1
|
Zhu CL, Yan X, Bin HY, Wu X, Huang ZY, Yan PC, Huang G, Xie JH, Zhou QL. Enantioselective Synthesis of Chiral 1,4-Dihydroquinolines via Iridium-Catalyzed Asymmetric Partial Hydrogenation of Quinolines. J Am Chem Soc 2025; 147:5725-5735. [PMID: 39909729 DOI: 10.1021/jacs.4c13618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2025]
Abstract
Chiral 1,4-dihydroquinolines are frequently found in natural products and pharmaceuticals, yet a generally useful route for their synthesis remains elusive. Here, we present an asymmetric partial hydrogenation strategy to access enantioenriched 1,4-dihydroquinolines from quinolines. Our strategy involves incorporating an ester group at position 3 of the quinoline ring, thereby enhancing the electronic deficiency and polarity of the C3-C4 double bond. Employing a chiral Ir-SpiroPAP catalyst facilitated the hydrogenation of a wide variety of 4-substituted 3-ethoxycarbonylquinolines, yielding chiral 1,4-dihydroquinolines in high yields (up to 95%) with exceptional enantioselectivity and efficiency (up to 99% ee and 1840 TONs). Noteworthy for its scalability and practicality, the method provides a robust avenue for the synthesis of valuable compounds such as 9-aryl aza-podophyllotoxins and melatonin MT2 receptor modulators. Density functional theory calculations were performed to gain insights into the reaction mechanism and the origins of the enantioselectivity.
Collapse
Affiliation(s)
- Chang-Liang Zhu
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, China
| | - Xueyuan Yan
- Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China
| | - Huai-Yu Bin
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, China
| | - Xiong Wu
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, China
| | - Zheng-Yan Huang
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, China
| | - Pu-Cha Yan
- Zhejiang Jiuzhou Pharmaceutical CO., Ltd., Taizhou, Zhejiang 318000, China
| | - Genping Huang
- Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China
| | - Jian-Hua Xie
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, China
| | - Qi-Lin Zhou
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, China
| |
Collapse
|
2
|
Halaczkiewicz M, Maraj A, Riedel M, Donner L, Kelm H, Manolikakes G. Brønsted-Acid Catalyzed Diastereo- and Enantioselective Synthesis of Spiroisoindolinones from Enamides. Chemistry 2025; 31:e202404223. [PMID: 39618076 DOI: 10.1002/chem.202404223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Accepted: 11/29/2024] [Indexed: 12/13/2024]
Abstract
A highly stereoselective Brønsted-acid catalyzed synthesis of densely substituted spiroisoindolinones from enamides and 3-hydroxy-isoindolinones is described. With simple Brønsted-acids, such as para-toluene sulfonic acid, spiroisoindolinones with three contiguous stereogenic centers are formed in high yields (up to 97 %) and diastereoselectivities (up to >98 : <2 : 0 : 0 dr) under mild reaction conditions. With the use of a chiral phosphoric acid catalyst, a diastereo- and enantioselective synthesis of the corresponding spiroisoindolinones was achieved. Mechanistic investigations indicate a step-wise mechanism via an initial addition of the enamide to an electrophilic N-acylimine species followed by an intramolecular aza-Friedel-Crafts reaction. Addition of a strong Lewis acid can be used to facilitate the second step for less reactive substrates.
Collapse
Affiliation(s)
- Miro Halaczkiewicz
- Department of Chemistry, University of Kaiserslautern-Landau, Erwin-Schrödinger-Str. 54, 67663, Kaiserslautern, Germany
| | - Arianit Maraj
- Department of Chemistry, University of Kaiserslautern-Landau, Erwin-Schrödinger-Str. 54, 67663, Kaiserslautern, Germany
| | - Mareike Riedel
- Department of Chemistry, University of Kaiserslautern-Landau, Erwin-Schrödinger-Str. 54, 67663, Kaiserslautern, Germany
| | - Leon Donner
- Department of Chemistry, University of Kaiserslautern-Landau, Erwin-Schrödinger-Str. 54, 67663, Kaiserslautern, Germany
| | - Harald Kelm
- Department of Chemistry, University of Kaiserslautern-Landau, Erwin-Schrödinger-Str. 54, 67663, Kaiserslautern, Germany
| | - Georg Manolikakes
- Department of Chemistry, University of Kaiserslautern-Landau, Erwin-Schrödinger-Str. 54, 67663, Kaiserslautern, Germany
| |
Collapse
|
3
|
Xu D, Zhou G, Liu B, Jia S, Liu Y, Yan H. Catalytic Asymmetric Synthesis of Inherently Chiral Eight-Membered O-Heterocycles through Cross-[4+4] Cycloaddition of Quinone Methides. Angew Chem Int Ed Engl 2025; 64:e202416873. [PMID: 39540793 DOI: 10.1002/anie.202416873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/19/2024] [Accepted: 11/13/2024] [Indexed: 11/16/2024]
Abstract
Inherently chiral eight-membered rings embedded in tetraphenylene derivatives and hetero-analogues exhibit unique properties and allow diverse applications. A conceptually viable and straightforward approach to these frameworks is [4+4] cycloaddition, which still remains elusive. Herein, we describe the stereoselective cross-[4+4] cycloaddition of quinone methides (QMs), leading to the formation of oxa-analogues of tetraphenylene with exceptional chemo-, diastereo-, and enantioselectivity. The structures of these novel rigid eight-membered O-heterocycles were explored by single-crystal X-ray diffraction, and their stereochemical stability was elaborated through both density functional theory (DFT) calculations and thermal racemization experiments. The developed methodology exhibited broad substrate scope and the resulting cross-[4+4] cycloadducts could be readily transformed into valuable chiral building blocks. Our findings expand the library of inherently chiral medium-sized rings and also contribute to the advancement of asymmetric cross-[4+4] cycloadditions of quinone methides.
Collapse
Affiliation(s)
- Da Xu
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, P. R. China
| | - Guojie Zhou
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, P. R. China
| | - Bangli Liu
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, P. R. China
| | - Shiqi Jia
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, 100 Science Avenue, Zhengzhou, 450001, Henan, P. R. China
| | - Yidong Liu
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, P. R. China
| | - Hailong Yan
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, P. R. China
| |
Collapse
|
4
|
Sun Y, Jin Y, Gu Y, Liu J, Wang L, Jin Y. Enantioselective Synthesis of Spiro[Indoline-3,4-Pyrrolo[3,4-b]Pyridines] Via an Organocatalysed Three-Component Cascade Reaction. Chemistry 2024; 30:e202403349. [PMID: 39380168 DOI: 10.1002/chem.202403349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/07/2024] [Accepted: 10/08/2024] [Indexed: 10/10/2024]
Abstract
Asymmetric synthesis of derivatives of spiro[indoline-3,4-pyrrolo[3,4-b]pyridines] were first developed through the organocatalytic cascade of Knoevenagel/Michael/cyclization reactions using a quinidine-derived squaramide. Under the optimized conditions, the three-component reactions of isatins, cyanoacetates, and 3-aminomaleimides yield the desired heterocycle-fused spirooxindoles in good yields (78-91 %) with 53 %-99 % enantiomeric excess (ee). Notably, this reaction enables a broad substrate scope under mild conditions and provides a convenient method for the enantioselective construction of diverse spirooxindoles combined with dihydropyridine and maleimide skeletons, which has great potential for the construction of new bioactive chemical entities.
