1
|
Coutard N, Musgrave CB, Moon J, Liebov NS, Nielsen RM, Goldberg JM, Li M, Jia X, Lee S, Dickie DA, Schinski WL, Wu Z, Groves JT, Goddard WA, Gunnoe TB. Manganese Catalyzed Partial Oxidation of Light Alkanes. ACS Catal 2022. [DOI: 10.1021/acscatal.2c00982] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Nathan Coutard
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Charles B. Musgrave
- Materials and Process Simulation Center, California Institute of Technology, Pasadena, California 91125, United States
| | - Jisue Moon
- Chemical Science Division, Oak Ridge National Lab, Oak Ridge, Tennessee 37831, United States
| | - Nichole S. Liebov
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Robert M. Nielsen
- Materials and Process Simulation Center, California Institute of Technology, Pasadena, California 91125, United States
| | - Jonathan M. Goldberg
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Meijun Li
- Chemical Science Division, Oak Ridge National Lab, Oak Ridge, Tennessee 37831, United States
| | - Xiaofan Jia
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Sungsik Lee
- X-ray Science Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Diane A. Dickie
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| | | | - Zili Wu
- Chemical Science Division, Oak Ridge National Lab, Oak Ridge, Tennessee 37831, United States
| | - John T. Groves
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - William A. Goddard
- Materials and Process Simulation Center, California Institute of Technology, Pasadena, California 91125, United States
| | - T. Brent Gunnoe
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| |
Collapse
|
2
|
Cook EN, Machan CW. Bioinspired mononuclear Mn complexes for O 2 activation and biologically relevant reactions. Dalton Trans 2021; 50:16871-16886. [PMID: 34730590 DOI: 10.1039/d1dt03178c] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A general interest in harnessing the oxidizing power of dioxygen (O2) continues to motivate research efforts on bioinspired and biomimetic complexes to better understand how metalloenzymes mediate these reactions. The ubiquity of Fe- and Cu-based enzymes attracts significant attention and has resulted in many noteworthy developments for abiotic systems interested in direct O2 reduction and small molecule activation. However, despite the existence of Mn-based metalloenzymes with important O2-dependent activity, there has been comparatively less focus on the development of these analogues relative to Fe- and Cu-systems. In this Perspective, we summarize important contributions to the development of bioinspired mononuclear Mn complexes for O2 activation and studies on their reactivity, emphasizing important design parameters in the primary and secondary coordination spheres and outlining mechanistic trends.
Collapse
Affiliation(s)
- Emma N Cook
- Department of Chemistry, University of Virginia, PO Box 400319, Charlottesville, VA 22904-4319, USA.
| | - Charles W Machan
- Department of Chemistry, University of Virginia, PO Box 400319, Charlottesville, VA 22904-4319, USA.
| |
Collapse
|
3
|
de Roo CM, Kasper JB, van Duin M, Mecozzi F, Browne W. Off-line analysis in the manganese catalysed epoxidation of ethylene-propylene-diene rubber (EPDM) with hydrogen peroxide. RSC Adv 2021; 11:32505-32512. [PMID: 35495483 PMCID: PMC9041766 DOI: 10.1039/d1ra06222k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 09/14/2021] [Indexed: 11/21/2022] Open
Abstract
The epoxidation of ethylene-propylene-diene rubber (EPDM) with 5-ethylidene-2-norbornene (ENB) as the diene to epoxidized EPDM (eEPDM) creates additional routes to cross-linking and reactive blending, as well as increasing the polarity and thereby the adhesion to polar materials, e.g., mineral fillers such as silica. The low solubility of apolar, high molecular weight polymers in the polar solvents constrains the catalytic method for epoxidation that can be applied. Here we have applied an in situ prepared catalyst comprising a manganese(ii) salt, sodium picolinate and a ketone to the epoxidation of EPDM rubber with hydrogen peroxide (H2O2) as the oxidant in a solvent mixture, that balances the need for polymer and catalyst/oxidant miscibility and solubility. Specifically, a mixture of cyclohexane and cyclohexanone is used, where cyclohexanone functions as a co-solvent as well as the ketone reagent. Reaction progress was monitored off-line through a combination of Raman and ATR-FTIR spectroscopies, which revealed