading of material upon contact with an aqueous subphase. This process is proposed as a potential new route to prepare cheap biocompatible films for transfer applications. We show that films spread on water from swollen aggregates of low/negative charge have 1:1 charge binding and can be compressed only to a monolayer, beyond which material is lost to the bulk. For films spread on water from compact aggregates of positive charge, however, extended structures of the two components are created upon spreading or upon compression of the film beyond a monolayer. The application of ellipsometry, Brewster angle microscopy, and neutron reflectometry as well as measurements of surface pressure isotherms allow us to reason that formation of extended structures is activated by aggregates embedded in the film. The situation upon spreading on 0.1 M NaCl is different as there is a high concentration of small ions that stabilize loops of the polyelectrolyte upon film compression, yet extended structures of both components are only transient. Analogy of the controlled formation of extended structures in fluid monolayers is made to reservoir dynamics in lung surfactant. The work opens up the possibility to control such film dynamics in related systems through the rational design of particles in the future.
Collapse
Affiliation(s)
- Andrea Tummino
- Institut Laue-Langevin, 71 avenue des Martyrs, CS20156, Cedex 9 38042 Grenoble, France
- Institute of Chemistry, Eötvös Loránd University , 112, P.O. Box 32, Budapest H-1518, Hungary
| | - Jutta Toscano
- Institut Laue-Langevin, 71 avenue des Martyrs, CS20156, Cedex 9 38042 Grenoble, France
| | - Federica Sebastiani
- Institut Laue-Langevin, 71 avenue des Martyrs, CS20156, Cedex 9 38042 Grenoble, France
- Department of Biomedical Science, Faculty of Health and Science, Malmö University , 21432 Malmö, Sweden
| | - Boris A Noskov
- Institute of Chemistry, St. Petersburg State University , Universitetsky pr. 2, 198904 St. Petersburg, Russia
| | - Imre Varga
- Institute of Chemistry, Eötvös Loránd University , 112, P.O. Box 32, Budapest H-1518, Hungary
- Department of Chemistry, University J. Selyeho , Komárno, Slovakia
| | - Richard A Campbell
- Institut Laue-Langevin, 71 avenue des Martyrs, CS20156, Cedex 9 38042 Grenoble, France
| |
Collapse
|
6
|
Académie des Sciences Prizes/Novartis Chemistry Lectureship 2016–2017/Welch Award in Chemistry. Angew Chem Int Ed Engl 2017; 56:1447-1448. [DOI: 10.1002/anie.201611822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
7
|
Preise der Académie des Sciences/Novartis Chemistry Lectureship 2016-2017/Welch-Preis in Chemie. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201611822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
8
|
Ando Y, Tabata H, Sanchez M, Cagna A, Koyama D, Krafft MP. Microbubbles with a Self-Assembled Poloxamer Shell and a Fluorocarbon Inner Gas. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:12461-12467. [PMID: 27409141 DOI: 10.1021/acs.langmuir.6b01883] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The numerous applications of microbubbles in food science and medicine call for a better understanding and control of the effects of the properties of their shells on their stability and ability to resonate at chosen frequencies when submitted to an ultrasound field. We have investigated both millimetric and micrometric bubbles stabilized by an amphiphilic block copolymer, Poloxamer 188 (e.g., Pluronic F-68). Although Pluronic F-68 is routinely being used as a dispersing and foaming agent to facilitate phospholipid-based microbubble preparation, it has never been studied as a shell component per se. First, we investigated the adsorption kinetics of Pluronic F-68 at the interface between water and air, or air saturated with vapors of perfluorohexane (F-hexane), using bubble profile tensiometry analysis. F-Hexane was found to strongly accelerate the adsorption of Pluronic F-68 (at low concentrations) and decrease the interfacial tension values at equilibrium (at all concentrations). We also found that relatively stable microbubbles could unexpectedly be prepared from Pluronic F-68 in the absence of any other surfactant, but only when F-hexane was present. These bubbles showed an only limited volume increase over ∼3 h, while a 10-fold increase in size occurred within 200 s in the absence of a fluorocarbon. Remarkably, their deflation rate decreased when the Pluronic F-68 concentration decreased, suggesting that bubbles with semidilute copolymer coverage are more stable than those more densely covered by copolymer brushes. Single-bubble experiments using laser Doppler vibratometry showed that, by contrast with other surfactant-coated microbubbles, the resonance radius of the Pluronic F-68-coated microbubbles was lower than that of naked microbubbles, meaning that they are less elastic. It was also found that the bubble's vibrational displacement amplitude decreased substantially when the microbubbles were covered with Pluronic F-68, an effect that was further amplified by F-hexane.