Collapse
Affiliation(s)
- Yuhong Sun
- Department of Pharmacy, Jilin Medical University, Jilin, Jilin, 132013, China
- College of Science, Yanbian University, Yanji, Jilin, 133000, China
| | - Yan Jin
- College of Science, Yanbian University, Yanji, Jilin, 133000, China
| | - Yingying Gu
- Department of Pharmacy, Jilin Medical University, Jilin, Jilin, 132013, China
| | - Jinming Liu
- Department of Pharmacy, Jilin Medical University, Jilin, Jilin, 132013, China
| | - Liming Wang
- Department of Pharmacy, Jilin Medical University, Jilin, Jilin, 132013, China
| | - Ying Jin
- Department of Pharmacy, Jilin Medical University, Jilin, Jilin, 132013, China
- College of Science, Yanbian University, Yanji, Jilin, 133000, China
| |
Collapse
|
5
|
Zhang X, Xing Q, Gou Z, Gan S, Wang W, Li Z, Shao H, Wang C. Synthesis of Functionalized Tetrahydroquinoline Containing Indole Scaffold via Chemoselective Annulation of Aza- ortho-quinone Methide Precursor. ACS OMEGA 2023; 8:22352-22360. [PMID: 37396238 PMCID: PMC10308564 DOI: 10.1021/acsomega.2c07036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 02/21/2023] [Indexed: 07/04/2023]
Abstract
The chemoselective annulation of aza-ortho-quinone methide generated by in situ o-chloromethyl sulfonamide has been achieved with bifunctional acyclic olefin. This efficient approach provides access to the diastereoselective synthesis of functionalized tetrahydroquinoline derivatives containing indole scaffolds through the inverse-electron-demand aza-Diels-Alder reaction under mild reaction conditions with excellent results (up to 93% yield, > 20:1 dr). Moreover, this article realized the cyclization of α-halogeno hydrazone with electron-deficient alkene affording the tetrahydropyridazine derivatives, which had never been reported.
Collapse
Affiliation(s)
- Xiaoke Zhang
- Central
Laboratory, Chongqing University Fuling
Hospital, Chongqing 408000, PR China
- Zunyi
Medical University, Zunyi, Guizhou 563000, China
| | - Qianlu Xing
- Department
of Pediatrics, The Second Affiliated Hospital
of Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Zhengxing Gou
- Central
Laboratory, Chongqing University Fuling
Hospital, Chongqing 408000, PR China
| | - Song Gan
- Zunyi
Medical University, Zunyi, Guizhou 563000, China
| | - Wenjuan Wang
- Zunyi
Medical University, Zunyi, Guizhou 563000, China
| | - Ziwei Li
- Central
Laboratory, Chongqing University Fuling
Hospital, Chongqing 408000, PR China
| | - Huawu Shao
- Natural
Products Research Centre, Chengdu Institute
of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Chaoyong Wang
- Central
Laboratory, Chongqing University Fuling
Hospital, Chongqing 408000, PR China
| |
Collapse
|
6
|
Liu S, Chan KL, Lin Z, Sun J. Asymmetric Synthesis of Remotely Chiral Naphthols and Naphthylamines via Naphthoquinone Methides. J Am Chem Soc 2023. [PMID: 37276009 DOI: 10.1021/jacs.3c03557] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Quinone methides are well-established intermediates in asymmetric synthesis. In contrast, their extended analogues with the carbonyl and methide units distributed across two different rings have not been exploited in asymmetric synthesis. Herein, we achieved the first asymmetric process involving such intermediates. Specifically, the use of suitable chiral phosphoric acids enabled in situ generation of 2-naphthoquinone 8-methides and the corresponding aza counterparts for mild one-pot asymmetric nucleophilic addition. These processes provided rapid access to a wide range of previously less accessible remotely chiral naphthols and naphthylamines with both high efficiency and excellent enantioselectivity. Control experiment and DFT calculations provided important insights into the reaction mechanism, which likely involves two phosphoric acid molecules in the enantiodetermining transition states. This work serves as a proof of concept for the exploitation of new types of extended quinone methides as versatile intermediates for asymmetric synthesis, thus providing a new platform for the efficient construction of remote benzylic stereogenic centers of aromatic compounds.
Collapse
Affiliation(s)
- Shuxuan Liu
- Department of Chemistry and the Hong Kong Branch of Chinese National Engineering Research Centre for Tissue Restoration & Reconstruction, The Hong Kong University of Science and Technology (HKUST), Clear Water Bay, Kowloon 999077, Hong Kong SAR, China
- Shenzhen Research Institute, HKUST, No. 9 Yuexing 1st Rd, Shenzhen 518057, China
- Shenzhen Bay Laboratory, Shenzhen 518055, China
| | - Ka Lok Chan
- Department of Chemistry and the Hong Kong Branch of Chinese National Engineering Research Centre for Tissue Restoration & Reconstruction, The Hong Kong University of Science and Technology (HKUST), Clear Water Bay, Kowloon 999077, Hong Kong SAR, China
| | - Zhenyang Lin
- Department of Chemistry and the Hong Kong Branch of Chinese National Engineering Research Centre for Tissue Restoration & Reconstruction, The Hong Kong University of Science and Technology (HKUST), Clear Water Bay, Kowloon 999077, Hong Kong SAR, China
| | - Jianwei Sun
- Department of Chemistry and the Hong Kong Branch of Chinese National Engineering Research Centre for Tissue Restoration & Reconstruction, The Hong Kong University of Science and Technology (HKUST), Clear Water Bay, Kowloon 999077, Hong Kong SAR, China
- Shenzhen Research Institute, HKUST, No. 9 Yuexing 1st Rd, Shenzhen 518057, China
| |
Collapse
|
7
|
Tian Y, He D, Gao L, Zou Y, Liu X, Wang Q, Liang E, Zheng Y. Regioselective Reaction of 2-Indolylmethanols with Enamides. Molecules 2023; 28:molecules28083341. [PMID: 37110576 PMCID: PMC10140953 DOI: 10.3390/molecules28083341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/08/2023] [Accepted: 04/09/2023] [Indexed: 04/29/2023] Open
Abstract
A highly regioselective reaction of 2-indolylmethanols with enamides has been developed at room temperature by using AlCl3 as a catalyst. A wide range of hybrids (40 examples) of indoles and enamides were obtained in moderate to good yields (up to 98% yield). This transformation represents the efficient way to introduce biologically important indoles and enamides skeleton into structurally complex hybrids.