that the reaction profile and the dependence on the composition of the catalyst are similar to those observed with low molar mass alkene substrates, under similar reaction conditions. The combination of spectroscopies offers a reliable method for off-line reaction monitoring of both the extent of the conversion of unsaturation (Raman) and the extent of epoxidation (FTIR) as well as determining side reactions, such as epoxide ring opening and further, aerobic oxidation. The epoxidation of EPDM described, in contrast to currently available methods, uses a non-scarce manganese catalyst and H2O2, and avoids side reactions, such as those that can occur with peracids. Epoxidation of ethylene-propylene-diene rubber (EPDM), based on 5-ethylidene-2-norbornene, to epoxidized EPDM (eEPDM) opens routes to cross-linking and reactive blending, with increased polarity aiding adhesion to polar materials such as silica.![]()
Collapse
Affiliation(s)
- C Maurits de Roo
- Molecular Inorganic Chemistry, Stratingh Institute for Chemistry, Faculty of Science and Engineering Nijenborgh 4 9747AG Groningen The Netherlands
| | - Johann B Kasper
- Molecular Inorganic Chemistry, Stratingh Institute for Chemistry, Faculty of Science and Engineering Nijenborgh 4 9747AG Groningen The Netherlands
| | - Martin van Duin
- Department of Chemical Engineering, Faculty of Science and Engineering Nijenborgh 4 9747AG Groningen The Netherlands .,ARLANXEO Performance Elastomers, Innovation P.O. Box 1130 6160BC Geleen The Netherlands
| | - Francesco Mecozzi
- Molecular Inorganic Chemistry, Stratingh Institute for Chemistry, Faculty of Science and Engineering Nijenborgh 4 9747AG Groningen The Netherlands
| | - Wesley Browne
- Molecular Inorganic Chemistry, Stratingh Institute for Chemistry, Faculty of Science and Engineering Nijenborgh 4 9747AG Groningen The Netherlands
| |
Collapse
|
4
|
Ganesan K, Kaliyaperumal I, Vadivelu P. A Density Functional Theory Study on Comparing the Reactivity of [Mn(13-TMC)(OOH)] 2+ and [Mn(13-TMC)(O 2)] + for the Sulfoxidation of Thioanisole: Elucidation of Substrate and Non-Redox Metal Ion Effects. Inorg Chem 2021; 60:13615-13625. [PMID: 34410107 DOI: 10.1021/acs.inorgchem.1c01915] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The reactivities of [Mn(13-TMC)(OOH)]2+ (1) and [Mn(13-TMC)(O2)]+ (2) in the sulfoxidation of thioanisole have been compared using density functional theory methods. The orientation of the 13-TMC ligand and substrate and non-redox metal ion effects have been considered to improve the oxidation efficiency of 1 and 2. In 1, the syn- and anti-orientation of the 13-TMC ligand do not change the coordination of the Mn ion. In contrast, the orientation of the 13-TMC ligand regulates the geometry of 2, wherein the syn-13-TMC ligand exhibits the MnIII-peroxo (2hs and 2ls) species, while the anti-13-TMC shows the MnII-superoxo (2'hs and 2'ls) species. However, the MnII-superoxo species are found to be less stable than the MnIII-peroxo complexes by around +26.6 kcal/mol. The ground state geometries of 1 and 2 with the syn-13-TMC ligand are found to be more stable in the high- (S = 2) spin states (1hs and 2hs) than the low- (S = 1) spin complexes (1ls and 2ls), by +15.6 and +25.5 kcal/mol, respectively. The computed mechanistic pathways clearly indicate that the sulfoxidation of thioanisole by 1hs is kinetically (by +16.6 to +46.1 kcal/mol) and thermodynamically (+14.4 to +56.1 kcal/mol) more preferred than 1ls, 2hs, and 2ls species. This is mainly due to the feasible heterolytic O1-O2 bond cleavage followed by the proton transfer step. In addition, the molecular electrostatic potential analysis indicates that the higher oxidation efficacy of 1hs than 2hs is due to the -OOH moiety. The reactivity of 1hs is further enhanced by incorporating electron donating substituents in thioanisole, wherein the p-NH2 thioanisole decreases the ΔG‡ of 1hs by 28%. Interestingly, the incorporation of non-redox metal ions (Mn+ = Sc3+, Y3+, Mg2+, and Zn2+) improves the reactivity of 2hs, wherein the non-redox metal ions tend to bind with the oxygen atoms of 2hs and subsequently shift the one-electron reduction potential (E0(red) vs SCE) toward the positive side. The positive shift in the E0(red) is more evident in 2hs-Y3+ that significantly decreases the ΔG‡ of 2hs by 58.7%, which is in fact lower than the ΔG‡ of 1hs by +2.0 kcal/mol. Hence, in the presence of Y3+, the reactivity of 2hs is comparable with 1hs in the sulfoxidation of thioanisole.