Collapse
Affiliation(s)
- Yu Ando
- Faculty of Life and Medical Sciences, Doshisha University , Kyoto 610-0321, Japan
- Institut Charles Sadron (CNRS), University of Strasbourg , 23 rue du Loess, 67034 Strasbourg, France
| | - Hiraku Tabata
- Faculty of Life and Medical Sciences, Doshisha University , Kyoto 610-0321, Japan
- Institut Charles Sadron (CNRS), University of Strasbourg , 23 rue du Loess, 67034 Strasbourg, France
| | | | - Alain Cagna
- TECLIS Instruments , Tassin, 69160 Lyon Métropole, France
| | - Daisuke Koyama
- Faculty of Life and Medical Sciences, Doshisha University , Kyoto 610-0321, Japan
| | - Marie Pierre Krafft
- Institut Charles Sadron (CNRS), University of Strasbourg , 23 rue du Loess, 67034 Strasbourg, France
| |
Collapse
|
9
|
Gazzera L, Milani R, Pirrie L, Schmutz M, Blanck C, Resnati G, Metrangolo P, Krafft MP. Design of Highly Stable Echogenic Microbubbles through Controlled Assembly of Their Hydrophobin Shell. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201603706] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Lara Gazzera
- NFMLab; Politecnico di Milano; Via Mancinelli 7 20131 Milano Italy
| | - Roberto Milani
- VTT-Technical Research Centre of Finland Ltd; Biologinkuja 7 Espoo 02044 VTT Finland
| | - Lisa Pirrie
- VTT-Technical Research Centre of Finland Ltd; Biologinkuja 7 Espoo 02044 VTT Finland
| | - Marc Schmutz
- Institut Charles Sadron (CNRS); University of Strasbourg; 23 rue du Loess 67034 Strasbourg France
| | - Christian Blanck
- Institut Charles Sadron (CNRS); University of Strasbourg; 23 rue du Loess 67034 Strasbourg France
| | - Giuseppe Resnati
- NFMLab; Politecnico di Milano; Via Mancinelli 7 20131 Milano Italy
| | - Pierangelo Metrangolo
- NFMLab; Politecnico di Milano; Via Mancinelli 7 20131 Milano Italy
- VTT-Technical Research Centre of Finland Ltd; Biologinkuja 7 Espoo 02044 VTT Finland
| | - Marie Pierre Krafft
- Institut Charles Sadron (CNRS); University of Strasbourg; 23 rue du Loess 67034 Strasbourg France
| |
Collapse
|
10
|
Gazzera L, Milani R, Pirrie L, Schmutz M, Blanck C, Resnati G, Metrangolo P, Krafft MP. Design of Highly Stable Echogenic Microbubbles through Controlled Assembly of Their Hydrophobin Shell. Angew Chem Int Ed Engl 2016; 55:10263-7. [DOI: 10.1002/anie.201603706] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2016] [Revised: 05/19/2016] [Indexed: 11/08/2022]
Affiliation(s)
- Lara Gazzera
- NFMLab; Politecnico di Milano; Via Mancinelli 7 20131 Milano Italy
| | - Roberto Milani
- VTT-Technical Research Centre of Finland Ltd; Biologinkuja 7 Espoo 02044 VTT Finland
| | - Lisa Pirrie
- VTT-Technical Research Centre of Finland Ltd; Biologinkuja 7 Espoo 02044 VTT Finland
| | - Marc Schmutz
- Institut Charles Sadron (CNRS); University of Strasbourg; 23 rue du Loess 67034 Strasbourg France
| | - Christian Blanck
- Institut Charles Sadron (CNRS); University of Strasbourg; 23 rue du Loess 67034 Strasbourg France
| | - Giuseppe Resnati
- NFMLab; Politecnico di Milano; Via Mancinelli 7 20131 Milano Italy
| | - Pierangelo Metrangolo
- NFMLab; Politecnico di Milano; Via Mancinelli 7 20131 Milano Italy
- VTT-Technical Research Centre of Finland Ltd; Biologinkuja 7 Espoo 02044 VTT Finland
| | - Marie Pierre Krafft
- Institut Charles Sadron (CNRS); University of Strasbourg; 23 rue du Loess 67034 Strasbourg France
| |
Collapse
|
11
|
Campbell RA, Tummino A, Noskov BA, Varga I. Polyelectrolyte/surfactant films spread from neutral aggregates. SOFT MATTER 2016; 12:5304-12. [PMID: 27221521 DOI: 10.1039/c6sm00637j] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
We describe a new methodology to prepare loaded polyelectrolyte/surfactant films at the air/water interface by exploiting Marangoni spreading resulting from the dynamic dissociation of hydrophobic neutral aggregates dispensed from an aqueous dispersion. The system studied is mixtures of poly(sodium styrene sulfonate) with dodecyl trimethylammonium bromide. Our approach results in the interfacial confinement of more than one third of the macromolecules in the system even though they are not even surface-active without the surfactant. The interfacial stoichiometry of the films was resolved during measurements of surface pressure isotherms in situ for the first time using a new implementation of neutron reflectometry. The interfacial coverage is determined by the minimum surface area reached when the films are compressed beyond a single complete surface layer. The films exhibit linear ripples on a length scale of hundreds of micrometers during the squeezing out of material, after which they behave as perfectly insoluble membranes with consistent stoichiometric charge binding. We discuss our findings in terms of scope for the preparation of loaded membranes for encapsulation applications and in deposition-based technologies.