Collapse
Affiliation(s)
- Yuting Tian
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, China
| | - Dongqing He
- Department of Chemistry and Chemical Engineering, Institute of Science and Technology, Yueyang 414000, China
| | - Limei Gao
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, China
| | - Yu Zou
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, China
| | - Xiaoshuang Liu
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, China
| | - Qiang Wang
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, China
| | - Enxiang Liang
- Department of Chemistry and Chemical Engineering, Institute of Science and Technology, Yueyang 414000, China
| | - Yongsheng Zheng
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, China
| |
Collapse
|
8
|
Liao H, Miñoza S, Lee S, Rueping M. Aza‐
Ortho
‐Quinone Methides as Reactive Intermediates: Generation and Utility in Contemporary Asymmetric Synthesis. Chemistry 2022; 28:e202201112. [DOI: 10.1002/chem.202201112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Indexed: 11/10/2022]
Affiliation(s)
- Hsuan‐Hung Liao
- Department of Chemistry National Sun Yat-sen University (NSYSU) 70 Lien-hai Rd. Kaohsiung 80424 Taiwan, (R.O.C
| | - Shinje Miñoza
- Department of Chemistry National Sun Yat-sen University (NSYSU) 70 Lien-hai Rd. Kaohsiung 80424 Taiwan, (R.O.C
| | - Shao‐Chi Lee
- KAUST Catalysis Center (KCC) King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Saudi Arabia
| | - Magnus Rueping
- KAUST Catalysis Center (KCC) King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Saudi Arabia
| |
Collapse
|
9
|
Woldegiorgis AG, Muhammad S, Lin X. Asymmetric Cycloaddition/Annulation Reactions by Chiral Phosphoric Acid Catalysis: Recent Advances. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
| | | | - Xufeng Lin
- Zhejiang University Department of Chemistry 38 Zheda Road 310027 Hangzhou CHINA
| |
Collapse
|
10
|
Krieg SC, Grimmer J, Pick AM, Kelm H, Breugst M, Manolikakes G. Stereoselective Synthesis of 2‐Oxyenamides. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200772] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Sara-Cathrin Krieg
- TU Kaiserslautern: Technische Universitat Kaiserslautern Chemistry GERMANY
| | - Jennifer Grimmer
- TU Kaiserslautern: Technische Universitat Kaiserslautern Chemistry GERMANY
| | - Annika Maria Pick
- TU Kaiserslautern: Technische Universitat Kaiserslautern Chemistry GERMANY
| | - Harald Kelm
- TU Kaiserslautern: Technische Universitat Kaiserslautern Chemistry GERMANY
| | - Martin Breugst
- TU Chemnitz: Technische Universitat Chemnitz Chemistry GERMANY
| | - Georg Manolikakes
- TU Kaiserslautern fachbereich Chemie Erwin-schrödinger-Str. Geb 54 67663 Kaiserslautern GERMANY
| |
Collapse
|
11
|
Wu X, Sparr C. Stereoselective Synthesis of Atropisomeric Acridinium Salts by the Catalyst-Controlled Cyclization of ortho-Quinone Methide Iminiums. Angew Chem Int Ed Engl 2022; 61:e202201424. [PMID: 35167176 PMCID: PMC9306694 DOI: 10.1002/anie.202201424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Indexed: 11/07/2022]
Abstract
Quinone methides are fundamental intermediates for a wide range of reactions in which catalyst stereocontrol is often achieved by hydrogen bonding. Herein, we describe the feasibility of an intramolecular Friedel-Crafts 6π electrocyclization through ortho-quinone methide iminiums stereocontrolled by a contact ion pair. A disulfonimide catalyst activates racemic trichloroacetimidate substrates and imparts stereocontrol in the cyclization step, providing a new avenue for selective ortho-quinone methide iminium functionalization. A highly stereospecific oxidation readily transforms the enantioenriched acridanes into rotationally restricted acridiniums. Upon ion exchange, the method selectively affords atropisomeric acridinium tetrafluoroborate salts in high yields and an enantioenrichment of up to 93 : 7 e.r. We envision that ion-pairing catalysis over ortho-quinone methide iminiums enables the selective synthesis of a diversity of heterocycles and aniline derivatives with distinct stereogenic units.
Collapse
Affiliation(s)
- Xingxing Wu
- Department of ChemistryUniversity of BaselSt. Johanns-Ring 194056BaselSwitzerland
- NCCR Molecular Systems Engineering, BPR 1095Mattenstrasse 24a4058BaselSwitzerland
| | - Christof Sparr
- Department of ChemistryUniversity of BaselSt. Johanns-Ring 194056BaselSwitzerland
- NCCR Molecular Systems Engineering, BPR 1095Mattenstrasse 24a4058BaselSwitzerland
| |
Collapse
|
12
|
Wu X, Sparr C. Stereoselective Synthesis of Atropisomeric Acridinium Salts by the Catalyst‐Controlled Cyclization of
ortho
‐Quinone Methide Iminiums. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202201424] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Xingxing Wu
- Department of Chemistry University of Basel St. Johanns-Ring 19 4056 Basel Switzerland
- NCCR Molecular Systems Engineering, BPR 1095 Mattenstrasse 24a 4058 Basel Switzerland
| | - Christof Sparr
- Department of Chemistry University of Basel St. Johanns-Ring 19 4056 Basel Switzerland
- NCCR Molecular Systems Engineering, BPR 1095 Mattenstrasse 24a 4058 Basel Switzerland
| |
Collapse
|
13
|
Schneider C, Dorsch C. Asymmetric Brønsted Acid Catalyzed Cycloadditions of ortho-Quinone Methides and Related Compounds. SYNTHESIS-STUTTGART 2022. [DOI: 10.1055/a-1781-6538] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
AbstractThis review summarizes recent developments in the area of Brønsted acid catalyzed, enantioselective cycloadditions of ortho-quinone methides, ortho-quinone methide imines as well as heterocyclic indole- and pyrrole-based methides. In a straightforward and single-step transformation complex polycyclic N- and O-heterocyclic scaffolds are accessible, with typically good yields and excellent stereocontrol, from simple benzyl and heterobenzyl alcohols upon acid-catalyzed dehydration. The transient precursors are hydrogen-bonded to a chiral Brønsted acid which controls the enantioselectivity of the process.1 Introduction2 Cycloadditions of ortho-Quinone Methides2.1 Brønsted Acid Catalyzed Processes2.2 Cooperative Brønsted Acid/Transition-Metal-Catalyzed Processes3 Cycloadditions of ortho-Quinone Methide Imines4 Cycloadditions of Indolyl-3-methides5 Cycloadditions of Indolyl-2-methides5.1 Brønsted Acid Catalyzed Processes5.2 Cooperative Brønsted Acid/Transition-Metal-Catalyzed Processes6 Cycloadditions of Pyrrolyl-2-methides7 Cycloadditions of Pyrrolyl-3-methides8 Conclusions
Collapse
|
14
|
Schneider C, Hofmann F, Gärtner C, Kretzschmar M. Asymmetric Synthesis of Fused Tetrahydroquinolines via Intramolecular Aza-Diels–Alder Reaction of ortho-Quinone Methide Imines. SYNTHESIS-STUTTGART 2022. [DOI: 10.1055/a-1517-7515] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
AbstractAza-Diels–Alder reactions are straightforward processes for the construction of N-heterocycles, featuring inherent atom-economy and stereospecificity. Intramolecular strategies allow the formation of bicyclic core structures with up to three stereocenters within a single step. Herein, this concept is combined with the chemistry of chiral Brønsted acid bound ortho-quinone methide imines to generate a range of interesting fused tetrahydroquinolines in a diastereo- and enantioselective manner.
Collapse
|
15
|
Shen LW, Li TT, You Y, Zhao JQ, Wang ZH, Yuan WC. Inverse Electron-Demand Aza-Diels-Alder Reaction of Cyclic Enamides with 1,2-Diaza-1,3-dienes in Situ Generated from α-Halogeno Hydrazones: Access to Fused Polycyclic Tetrahydropyridazine Derivatives. J Org Chem 2021; 86:11472-11481. [PMID: 34343003 DOI: 10.1021/acs.joc.1c00993] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
An efficient inverse electron-demand aza-Diels-Alder reaction of cyclic enamides and 1,2-diaza-1,3-dienes, which could be readily formed in situ from α-halogeno hydrazones and a base, has been successfully developed. With the developed approach, a wide range of fused polycyclic tetrahydropyridazines were smoothly obtained in up to 99% yield under benign reaction conditions. This reaction concept was also extended to acyclic enamide substrates for accessing 1,4,5,6-tetrahydropyridazines. A gram-scale experiment and further derivatizations of the polycyclic tetrahydropyridazine products were also conducted to verify the practicability of the methodology.