Collapse
Affiliation(s)
- Krithika Ganesan
- Department of Chemistry, Central University of Tamil Nadu, Neelakudi, Thiruvarur 610 005, India
| | - Ilakya Kaliyaperumal
- Department of Chemistry, Central University of Tamil Nadu, Neelakudi, Thiruvarur 610 005, India
| | - Prabha Vadivelu
- Department of Chemistry, Central University of Tamil Nadu, Neelakudi, Thiruvarur 610 005, India
| |
Collapse
|
5
|
Bikas R, Valadbeigi Y, Otręba M, Lis T. Mechanistic studies on the in-situ generation of furoxan ring during the formation of Cu(II) coordination compound from dioxime ligand: Theoretical and experimental study. Inorganica Chim Acta 2020. [DOI: 10.1016/j.ica.2020.119756] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
6
|
Chakraborty B, Ghosh I, Jana RD, Paine TK. Oxidative C-N bond cleavage of (2-pyridylmethyl)amine-based tetradentate supporting ligands in ternary cobalt(ii)-carboxylate complexes. Dalton Trans 2020; 49:3463-3472. [PMID: 32103212 DOI: 10.1039/c9dt04438h] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Three mononuclear cobalt(ii)-carboxylate complexes, [(TPA)CoII(benzilate)]+ (1), [(TPA)CoII(benzoate)]+ (2) and [(iso-BPMEN)CoII(benzoate)]+ (3), of N4 ligands (TPA = tris(2-pyridylmethyl)amine and iso-BPMEN = N1,N1-dimethyl-N2,N2-bis((pyridin-2-yl)methyl)ethane-1,2-diamine) were isolated to investigate their reactivity toward dioxygen. Monodentate (η1) binding of the carboxylates to the metal centre favours the five-coordinate cobalt(ii) complexes (1-3) for dioxygen activation. Complex 1 slowly reacts with dioxygen to enable the oxidative decarboxylation of the coordinated α-hydroxy acid (benzilate). Prolonged exposure of the reaction solution of 2 to dioxygen results in the formation of [(DPA)CoIII(picolinate)(benzoate)]+ (4) and [CoIII(BPCA)2]+ (5) (DPA = di(2-picolyl)amine and HBPCA = bis(2-pyridylcarbonyl)amide), whereas only [(DPEA)CoIII(picolinate)(benzoate)]+ (6) (DPEA = N1,N1-dimethyl-N2-(pyridine-2-ylmethyl)-ethane-1,2-diamine) is isolated from the final oxidised solution of 3. The modified ligand DPA (or DPEA) is formed via the oxidative C-N bond cleavage of the supporting ligands. Further oxidation of the -CH2- moiety to -C([double bond, length as m-dash]O)- takes place in the transformation of DPA to HBPCA on the cobalt(ii) centre. Labelling experiments with 18O2 confirm the incorporation of oxygen atoms from molecular oxygen into the oxidised products. Mixed labelling studies with 16O2 and H2O18 strongly support the involvement of water in the C-N bond cleavage pathway. A comparison of the dioxygen reactivity of the cobalt complexes (1-3) with those of several other five-coordinate mononuclear complexes [(TPA)CoII(X)]+/2+ (X = Cl, CH3CN, acetate, benzoylformate, salicylate and phenylpyruvate) establishes the role of the carboxylate co-ligands in the activation of dioxygen and subsequent oxidative cleavage of the supporting ligands by a metal-oxygen oxidant.
Collapse
Affiliation(s)
- Biswarup Chakraborty
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India.
| | | | | | | |
Collapse
|
7
|
Zhou XT, Chen HY, Han Q, Lv M, Ji HB. Acetylacetone as an oxygen activator to improve efficiency for aerobic oxidation of toluene and its derivatives by using cobalt meso-tetraphenylporphyrin. NEW J CHEM 2020. [DOI: 10.1039/d0nj01575j] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An efficient system comprising acetylacetone and cobalt tetraphenylporphyrin was developed for the aerobic oxidation of toluene and its derivatives, in which acetylacetone served as the key initiator of the free radical in activating dioxygen.
Collapse
Affiliation(s)
- Xian-Tai Zhou
- School of Chemical Engineering and Technology
- Sun Yat-sen University
- Zhuhai
- P. R. China
| | - Hong-Yu Chen
- Fine Chemical Industry Research Institute
- School of Chemistry
- Sun Yat-sen University
- Guangzhou 510275
- P. R. China
| | - Qi Han
- School of Chemical Engineering and Technology
- Sun Yat-sen University
- Zhuhai
- P. R. China
| | - Meng Lv
- Fine Chemical Industry Research Institute
- School of Chemistry
- Sun Yat-sen University
- Guangzhou 510275
- P. R. China
| | - Hong-Bing Ji
- Fine Chemical Industry Research Institute
- School of Chemistry
- Sun Yat-sen University
- Guangzhou 510275
- P. R. China
| |
Collapse
|
8
|
Spedalotto G, Gericke R, Lovisari M, Farquhar ER, Twamley B, McDonald AR. Preparation and Characterisation of a Bis-μ-Hydroxo-Ni III 2 Complex. Chemistry 2019; 25:11983-11990. [PMID: 31237966 DOI: 10.1002/chem.201902812] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Indexed: 12/20/2022]
Abstract
Hydroxide-bridged high-valent oxidants have been implicated as the active oxidants in methane monooxygenases and other oxidases that employ bimetallic clusters in their active site. To understand the properties of such species, bis-μ-hydroxo-NiII 2 complex (1) supported by a new dicarboxamidate ligand (N,N'-bis(2,6-dimethyl-phenyl)-2,2-dimethylmalonamide) was prepared. Complex 1 contained a diamond core made up of two NiII ions and two bridging hydroxide ligands. Titration of the 1 e- oxidant (NH4 )2 [CeIV (NO3 )6 ] with 1 at -45 °C showed the formation of the high-valent species 2 and 3, containing NiII NiIII and NiIII 2 diamond cores, respectively, maintaining the bis-μ-hydroxide core. Both complexes were characterised using electron paramagnetic resonance, X-ray absorption, and electronic absorption spectroscopies. Density functional theory computations supported the spectroscopic assignments. Oxidation reactivity studies showed that bis-μ-hydroxide-NiIII 2 3 was capable of oxidizing substrates at -45 °C at rates greater than that of the most reactive bis-μ-oxo-NiIII complexes reported to date.