Collapse
Affiliation(s)
- Richard A Campbell
- Institut Laue-Langevin, 71 Avenue des Martyrs, CS20156, 38.042 Grenoble Cedex 9, France.
| | | | | | | |
Collapse
|
12
|
Kovalenko A, Jouhannaud J, Polavarapu P, Krafft MP, Waton G, Pourroy G. Incorporation of negatively charged iron oxide nanoparticles in the shell of anionic surfactant-stabilized microbubbles: The effect of NaCl concentration. J Colloid Interface Sci 2016; 472:180-6. [DOI: 10.1016/j.jcis.2016.02.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Revised: 02/03/2016] [Accepted: 02/04/2016] [Indexed: 01/12/2023]
|
13
|
Tian J, Yang F, Cui H, Zhou Y, Ruan X, Gu N. A Novel Approach to Making the Gas-Filled Liposome Real: Based on the Interaction of Lipid with Free Nanobubble within the Solution. ACS APPLIED MATERIALS & INTERFACES 2015; 7:26579-26584. [PMID: 26567461 DOI: 10.1021/acsami.5b07778] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Nanobubbles with a size less than 1 μm could make a promising application in ultrasound molecular imaging and drug delivery. However, the fabrication of stable gas encapsulation nanobubbles is still challenging. In this study, a novel method for preparation of lipid- encapsulated nanobubbles was reported. The dispersed phospholipid molecules in the prefabricated free nanobubbles solution can be assembled to form controllable stable lipid encapsulation gas-filled ultrasound-sensitive liposome (GU-Liposome). The optimized preparation parameters and formation mechanism of GU-Liposome were investigated in detail. Results showed that this type of GU-Liposome had mean diameter of 194.4 ± 6.6 nm and zeta potential of -25.2 ± 1.9 mV with layer by layer self-assembled lipid structure. The acoustic imaging analysis in vitro indicated that ultrasound imaging enhancement could be acquired by both perfusion imaging and accumulation imaging. The imaging enhancement level and duration time was related with the ratios of lipid to gas in the GU-Liposome structure. All in all, by this novel and controllable nanobubble construction technique, it will broaden the future theranostic applications of nanobubbles.
Collapse
Affiliation(s)
- Jilai Tian
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Sciences & Medical Engineering, Southeast University , Nanjing 210096, China
| | - Fang Yang
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Sciences & Medical Engineering, Southeast University , Nanjing 210096, China
- Collaborative Innovation Center of Suzhou Nano-Science and Technology, Suzhou Key Laboratory of Biomaterials and Technologies , Suzhou 215123, China
| | - Huating Cui
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Sciences & Medical Engineering, Southeast University , Nanjing 210096, China
| | - Ying Zhou
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Sciences & Medical Engineering, Southeast University , Nanjing 210096, China
| | - Xiaobo Ruan
- Xuzhou Central Hospital , Xuzhou 221009, China
| | - Ning Gu
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Sciences & Medical Engineering, Southeast University , Nanjing 210096, China
- Collaborative Innovation Center of Suzhou Nano-Science and Technology, Suzhou Key Laboratory of Biomaterials and Technologies , Suzhou 215123, China
| |
Collapse
|
14
|
|