Collapse
Affiliation(s)
- Li-Wen Shen
- National Engineering Research Center of Chiral Drugs, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu, 610041, China.,Institute for Advanced Study, Chengdu University, Chengdu 610106, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ting-Ting Li
- National Engineering Research Center of Chiral Drugs, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu, 610041, China.,Institute for Advanced Study, Chengdu University, Chengdu 610106, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yong You
- Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Jian-Qiang Zhao
- Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Zhen-Hua Wang
- Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Wei-Cheng Yuan
- Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| |
Collapse
|
16
|
Chen L, Liu X, Zhang J, Duan L, Wen Z, Ni H. Relay Cu(I)/Brønsted Base Catalysis for
Phospha
‐Michael Addition/5‐
exo
‐
dig
Cyclization/Isomerization of
in
situ
Formed
aza
‐Alkynyl
o‐
quinone methides with P(O)−H compounds to C3‐Phosphorylated Indoles. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100275] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Long Chen
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province Sichuan Industrial Institute of Antibiotics School of Pharmacy Chengdu University 2025 Chengluo Avenue Chengdu 610016 People's Republic of China
| | - Xiao‐Yan Liu
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province Sichuan Industrial Institute of Antibiotics School of Pharmacy Chengdu University 2025 Chengluo Avenue Chengdu 610016 People's Republic of China
| | - Jing Zhang
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province Sichuan Industrial Institute of Antibiotics School of Pharmacy Chengdu University 2025 Chengluo Avenue Chengdu 610016 People's Republic of China
| | - Li Duan
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province Sichuan Industrial Institute of Antibiotics School of Pharmacy Chengdu University 2025 Chengluo Avenue Chengdu 610016 People's Republic of China
| | - Zhong Wen
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province Sichuan Industrial Institute of Antibiotics School of Pharmacy Chengdu University 2025 Chengluo Avenue Chengdu 610016 People's Republic of China
| | - Hai‐Liang Ni
- College of Chemistry and Materials Science Sichuan Normal University 5 Jing An Road Chengdu 610066 People's Republic of China
| |
Collapse
|
17
|
Wang HQ, Ma W, Sun A, Sun XY, Jiang C, Zhang YC, Shi F. (4 + 2) cyclization of aza- o-quinone methides with azlactones: construction of biologically important dihydroquinolinone frameworks. Org Biomol Chem 2021; 19:1334-1343. [PMID: 33464269 DOI: 10.1039/d0ob02388d] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
A base-promoted (4 + 2) cyclization of aza-o-quinone methides (aza-o-QMs) in situ generated from N-(o-chloromethyl)aryl amides was established. In this approach, azlactones were utilized as competent two-atom reaction partners to undergo (4 + 2) cyclization with aza-o-QMs, which afforded a series of dihydroquinolinone derivatives in overall good yields (up to 98%). This protocol has not only advanced the development of aza-o-QM-involved reactions, but also offered a useful method for constructing biologically important dihydroquinolinone frameworks.
Collapse
Affiliation(s)
- Hai-Qing Wang
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, 221116, China.
| | - Wenjing Ma
- Core Facility Center of Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China.
| | - Ao Sun
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, 221116, China.
| | - Xin-Yue Sun
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, 221116, China.
| | - Chao Jiang
- Core Facility Center of Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China.
| | - Yu-Chen Zhang
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, 221116, China.
| | - Feng Shi
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, 221116, China.
| |
Collapse
|
18
|
Vinogradov MG, Turova OV, Zlotin SG. Catalytic Asymmetric Aza‐Diels‐Alder Reaction: Pivotal Milestones and Recent Applications to Synthesis of Nitrogen‐Containing Heterocycles. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202001307] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Maxim G. Vinogradov
- N.D. Zelinsky Institute of Organic Chemistry Russian Academy of Sciences 47 Leninsky prosp. 119991 Moscow Russian Federation
| | - Olga V. Turova
- N.D. Zelinsky Institute of Organic Chemistry Russian Academy of Sciences 47 Leninsky prosp. 119991 Moscow Russian Federation
| | - Sergei G. Zlotin
- N.D. Zelinsky Institute of Organic Chemistry Russian Academy of Sciences 47 Leninsky prosp. 119991 Moscow Russian Federation
| |
Collapse
|
19
|
Ma WY, Gelis C, Bouchet D, Retailleau P, Moreau X, Neuville L, Masson G. Chiral Phosphoric Acid-Catalyzed Enantioselective Construction of 2,3-Disubstituted Indolines. Org Lett 2021; 23:442-448. [DOI: 10.1021/acs.orglett.0c03947] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Wei-Yang Ma
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Université Paris-Sud, Université Paris-Saclay, 1 av. de la Terrasse, Gif-sur-Yvette 91198 Cedex France
| | - Coralie Gelis
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Université Paris-Sud, Université Paris-Saclay, 1 av. de la Terrasse, Gif-sur-Yvette 91198 Cedex France
| | - Damien Bouchet
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Université Paris-Sud, Université Paris-Saclay, 1 av. de la Terrasse, Gif-sur-Yvette 91198 Cedex France
| | - Pascal Retailleau
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Université Paris-Sud, Université Paris-Saclay, 1 av. de la Terrasse, Gif-sur-Yvette 91198 Cedex France
| | - Xavier Moreau
- Institut Lavoisier Versailles, UMR CNRS 8180, Université de Versailles-St-Quentin-en-Yvelines, Université Paris-Saclay, Versailles, France
| | - Luc Neuville
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Université Paris-Sud, Université Paris-Saclay, 1 av. de la Terrasse, Gif-sur-Yvette 91198 Cedex France
| | - Géraldine Masson
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Université Paris-Sud, Université Paris-Saclay, 1 av. de la Terrasse, Gif-sur-Yvette 91198 Cedex France
| |
Collapse
|
20
|
Yang F, Zhou X, Wei Y, Wang L, Jiang J. Hydroquinine-catalyzed asymmetric 1,4-hydrophosphination of in situ generated aza- o-quinone methides with H-phosphine oxides. Org Chem Front 2021. [DOI: 10.1039/d1qo00823d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
An organocatalytic enantioselective 1,4-addition of H-phosphine oxides to in situ generated aza-o-quinone methides has been successfully established using hydroquinine.