Collapse
Affiliation(s)
- Giuseppe Spedalotto
- School of Chemistry, Trinity College Dublin, The University of Dublin, College Green, Dublin 2, Ireland
| | - Robert Gericke
- School of Chemistry, Trinity College Dublin, The University of Dublin, College Green, Dublin 2, Ireland
| | - Marta Lovisari
- School of Chemistry, Trinity College Dublin, The University of Dublin, College Green, Dublin 2, Ireland
| | - Erik R Farquhar
- Center for Synchrotron Biosciences, National Synchrotron Light Source II, Brookhaven, National Laboratory, Case Western Reserve University, Upton, NY, 11973, USA
| | - Brendan Twamley
- School of Chemistry, Trinity College Dublin, The University of Dublin, College Green, Dublin 2, Ireland
| | - Aidan R McDonald
- School of Chemistry, Trinity College Dublin, The University of Dublin, College Green, Dublin 2, Ireland
| |
Collapse
|
9
|
Lin YH, Cramer HH, van Gastel M, Tsai YH, Chu CY, Kuo TS, Lee IR, Ye S, Bill E, Lee WZ. Mononuclear Manganese(III) Superoxo Complexes: Synthesis, Characterization, and Reactivity. Inorg Chem 2019; 58:9756-9765. [PMID: 31328507 PMCID: PMC6685055 DOI: 10.1021/acs.inorgchem.9b00767] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Metal-superoxo species are typically proposed as key intermediates in the catalytic cycle of dioxygen activation by metalloenzymes involving different transition metal cofactors. In this regard, while a series of Fe-, Co-, and Ni-superoxo complexes have been reported to date, well-defined Mn-superoxo complexes remain rather rare. Herein, we report two mononuclear MnIII-superoxo species, Mn(BDPP)(O2•-) (2, H2BDPP = 2,6-bis((2-(S)-diphenylhydroxylmethyl-1-pyrrolidinyl)methyl)pyridine) and Mn(BDPBrP)(O2•-) (2', H2BDPBrP = 2,6-bis((2-(S)-di(4-bromo)phenylhydroxyl-methyl-1-pyrrolidinyl)methyl)pyridine), synthesized by bubbling O2 into solutions of their MnII precursors, Mn(BDPP) (1) and Mn(BDPBrP) (1'), at -80 °C. A combined spectroscopic (resonance Raman and electron paramagnetic resonance (EPR) spectroscopy) and computational study evidence that both complexes contain a high-spin MnIII center (SMn = 2) antiferromagnetically coupled to a superoxo radical ligand (SOO• = 1/2), yielding an overall S = 3/2 ground state. Complexes 2 and 2' were shown to be capable of abstracting a H atom from 2,2,6,6-tetramethyl-1-hydroxypiperidine (TEMPO-H) to form MnIII-hydroperoxo species, Mn(BDPP)(OOH) (5) and Mn(BDPBrP)(OOH) (5'). Complexes 5 and 5' can be independently prepared by the reactions of the isolated MnIII-aqua complexes, [Mn(BDPP)(H2O)]OTf (6) and [Mn(BDPBrP)(H2O)]OTf (6'), with H2O2 in the presence of NEt3. The parallel-mode EPR measurements established a high-spin S = 2 ground state for 5 and 5'.