Collapse
Affiliation(s)
- Fuxing Yang
- College of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, P. R. China
| | - Xingcui Zhou
- College of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, P. R. China
| | - Yongquan Wei
- College of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, P. R. China
| | - Lisheng Wang
- College of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, P. R. China
- Medical College, Guangxi University, Nanning, 530004, P. R. China
| | - Jun Jiang
- College of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, P. R. China
- Guangxi Key Laboratory of Electrochemical Energy Materials, Nanning, Guangxi 530004, P. R. China
| |
Collapse
|
21
|
Lerchen A, Gandhamsetty N, Farrar EHE, Winter N, Platzek J, Grayson MN, Aggarwal VK. Enantioselective Total Synthesis of (-)-Finerenone Using Asymmetric Transfer Hydrogenation. Angew Chem Int Ed Engl 2020; 59:23107-23111. [PMID: 32890415 PMCID: PMC7839499 DOI: 10.1002/anie.202011256] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Indexed: 12/22/2022]
Abstract
(-)-Finerenone is a nonsteroidal mineralocorticoid receptor antagonist currently in phase III clinical trials for the treatment of chronic kidney disease in type 2 diabetes. It contains an unusual dihydronaphthyridine core. We report a 6-step synthesis of (-)-finerenone, which features an enantioselective partial transfer hydrogenation of a naphthyridine using a chiral phosphoric acid catalyst with a Hantzsch ester. The process is complicated by the fact that the naphthyridine exists as a mixture of two atropisomers that react at different rates and with different selectivities. The intrinsic kinetic resolution was converted into a kinetic dynamic resolution at elevated temperature, which enabled us to obtain (-)-finerenone in both high yield and high enantioselectivity. DFT calculations have revealed the origin of selectivity.
Collapse
Affiliation(s)
- Andreas Lerchen
- School of ChemistryUniversity of BristolCantock's CloseBristolBS8 1TSUK
| | | | | | - Nils Winter
- School of ChemistryUniversity of BristolCantock's CloseBristolBS8 1TSUK
| | | | | | | |
Collapse
|
22
|
Lerchen A, Gandhamsetty N, Farrar EHE, Winter N, Platzek J, Grayson MN, Aggarwal VK. Enantioselective Total Synthesis of (−)‐Finerenone Using Asymmetric Transfer Hydrogenation. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202011256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Andreas Lerchen
- School of Chemistry University of Bristol Cantock's Close Bristol BS8 1TS UK
| | | | | | - Nils Winter
- School of Chemistry University of Bristol Cantock's Close Bristol BS8 1TS UK
| | | | - Matthew N. Grayson
- Department of Chemistry University of Bath Claverton Down Bath BA2 7AY UK
| | | |
Collapse
|
23
|
Tu L, Gao L, Wang X, Shi R, Ma R, Li J, Lan X, Zheng Y, Liu J. [3 + 2] Cycloaddition of Nitrile Imines with Enamides: An Approach to Functionalized Pyrazolines and Pyrazoles. J Org Chem 2020; 86:559-573. [PMID: 33301335 DOI: 10.1021/acs.joc.0c02244] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
An efficient [3 + 2] cycloaddition of in situ generated nitrile imines with enamides has been established. A wide range of functionalized pyrazoline derivatives (53 examples) were obtained in moderate to good yields (up to 96%) under very mild conditions. This protocol features broad substrate scope, good functional group tolerance, and operational simplicity. Practical transformation of the products into useful pyrazoles via a one-pot process and the scalability of this protocol highlight the utility of this synthetic methodology.
Collapse
Affiliation(s)
- Liang Tu
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan 430074, China
| | - Limei Gao
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan 430074, China
| | - Xiaomeng Wang
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan 430074, China
| | - Ruijie Shi
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan 430074, China
| | - Rupei Ma
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan 430074, China
| | - Junfei Li
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan 430074, China
| | - Xiaoshuang Lan
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan 430074, China
| | - Yongsheng Zheng
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan 430074, China
| | - Jikai Liu
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan 430074, China
| |
Collapse
|
24
|
Kallweit I, Laue M, Schneider C. Brønsted-Acid-Catalyzed (3+2)-Cycloannulation of In-Situ-Generated 3-Methide-3H-pyrroles: Asymmetric Synthesis of Cyclopenta[b]pyrroles. Org Lett 2020; 22:9065-9070. [DOI: 10.1021/acs.orglett.0c03452] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Isa Kallweit
- Institut für Organische Chemie, Universität Leipzig, Johannisallee 29, 04103 Leipzig, Germany
| | - Michael Laue
- Institut für Organische Chemie, Universität Leipzig, Johannisallee 29, 04103 Leipzig, Germany
| | - Christoph Schneider
- Institut für Organische Chemie, Universität Leipzig, Johannisallee 29, 04103 Leipzig, Germany
| |
Collapse
|
25
|
Skrzyńska A, Frankowski S, Albrecht Ł. Cyclic 1‐Azadienes in the Organocatalytic Inverse‐Electron‐Demand Aza‐Diels‐Alder Cycloadditions. ASIAN J ORG CHEM 2020. [DOI: 10.1002/ajoc.202000332] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Anna Skrzyńska
- Institute of Organic Chemistry Faculty of Chemistry Lodz University of Technology Żeromskiego 116 90-924 Łódź Poland
| | - Sebastian Frankowski
- Institute of Organic Chemistry Faculty of Chemistry Lodz University of Technology Żeromskiego 116 90-924 Łódź Poland
| | - Łukasz Albrecht
- Institute of Organic Chemistry Faculty of Chemistry Lodz University of Technology Żeromskiego 116 90-924 Łódź Poland
| |
Collapse
|
26
|
Ahlburg NL, Velarde AR, Kieber-Emmons MT, Jones PG, Werz DB. Substituted Benzothietes: Synthesis and a Quantum Chemical Investigation of Their Cycloreversion Properties. Org Lett 2020; 22:4255-4260. [PMID: 32401521 DOI: 10.1021/acs.orglett.0c01261] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A flexible synthesis for highly substituted benzothietes that does not require flash-vacuum pyrolysis was developed. This allows for the use of a number of functional groups and nonvaporizable molecules. Highly stabilized derivatives were isolated. The molecular orbital properties of various benzothietes were evaluated by density functional methods. The mechanism of the cycloreversion of the four-membered ring was compared to that of the oxygen-containing analogues.
Collapse
Affiliation(s)
| | - Andres R Velarde
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112-0850, United States
| | | | | | | |
Collapse
|
27
|
Lei L, Yao YY, Jiang LJ, Lu X, Liang C, Mo DL. Synthesis of Furo[3,2- b]quinolines and Furo[2,3- b:4,5- b']diquinolines through [4 + 2] Cycloaddition of Aza- o-Quinone Methides and Furans. J Org Chem 2020; 85:3059-3070. [PMID: 31958946 DOI: 10.1021/acs.joc.9b02953] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
An approach for the construction of furo[3,2-b]quinolines and furo[2,3-b:4,5-b']diquinolines is developed through a metal-free [4 + 2] cycloaddition of easily available in situ generated aza-o-quinone methides and furans. The reaction tolerates a wide range of aza-o-quinone methides and substituted furans to afford the corresponding dihydro- or tetrahydrofuroquinolines in good to excellent yields. Mechanistic studies reveal that the reaction involves a concerted [4 + 2] cycloaddition pathway and shows a high regioselectivity of cycloaddition for a furan ring. The present method features mild reaction conditions, dearomatization of furans, high regio- and diastereoselectivity, gram-scalable preparations, and diversity of furoquinolines.