Collapse
Affiliation(s)
| | - Hanna Hinrika Cramer
- Max-Planck-Institut für Chemische Energiekonversion , Mülheim an der Ruhr D-45470 , Germany
| | - Maurice van Gastel
- Max-Planck-Institut für Kohlenforschung , Mülheim an der Ruhr D-45470 , Germany
| | | | | | | | | | - Shengfa Ye
- Max-Planck-Institut für Kohlenforschung , Mülheim an der Ruhr D-45470 , Germany
| | - Eckhard Bill
- Max-Planck-Institut für Chemische Energiekonversion , Mülheim an der Ruhr D-45470 , Germany
| | | |
Collapse
|
10
|
Bedin M, Agarwala H, Marx J, Schünemann V, Ott S, Thapper A. Synthesis and properties of a heterobimetallic iron-manganese complex and its comparison with homobimetallic analogues. Inorganica Chim Acta 2019. [DOI: 10.1016/j.ica.2019.03.029] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
11
|
Sterckx H, Morel B, Maes BUW. Catalytic Aerobic Oxidation of C(sp 3 )-H Bonds. Angew Chem Int Ed Engl 2019; 58:7946-7970. [PMID: 30052305 DOI: 10.1002/anie.201804946] [Citation(s) in RCA: 157] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Indexed: 01/04/2023]
Abstract
Oxidation reactions are a key technology to transform hydrocarbons from petroleum feedstock into chemicals of a higher oxidation state, allowing further chemical transformations. These bulk-scale oxidation processes usually employ molecular oxygen as the terminal oxidant as at this scale it is typically the only economically viable oxidant. The produced commodity chemicals possess limited functionality and usually show a high degree of symmetry thereby avoiding selectivity issues. In sharp contrast, in the production of fine chemicals preference is still given to classical oxidants. Considering the strive for greener production processes, the use of O2 , the most abundant and greenest oxidant, is a logical choice. Given the rich functionality and complexity of fine chemicals, achieving regio/chemoselectivity is a major challenge. This review presents an overview of the most important catalytic systems recently described for aerobic oxidation, and the current insight in their reaction mechanism.
Collapse
Affiliation(s)
- Hans Sterckx
- Department of Chemistry, University of Antwerp, Groenenborgerlaan 171, B-2020, Antwerp, Belgium
| | - Bénédicte Morel
- Department of Chemistry, University of Antwerp, Groenenborgerlaan 171, B-2020, Antwerp, Belgium
| | - Bert U W Maes
- Department of Chemistry, University of Antwerp, Groenenborgerlaan 171, B-2020, Antwerp, Belgium
| |
Collapse
|
12
|
Sterckx H, Morel B, Maes BUW. Katalytische, aerobe Oxidation von C(sp
3
)‐H‐Bindungen. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201804946] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Hans Sterckx
- Department of Chemistry University of Antwerp Groenenborgerlaan 171 B-2020 Antwerpen Belgien
| | - Bénédicte Morel
- Department of Chemistry University of Antwerp Groenenborgerlaan 171 B-2020 Antwerpen Belgien
| | - Bert U. W. Maes
- Department of Chemistry University of Antwerp Groenenborgerlaan 171 B-2020 Antwerpen Belgien
| |
Collapse
|
13
|
Wegeberg C, Fernández-Alvarez VM, de Aguirre A, Frandsen C, Browne WR, Maseras F, McKenzie CJ. Photoinduced O 2-Dependent Stepwise Oxidative Deglycination of a Nonheme Iron(III) Complex. J Am Chem Soc 2018; 140:14150-14160. [PMID: 30347152 DOI: 10.1021/jacs.8b07455] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The iron(III) complex [Fe(tpena)]2+ (tpena = N, N, N'-tris(2-pyridylmethyl)ethylendiamine- N'-acetate) undergoes irreversible O2-dependent N-demethylcarboxylation to afford [FeII(SBPy3)(MeCN)]2+ (SBPy3 = N, N-bis(2-pyridylmethyl)amine- N-ethyl-2-pyridine-2-aldimine), when irradiated with near-UV light. The loss of a mass equivalent to the glycyl group in a process involving consecutive C-C and C-N cleavages is documented by the measurement of the sequential production of CO2 and formaldehyde, respectively. Time-resolved UV-vis absorption, Mössbauer, EPR, and Raman spectroscopy have allowed the spectroscopic characterization of two iron-based intermediates along the pathway. The first of these, proposed to be a low-spin iron(II)-radical ligand complex, reacts with O2 in the rate-determining step to produce a putative alkylperoxide complex. DFT calculations suggest that this evolves into an Fe(IV)-oxo species, which can abstract a hydrogen atom from a cis methylene group of the ligand to give the second spectroscopically identified intermediate, a high-spin iron(III)-hydroxide of the product oxidized ligand, [FeIII(OH)(SBPy3)]2+. Reduction and exchange of the cohydroxo/water ligand produces the crystallographically characterized products [FeII(SBPy3)(X)]2+/3+, X = MeCN, [Zn(tpena)]+.