Collapse
Affiliation(s)
- Lu Lei
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Ministry of Science and Technology of China; School of Chemistry & Pharmaceutical Sciences, Guangxi Normal University, 15 Yu Cai Road, Guilin 541004, China
| | - Yi-Yun Yao
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Ministry of Science and Technology of China; School of Chemistry & Pharmaceutical Sciences, Guangxi Normal University, 15 Yu Cai Road, Guilin 541004, China
| | - Li-Juan Jiang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Ministry of Science and Technology of China; School of Chemistry & Pharmaceutical Sciences, Guangxi Normal University, 15 Yu Cai Road, Guilin 541004, China
| | - Xiuqiang Lu
- Fuqing Branch of Fujian Normal University, Fuzhou, Fujian 350300, China
| | - Cui Liang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Ministry of Science and Technology of China; School of Chemistry & Pharmaceutical Sciences, Guangxi Normal University, 15 Yu Cai Road, Guilin 541004, China
| | - Dong-Liang Mo
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Ministry of Science and Technology of China; School of Chemistry & Pharmaceutical Sciences, Guangxi Normal University, 15 Yu Cai Road, Guilin 541004, China
| |
Collapse
|
28
|
Rajkumar S, Tang M, Yang X. Chiral Phosphoric Acid Catalyzed Kinetic Resolution of 2‐Amido Benzyl Alcohols: Asymmetric Synthesis of 4
H
‐3,1‐Benzoxazines. Angew Chem Int Ed Engl 2020; 59:2333-2337. [DOI: 10.1002/anie.201913896] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 11/25/2019] [Indexed: 12/15/2022]
Affiliation(s)
- Subramani Rajkumar
- School of Physical Science and TechnologyShanghaiTech University Shanghai 201210 China
| | - Mengyao Tang
- School of Physical Science and TechnologyShanghaiTech University Shanghai 201210 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Xiaoyu Yang
- School of Physical Science and TechnologyShanghaiTech University Shanghai 201210 China
| |
Collapse
|
29
|
Rajkumar S, Tang M, Yang X. Chiral Phosphoric Acid Catalyzed Kinetic Resolution of 2‐Amido Benzyl Alcohols: Asymmetric Synthesis of 4
H
‐3,1‐Benzoxazines. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201913896] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Subramani Rajkumar
- School of Physical Science and TechnologyShanghaiTech University Shanghai 201210 China
| | - Mengyao Tang
- School of Physical Science and TechnologyShanghaiTech University Shanghai 201210 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Xiaoyu Yang
- School of Physical Science and TechnologyShanghaiTech University Shanghai 201210 China
| |
Collapse
|
30
|
Gharpure SJ, Vishwakarma DS. Lewis Acid Catalyzed Intramolecular [4+2] Cycloaddition of In Situ Generated Aza‐Quinone Methides for the Stereoselective Synthesis of Furo/pyrano[3,2‐
c
]tetrahydroquinolines. European J Org Chem 2019. [DOI: 10.1002/ejoc.201901598] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Santosh J. Gharpure
- Department of Chemistry Indian Institute of Technology Bombay Powai 400076 Mumbai – India
| | | |
Collapse
|
31
|
Gui H, Wu X, Wei Y, Shi M. A Formal Condensation and [4+1] Annulation Reaction of 3‐Isothiocyanato Oxindoles with Aza‐
o
‐Quinone Methides. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201901124] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Hou‐Ze Gui
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, School of Chemistry & Molecular EngineeringEast China University of Science and Technology 130 Mei Long Road Shanghai 200237 People's Republic of China
| | - Xiao‐Yun Wu
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, School of Chemistry & Molecular EngineeringEast China University of Science and Technology 130 Mei Long Road Shanghai 200237 People's Republic of China
| | - Yin Wei
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic ChemistryChinese Academy of Sciences 354 Fenglin Lu Shanghai 200032 People's Republic of China
| | - Min Shi
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, School of Chemistry & Molecular EngineeringEast China University of Science and Technology 130 Mei Long Road Shanghai 200237 People's Republic of China
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic ChemistryChinese Academy of Sciences 354 Fenglin Lu Shanghai 200032 People's Republic of China
- Shenzhen Grubbs InstituteSouthern University of Science and Technology, Shenzhen Guangdong 518000 People's Republic of China
| |
Collapse
|
32
|
Liang D, Rao L, Xiao C, Chen JR. Intermolecular Hetero-Diels–Alder Reactions of Photogenerated aza-ortho-Quinone Methides with Aldehydes. Org Lett 2019; 21:8783-8788. [DOI: 10.1021/acs.orglett.9b03399] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Dong Liang
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticides & Chemical Biology Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei 430079, China
| | - Li Rao
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticides & Chemical Biology Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei 430079, China
| | - Cong Xiao
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticides & Chemical Biology Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei 430079, China
| | - Jia-Rong Chen
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticides & Chemical Biology Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei 430079, China
| |
Collapse
|
33
|
Zheng J, Meng Z, Lu D, Zhao D, Chen Q, Yang W. Michael Addition Reactions of Highly Basic Enolates for the Formation of 2‐(Tosylamino)Dihydrochalcones. ASIAN J ORG CHEM 2019. [DOI: 10.1002/ajoc.201900514] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Jing Zheng
- School of Resources Environmental and Chemical EngineeringNanChang University NanChang 330031 China
| | - Zhongrong Meng
- College of ChemistryNanChang University NanChang 330031 China
| | - Doudou Lu
- School of Resources Environmental and Chemical EngineeringNanChang University NanChang 330031 China
| | - Dongxin Zhao
- School of Resources Environmental and Chemical EngineeringNanChang University NanChang 330031 China
| | - Qinfang Chen
- School of Resources Environmental and Chemical EngineeringNanChang University NanChang 330031 China
| | - Weiran Yang
- School of Resources Environmental and Chemical EngineeringNanChang University NanChang 330031 China
| |
Collapse
|
34
|
Chen M, Qian D, Sun J. Organocatalytic Enantioconvergent Synthesis of Tetrasubstituted Allenes via Asymmetric 1,8-Addition to aza-para-Quinone Methides. Org Lett 2019; 21:8127-8131. [DOI: 10.1021/acs.orglett.9b03224] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Min Chen
- Department of Chemistry and Shenzhen Research Institute, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Deyun Qian
- Department of Chemistry and Shenzhen Research Institute, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Jianwei Sun
- Department of Chemistry and Shenzhen Research Institute, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| |
Collapse
|
35
|
Zhang L, Han Y, Huang A, Zhang P, Li P, Li W. Organocatalytic Remote Stereocontrolled 1,8-Additions of Thiazolones to Propargylic Aza- p-quinone Methides. Org Lett 2019; 21:7415-7419. [PMID: 31486650 DOI: 10.1021/acs.orglett.9b02726] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
A remote stereocontrolled 1,8-conjugate addition of thiazolones to propargylic aza-p-quinone methides formed from propargylic alcohols has been developed with the aid of a chiral phosphoric acid, and this represents the first report on organocatalytic stereocontrolled 1,8-addition of propargylic aza-p-quinone methides. Notably, the remote stereocontrolled activation protocol enables the construction of vicinal sulfur-containing quaternary carbon stereocenters and axially chiral tetrasubstituted allenes and promotes the chemistry of chiral phosphoric acids.