Collapse
Affiliation(s)
- Christina Wegeberg
- Department of Physics, Chemistry and Pharmacy , University of Southern Denmark , Campusvej 55 , DK-5230 Odense M, Denmark.,Molecular Inorganic Chemistry, Stratingh Institute for Chemistry, Faculty of Science and Engineering , University of Groningen , Nijenborgh 4 , AG Groningen 9747 , The Netherlands
| | - Víctor M Fernández-Alvarez
- Institute of Chemical Research of Catalonia (ICIQ) , The Barcelona Institute of Science and Technology , Avgda. Països Catalans, 16 , 43007 Tarragona , Catalonia , Spain
| | - Adiran de Aguirre
- Institute of Chemical Research of Catalonia (ICIQ) , The Barcelona Institute of Science and Technology , Avgda. Països Catalans, 16 , 43007 Tarragona , Catalonia , Spain
| | - Cathrine Frandsen
- Department of Physics , Technical University of Denmark , DK-2800 Kongens Lyngby , Denmark
| | - Wesley R Browne
- Molecular Inorganic Chemistry, Stratingh Institute for Chemistry, Faculty of Science and Engineering , University of Groningen , Nijenborgh 4 , AG Groningen 9747 , The Netherlands
| | - Feliu Maseras
- Institute of Chemical Research of Catalonia (ICIQ) , The Barcelona Institute of Science and Technology , Avgda. Països Catalans, 16 , 43007 Tarragona , Catalonia , Spain.,Departament de Química , Universitat Autònoma de Barcelona , 08193 Bellaterra , Catalonia , Spain
| | - Christine J McKenzie
- Department of Physics, Chemistry and Pharmacy , University of Southern Denmark , Campusvej 55 , DK-5230 Odense M, Denmark
| |
Collapse
|
14
|
Carrasco CJ, Montilla F, Álvarez E, Galindo A. Synthesis of α,β-Dicarbonylhydrazones by Aerobic Manganese-Catalysed Oxidation. Adv Synth Catal 2018. [DOI: 10.1002/adsc.201800601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Carlos J. Carrasco
- Departamento de Química Inorgánica, Facultad de Química; Universidad de Sevilla; Aptdo 1203 41071 Sevilla Spain
| | - Francisco Montilla
- Departamento de Química Inorgánica, Facultad de Química; Universidad de Sevilla; Aptdo 1203 41071 Sevilla Spain
| | - Eleuterio Álvarez
- Instituto de Investigaciones Químicas; CSIC-Universidad de Sevilla; Avda. Américo Vespucio 49 41092 Sevilla Spain
| | - Agustín Galindo
- Departamento de Química Inorgánica, Facultad de Química; Universidad de Sevilla; Aptdo 1203 41071 Sevilla Spain
| |
Collapse
|
15
|
Jiang J, Wang J, Zhou X, Chen H, Ji H. Mechanistic Understanding towards the Role of Cyclohexene in Enhancing the Efficiency of Manganese Porphyrin‐Catalyzed Aerobic Oxidation of Diphenylmethane. Eur J Inorg Chem 2018. [DOI: 10.1002/ejic.201800317] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Jun Jiang
- Fine Chemical Industry Research Institute School of Chemistry Sun Yat‐sen University 510275 Guangzhou P. R. China
| | - Jie‐Xiang Wang
- Huizhou Research Institute of Sun Yat‐sen University 516081 Huizhou P. R. China
| | - Xian‐Tai Zhou
- Fine Chemical Industry Research Institute School of Chemical Engineering and Technology Sun Yat‐sen University 519082 Zhuhai P. R. China
| | - Hong‐Yu Chen
- Fine Chemical Industry Research Institute School of Chemistry Sun Yat‐sen University 510275 Guangzhou P. R. China
| | - Hong‐Bing Ji
- Fine Chemical Industry Research Institute School of Chemistry Sun Yat‐sen University 510275 Guangzhou P. R. China
| |
Collapse
|
16
|
Bolotin DS, Bokach NA, Demakova MY, Kukushkin VY. Metal-Involving Synthesis and Reactions of Oximes. Chem Rev 2017; 117:13039-13122. [PMID: 28991449 DOI: 10.1021/acs.chemrev.7b00264] [Citation(s) in RCA: 132] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
This review classifies and summarizes the past 10-15 years of advancements in the field of metal-involving (i.e., metal-mediated and metal-catalyzed) reactions of oximes. These reactions are diverse in nature and have been employed for syntheses of oxime-based metal complexes and cage-compounds, oxime functionalizations, and the preparation of new classes of organic species, in particular, a wide variety of heterocyclic systems spanning small 3-membered ring systems to macroheterocycles. This consideration gives a general outlook of reaction routes, mechanisms, and driving forces and underlines the potential of metal-involving conversions of oxime species for application in various fields of chemistry and draws attention to the emerging putative targets.
Collapse
Affiliation(s)
- Dmitrii S Bolotin
- Institute of Chemistry, Saint Petersburg State University , Universitetskaya Nab., 7/9, Saint Petersburg, Russian Federation
| | - Nadezhda A Bokach
- Institute of Chemistry, Saint Petersburg State University , Universitetskaya Nab., 7/9, Saint Petersburg, Russian Federation
| | - Marina Ya Demakova
- Institute of Chemistry, Saint Petersburg State University , Universitetskaya Nab., 7/9, Saint Petersburg, Russian Federation
| | - Vadim Yu Kukushkin
- Institute of Chemistry, Saint Petersburg State University , Universitetskaya Nab., 7/9, Saint Petersburg, Russian Federation
| |
Collapse
|
17
|
Lee CM, Wu WY, Chiang MH, Bohle DS, Lee GH. Generation of a Mn(IV)–Peroxo or Mn(III)–Oxo–Mn(III) Species upon Oxygenation of Mono- and Binuclear Thiolate-Ligated Mn(II) Complexes. Inorg Chem 2017; 56:10559-10569. [DOI: 10.1021/acs.inorgchem.7b01513] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Chien-Ming Lee
- Department of Applied
Science, National Taitung University, Taitung 950, Taiwan
| | - Wun-Yan Wu
- Department of Applied
Science, National Taitung University, Taitung 950, Taiwan
| | | | - D. Scott Bohle
- Department
of Chemistry, McGill University, Montreal, Quebec H3A 0B8, Canada
| | - Gene-Hsiang Lee
- Instrumentation
Center, National Taiwan University, Taipei 107, Taiwan
| |
Collapse
|
18
|
Brazzolotto D, Cantú Reinhard FG, Smith-Jones J, Retegan M, Amidani L, Faponle AS, Ray K, Philouze C, de Visser SP, Gennari M, Duboc C. A High-Valent Non-Heme μ-Oxo Manganese(IV) Dimer Generated from a Thiolate-Bound Manganese(II) Complex and Dioxygen. Angew Chem Int Ed Engl 2017; 56:8211-8215. [PMID: 28544340 PMCID: PMC5531755 DOI: 10.1002/anie.201703215] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 05/04/2017] [Indexed: 11/12/2022]
Abstract
This study deals with the unprecedented reactivity of dinuclear non-heme MnII -thiolate complexes with O2 , which dependent on the protonation state of the initial MnII dimer selectively generates either a di-μ-oxo or μ-oxo-μ-hydroxo MnIV complex. Both dimers have been characterized by different techniques including single-crystal X-ray diffraction and mass spectrometry. Oxygenation reactions carried out with labeled 18 O2 unambiguously show that the oxygen atoms present in the MnIV dimers originate from O2 . Based on experimental observations and DFT calculations, evidence is provided that these MnIV species comproportionate with a MnII precursor to yield μ-oxo and/or μ-hydroxo MnIII dimers. Our work highlights the delicate balance of reaction conditions to control the synthesis of non-heme high-valent μ-oxo and μ-hydroxo Mn species from MnII precursors and O2 .
Collapse
Affiliation(s)
- Deborah Brazzolotto
- Univ. Grenoble Alpes, CNRS, UMR 5250, DCM, 38000, Grenoble, France
- Univ. Grenoble Alpes, CNRS, UMR 5249, LCBM, 38000, Grenoble, France
| | - Fabián G Cantú Reinhard
- Manchester Institute of Biotechnology and School of Chemical Engineering and Analytical Science, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
| | | | - Marius Retegan
- European Synchrotron Radiation Facility (ESRF), 71 Avenue des Martyrs, 38000, Grenoble, France
| | - Lucia Amidani
- European Synchrotron Radiation Facility (ESRF), 71 Avenue des Martyrs, 38000, Grenoble, France
| | - Abayomi S Faponle
- Manchester Institute of Biotechnology and School of Chemical Engineering and Analytical Science, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
| | - Kallol Ray
- Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Strasse 2, 12489, Berlin, Germany
| | | | - Sam P de Visser
- Manchester Institute of Biotechnology and School of Chemical Engineering and Analytical Science, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
| | - Marcello Gennari
- Univ. Grenoble Alpes, CNRS, UMR 5250, DCM, 38000, Grenoble, France
| | - Carole Duboc
- Univ. Grenoble Alpes, CNRS, UMR 5250, DCM, 38000, Grenoble, France
| |
Collapse
|
19
|
Brazzolotto D, Cantú Reinhard FG, Smith‐Jones J, Retegan M, Amidani L, Faponle AS, Ray K, Philouze C, de Visser SP, Gennari M, Duboc C. A High‐Valent Non‐Heme μ‐Oxo Manganese(IV) Dimer Generated from a Thiolate‐Bound Manganese(II) Complex and Dioxygen. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201703215] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Deborah Brazzolotto
- Univ. Grenoble Alpes, CNRS, UMR 5250, DCM 38000 Grenoble France
- Univ. Grenoble Alpes, CNRS, UMR 5249, LCBM 38000 Grenoble France
| | - Fabián G. Cantú Reinhard