Collapse
Affiliation(s)
- Lili Zhang
- Department of Medicinal Chemistry, School of Pharmacy , Qingdao University , Qingdao 266021 , P. R. China
| | - Yuzhe Han
- Department of Chemistry and Shenzhen Key Laboratory of Marine Archaea Geo-Omics , Southern University of Science and Technology , Shenzhen 518055 , P. R. China
| | - Anqi Huang
- Department of Medicinal Chemistry, School of Pharmacy , Qingdao University , Qingdao 266021 , P. R. China
| | - Pei Zhang
- Department of Medicinal Chemistry, School of Pharmacy , Qingdao University , Qingdao 266021 , P. R. China
| | - Pengfei Li
- Department of Chemistry and Shenzhen Key Laboratory of Marine Archaea Geo-Omics , Southern University of Science and Technology , Shenzhen 518055 , P. R. China
| | - Wenjun Li
- Department of Medicinal Chemistry, School of Pharmacy , Qingdao University , Qingdao 266021 , P. R. China
| |
Collapse
|
36
|
Ukis R, Schneider C. Brønsted Acid-Catalyzed, Diastereo- and Enantioselective, Intramolecular Oxa-Diels-Alder Reaction of ortho-Quinone Methides and Unactivated Dienophiles. J Org Chem 2019; 84:7175-7188. [PMID: 31117571 DOI: 10.1021/acs.joc.9b00860] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A stereoselective, phosphoric acid-catalyzed synthesis of dihydrochromenochromenes has been developed using transient ortho-quinone methides ( o-QMs). Three contiguous stereogenic centers were formed with excellent yields, partially as single diastereomers and with moderate to excellent enantioselectivity. This intramolecular hetero-Diels-Alder reaction features unactivated dienophiles and o-QM precursors tethered by a simple phenoxy linker and furnishes cycloadducts with a prominent structural motif found in many natural products. Through an appropriate choice of dienophile configuration and backbone substitution either exo- or endo-stereoisomers were formed selectively with up to a 96:04 enantiomeric ratio.
Collapse
Affiliation(s)
- Rostyslav Ukis
- Institute of Organic Chemistry , University of Leipzig , Johannisallee 29 , 04103 Leipzig , Germany
| | - Christoph Schneider
- Institute of Organic Chemistry , University of Leipzig , Johannisallee 29 , 04103 Leipzig , Germany
| |
Collapse
|
37
|
Yang GH, Zhao Q, Zhang ZP, Zheng HL, Chen L, Li X. Asymmetric Cycloaddition of ortho-Hydroxyphenyl-Substituted para-Quinone Methides and Enamides Catalyzed by Chiral Phosphoric Acid. J Org Chem 2019; 84:7883-7893. [DOI: 10.1021/acs.joc.9b00749] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Guo-Hui Yang
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Qun Zhao
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Zhi-Pei Zhang
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Han-Liang Zheng
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Li Chen
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Xin Li
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
38
|
Xu C, Feng Y, Li F, Han J, He YM, Fan QH. A Synthetic Route to Chiral Benzo-Fused N-Heterocycles via Sequential Intramolecular Hydroamination and Asymmetric Hydrogenation of Anilino-Alkynes. Organometallics 2019. [DOI: 10.1021/acs.organomet.9b00183] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Cong Xu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences (ICCAS), and University of Chinese Academy of Sciences, Beijing 100190, PR China
| | - Yu Feng
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences (ICCAS), and University of Chinese Academy of Sciences, Beijing 100190, PR China
| | - Faju Li
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences (ICCAS), and University of Chinese Academy of Sciences, Beijing 100190, PR China
| | - Jiahong Han
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences (ICCAS), and University of Chinese Academy of Sciences, Beijing 100190, PR China
| | - Yan-Mei He
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences (ICCAS), and University of Chinese Academy of Sciences, Beijing 100190, PR China
| | - Qing-Hua Fan
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences (ICCAS), and University of Chinese Academy of Sciences, Beijing 100190, PR China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, PR China
| |
Collapse
|
39
|
Ma C, Zhao Y. FeCl 3-catalyzed dimerization/elimination of 1,1-diarylalkenes: efficient synthesis of functionalized 4H-chromenes. Org Biomol Chem 2019; 16:703-706. [PMID: 29327026 DOI: 10.1039/c7ob02941a] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
An efficient synthesis of valuable poly-substituted 4H-chromenes was developed via a [4 + 2] cycloaddition followed by the elimination of 1,1-diarylalkenes. The inexpensive FeCl3 salt has proven to be an efficient catalyst for this transformation. The commercial availability of the catalyst and reagents, together with a convenient procedure, makes this an attractive method for 4H-chromene synthesis.
Collapse
Affiliation(s)
- Chao Ma
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, College of Chemistry and Chemical Engineering, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei University, Wuhan, 430062, P. R. China.
| | | |
Collapse
|
40
|
Nielsen CDT, Mooij WJ, Sale D, Rzepa HS, Burés J, Spivey AC. Reversibility and reactivity in an acid catalyzed cyclocondensation to give furanochromanes - a reaction at the 'oxonium-Prins' vs. ' ortho-quinone methide cycloaddition' mechanistic nexus. Chem Sci 2019; 10:406-412. [PMID: 30713643 PMCID: PMC6334628 DOI: 10.1039/c8sc04302g] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 10/18/2018] [Indexed: 01/23/2023] Open
Abstract
Herein we report a combined experimental and computational investigation of the acid catalyzed cyclocondensation reaction between styrenyl homoallylic alcohols and salicylaldehyde to form furanochromanes. We disclose a previously unreported isomerisation of the 'unnatural' trans-fused products to the diastereomeric 'natural' cis-fused congeners. Notwithstanding the appeal of assuming this corresponds to endo to exo isomerisation of Diels-Alder (D-A) adducts via concerted retro-cycloaddition/cycloaddition reactions of an in situ generated ortho-quinone methide with the styrenyl alkene, our combined Hammett/DFT study reveals a stepwise Prins-like process via discrete benzylic carbocation intermediates for all but the most electron deficient styrenes. As these reactions fortuitously lie at the intersection of these two mechanistic manifolds, it allows us to propose an experimentally determined indicative ρ + value of ca. -3 as marking this nexus between a stepwise Prins-type pathway and a concerted cycloaddition reaction. This value should prove useful for categorising other reactions formally involving 'ortho-quinomethides', without the need for the extensive computation performed here. Logical optimisation of the reaction based upon the mechanistic insight led to the use of HFIP as an additive which enables exclusive formation of 'natural' cis-fused products with a ∼100-fold reaction rate increase and improved scope.
Collapse
Affiliation(s)
- Christian D-T Nielsen
- Department of Chemistry , Imperial College London , Exhibition Road , London , SW7 2AZ , UK .
| | - Wouter J Mooij
- Department of Chemistry , Imperial College London , Exhibition Road , London , SW7 2AZ , UK .
| | - David Sale
- Process Studies Group , Syngenta , Jealott's Hill , Bracknell , Berkshire RG42 6EY , UK
| | - Henry S Rzepa
- Department of Chemistry , Imperial College London , Exhibition Road , London , SW7 2AZ , UK .
| | - Jordi Burés
- School of Chemistry , University of Manchester , Oxford Road , Manchester , M13 9PL , UK
| | - Alan C Spivey
- Department of Chemistry , Imperial College London , Exhibition Road , London , SW7 2AZ , UK .
| |
Collapse
|
41
|
Liu X, Wang K, Guo W, Liu Y, Li C. An organic-base catalyzed asymmetric 1,4-addition of tritylthiol to in situ generated aza-o-quinone methides at the H2O/DCM interface. Chem Commun (Camb) 2019; 55:2668-2671. [DOI: 10.1039/c8cc09382b] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Highly enantioselective organocatalytic Michael addition of tritylthiol to N-o-QM intermediates generated in situ at the H2O/DCM interface is presented.
Collapse
Affiliation(s)
- Xianghui Liu
- State Key Laboratory of Catalysis
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- Dalian 116023
- P. R. China
| | - Kai Wang
- State Key Laboratory of Catalysis
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- Dalian 116023
- P. R. China
| | - Wengang Guo
- State Key Laboratory of Catalysis
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- Dalian 116023
- P. R. China
| | - Yan Liu
- State Key Laboratory of Catalysis
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- Dalian 116023
- P. R. China
| | - Can Li
- State Key Laboratory of Catalysis
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- Dalian 116023
- P. R. China
| |
Collapse
|
42
|
Wu Q, Li GL, Yang S, Shi XQ, Huang TZ, Du XH, Chen Y. A chemo- and regioselective C6-functionalization of 2,3-disubstituted indoles: highly efficient synthesis of diarylindol-6-ylmethanes. Org Biomol Chem 2019; 17:3462-3470. [DOI: 10.1039/c9ob00283a] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
An organocatalytic chemo- and regioselective C6-functionalization of 2,3-disubstituted indoles has been established via a reaction with ortho-hydroxybenzyl alcohols, which afforded biologically important diarylindol-6-ylmethanes in high yields.
Collapse
Affiliation(s)
- Qiong Wu
- School of Chemistry and Chemical Engineering
- Xuzhou University of Technology
- Xuzhou 221018
- China
| | - Gui-Lin Li
- School of Chemistry and Chemical Engineering
- Xuzhou University of Technology
- Xuzhou 221018
- China
| | - Shuang Yang
- School of Chemistry and Chemical Engineering
- Xuzhou University of Technology
- Xuzhou 221018
- China
| | - Xiao-Qin Shi
- School of Chemistry and Chemical Engineering
- Xuzhou University of Technology
- Xuzhou 221018
- China
| | - Tian-Zi Huang
- School of Chemistry and Chemical Engineering
- Xuzhou University of Technology
- Xuzhou 221018
- China
| | - Xi-Hua Du
- School of Chemistry and Chemical Engineering
- Xuzhou University of Technology
- Xuzhou 221018
- China
| | - Yan Chen
- School of Chemistry and Chemical Engineering
- Xuzhou University of Technology
- Xuzhou 221018
- China
| |
Collapse
|
43
|
Bai Z, Tong H, Wang H, Chen G, He G. Synthesis of 2,3-Fused Indoline Aminals via
4 + 2 Cycloaddition of NH-free Benzazetidines with Indoles. CHINESE J CHEM 2018. [DOI: 10.1002/cjoc.201800483] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Zibo Bai
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry; Nankai University; Tianjin 300071 China
| | - Huarong Tong
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry; Nankai University; Tianjin 300071 China
| | - Hao Wang
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry; Nankai University; Tianjin 300071 China
| | - Gong Chen
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry; Nankai University; Tianjin 300071 China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin); Tianjin 300071 China
| | - Gang He
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry; Nankai University; Tianjin 300071 China
| |
Collapse
|
44
|
Hodík T, Schneider C. A Highly Enantio‐ and Diastereoselective Synthesis of Spirocyclic Dihydroquinolones via Domino Michael Addition‐Lactamization of
ortho
‐Quinone Methide Imines. Chemistry 2018; 24:18082-18088. [DOI: 10.1002/chem.201803886] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Indexed: 12/11/2022]
Affiliation(s)
- Tomáš Hodík
- Institut für Organische ChemieUniversität Leipzig Johannisallee 29 04103 Leipzig Germany
| | - Christoph Schneider
- Institut für Organische ChemieUniversität Leipzig Johannisallee 29 04103 Leipzig Germany
| |
Collapse
|
45
|
Gu Z, Wu B, Jiang GF, Zhou YG. Synthesis of Benzofuran-fused 1,4-Dihydropyridines via
Bifunctional Squaramide-catalyzed Formal [4+2] Cycloaddition of Azadienes with Malononitrile. CHINESE J CHEM 2018. [DOI: 10.1002/cjoc.201800330] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Zheng Gu
- College of Chemistry and Chemical Engineering, Hunan University; Changsha Hunan 410082 China
| | - Bo Wu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences; Dalian Liaoning 116023 China
| | - Guo-Fang Jiang
- College of Chemistry and Chemical Engineering, Hunan University; Changsha Hunan 410082 China
| | - Yong-Gui Zhou
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences; Dalian Liaoning 116023 China
| |
Collapse
|
46
|
Critical view on the recent enantioselective synthesis of alcohols, amines and related molecules having tertiary benzylic stereocenter. Tetrahedron 2018. [DOI: 10.1016/j.tet.2018.07.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
47
|
Gualandi A, Rodeghiero G, Cozzi PG. Catalytic Stereoselective SN
1-Type Reactions Promoted by Chiral Phosphoric Acids as Brønsted Acid Catalysts. ASIAN J ORG CHEM 2018. [DOI: 10.1002/ajoc.201800359] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Andrea Gualandi
- Dipartimento di Chimica “G. Ciamician”; ALMA MATER STUDIORUM Università di Bologna; Via Selmi 2 40126 Bologna Italy
| | - Giacomo Rodeghiero
- Dipartimento di Chimica “G. Ciamician”; ALMA MATER STUDIORUM Università di Bologna; Via Selmi 2 40126 Bologna Italy
- Cyanagen Srl; Via Stradelli Guelfi 40/C 40138 Bologna Italy
| | - Pier Giorgio Cozzi
- Dipartimento di Chimica “G. Ciamician”; ALMA MATER STUDIORUM Università di Bologna; Via Selmi 2 40126 Bologna Italy
| |
Collapse
|
48
|
Li X, Song Q. Recent advances in asymmetric reactions catalyzed by chiral phosphoric acids. CHINESE CHEM LETT 2018. [DOI: 10.1016/j.cclet.2018.01.045] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
49
|
Yadagiri D, Chaitanya M, Reddy ACS, Anbarasan P. Rhodium Catalyzed Synthesis of Benzopyrans via Transannulation of N-Sulfonyl-1,2,3-triazoles with 2-Hydroxybenzyl Alcohols. Org Lett 2018; 20:3762-3765. [DOI: 10.1021/acs.orglett.8b01338] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Dongari Yadagiri
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, India
| | - Manthena Chaitanya
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, India
| | | | - Pazhamalai Anbarasan
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, India
| |
Collapse
|
50
|
Liao HH, Hsiao CC, Atodiresei I, Rueping M. Multiple Hydrogen-Bond Activation in Asymmetric Brønsted Acid Catalysis. Chemistry 2018; 24:7718-7723. [DOI: 10.1002/chem.201800677] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Indexed: 12/17/2022]
Affiliation(s)
- Hsuan-Hung Liao
- Institute of Organic Chemistry; RWTH Aachen University; Landoltweg 1 52074 Aachen Germany
| | - Chien-Chi Hsiao
- Institute of Organic Chemistry; RWTH Aachen University; Landoltweg 1 52074 Aachen Germany
| | - Iuliana Atodiresei
- Institute of Organic Chemistry; RWTH Aachen University; Landoltweg 1 52074 Aachen Germany
| | - Magnus Rueping
- Institute of Organic Chemistry; RWTH Aachen University; Landoltweg 1 52074 Aachen Germany
- King Abdullah University of Science and Technology (KAUST); KAUST Catalysis Center (KCC); Thuwal 23955-69 00 Saudi Arabia
| |
Collapse
|