- Manchester Institute of Biotechnology and School of Chemical Engineering and Analytical Science The University of Manchester 131 Princess Street Manchester M1 7DN UK
| | | | - Marius Retegan
- European Synchrotron Radiation Facility (ESRF) 71 Avenue des Martyrs 38000 Grenoble France
| | - Lucia Amidani
- European Synchrotron Radiation Facility (ESRF) 71 Avenue des Martyrs 38000 Grenoble France
| | - Abayomi S. Faponle
- Manchester Institute of Biotechnology and School of Chemical Engineering and Analytical Science The University of Manchester 131 Princess Street Manchester M1 7DN UK
| | - Kallol Ray
- Department of Chemistry Humboldt-Universität zu Berlin Brook-Taylor-Strasse 2 12489 Berlin Germany
| | | | - Sam P. de Visser
- Manchester Institute of Biotechnology and School of Chemical Engineering and Analytical Science The University of Manchester 131 Princess Street Manchester M1 7DN UK
| | | | - Carole Duboc
- Univ. Grenoble Alpes, CNRS, UMR 5250, DCM 38000 Grenoble France
| |
Collapse
|
20
|
Liu K, Liang C, Ma Q, Du R, Wang Y, Mao J, Chen Z, Li H. Insight into the Co(II)/NaOH and Cu(II)/NaOH catalytic oxidation of 4-methyl guaiacol: Structures of catalysts and reaction pathways. MOLECULAR CATALYSIS 2017. [DOI: 10.1016/j.molcata.2016.11.037] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
21
|
Deville C, McKee V, McKenzie CJ. Copper-promoted methylene C–H oxidation to a ketone derivative by O2. Dalton Trans 2017; 46:709-719. [DOI: 10.1039/c6dt03349k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The oxime-dipyridyl ligand on a copper complex is slowly oxygenated at the benzylic C–H bond in air.
Collapse
Affiliation(s)
- Claire Deville
- Department of Physics
- Chemistry and Pharmacy
- University of Southern Denmark
- 5230 Odense M
- Denmark
| | - Vickie McKee
- Department of Physics
- Chemistry and Pharmacy
- University of Southern Denmark
- 5230 Odense M
- Denmark
| | - Christine J. McKenzie
- Department of Physics
- Chemistry and Pharmacy
- University of Southern Denmark
- 5230 Odense M
- Denmark
| |
Collapse
|
22
|
Sahu S, Goldberg DP. Activation of Dioxygen by Iron and Manganese Complexes: A Heme and Nonheme Perspective. J Am Chem Soc 2016; 138:11410-28. [PMID: 27576170 DOI: 10.1021/jacs.6b05251] [Citation(s) in RCA: 241] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The rational design of well-defined, first-row transition metal complexes that can activate dioxygen has been a challenging goal for the synthetic inorganic chemist. The activation of O2 is important in part because of its central role in the functioning of metalloenzymes, which utilize O2 to perform a number of challenging reactions including the highly selective oxidation of various substrates. There is also great interest in utilizing O2, an abundant and environmentally benign oxidant, in synthetic catalytic oxidation systems. This Perspective brings together recent examples of biomimetic Fe and Mn complexes that can activate O2 in heme or nonheme-type ligand environments. The use of oxidants such as hypervalent iodine (e.g., ArIO), peracids (e.g., m-CPBA), peroxides (e.g., H2O2) or even superoxide is a popular choice for accessing well-characterized metal-superoxo, metal-peroxo, or metal-oxo species, but the instances of biomimetic Fe/Mn complexes that react with dioxygen to yield such observable metal-oxygen species are surprisingly few. This Perspective focuses on mononuclear Fe and Mn complexes that exhibit reactivity with O2 and lead to spectroscopically observable metal-oxygen species, and/or oxidize biologically relevant substrates. Analysis of these examples reveals that solvent, spin state, redox potential, external co-reductants, and ligand architecture can all play important roles in the O2 activation process.
Collapse
Affiliation(s)
- Sumit Sahu
- Department of Chemistry, The Johns Hopkins University , Baltimore, Maryland 21218, United States
| | - David P Goldberg
- Department of Chemistry, The Johns Hopkins University , Baltimore, Maryland 21218, United States
| |
Collapse
|
23
|
Ma D, Li Manni G, Olsen J, Gagliardi L. Second-Order Perturbation Theory for Generalized Active Space Self-Consistent-Field Wave Functions. J Chem Theory Comput 2016; 12:3208-13. [DOI: 10.1021/acs.jctc.6b00382] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Dongxia Ma
- Max-Planck-Institut für Festkörperforschung, Heisenbergstraße 1, 70569 Stuttgart, Germany
| | - Giovanni Li Manni
- Max-Planck-Institut für Festkörperforschung, Heisenbergstraße 1, 70569 Stuttgart, Germany
| | - Jeppe Olsen
- Department
of Chemistry, Aarhus University, Langelandsgade 140, 8000 Aarhus, Denmark
| | | |
Collapse
|