1
|
Lone WI, Rashid A, Bhat BA, Rashid S. Chemoselective oxidation of aromatic aldehydes to carboxylic acids: potassium tert-butoxide as an anomalous source of oxygen. Chem Commun (Camb) 2024; 60:6544-6547. [PMID: 38842029 DOI: 10.1039/d4cc01639d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
Chemoselective oxidation of aromatic and heteroaromatic aldehydes (>45 examples) to their corresponding carboxylic acids has been developed. Potassium tert-butoxide acts as an oxygen source during this transformation that delivers the corresponding acids without chromatographic purifications. The use of bench-top reagents, operational simplicity, and high level of chemo-selectivity with respect to oxidation of the least preferred aldehyde functionality, in the presence of more susceptible functional groups, are some of the highlights of this strategy.
Collapse
Affiliation(s)
- Waseem I Lone
- Natural Products & Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine (IIIM), Jammu, Jammu and Kashmir 180001, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Auqib Rashid
- Natural Products & Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine (IIIM), Jammu, Jammu and Kashmir 180001, India.
- Natural Products & Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Sanat Nagar, Srinagar 190005, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Bilal A Bhat
- Natural Products & Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Sanat Nagar, Srinagar 190005, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Showkat Rashid
- Natural Products & Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine (IIIM), Jammu, Jammu and Kashmir 180001, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| |
Collapse
|
2
|
Peng W, Bao H, Wang Y, Cote E, Sagues WJ, Hagelin-Weaver H, Gao J, Xiao D, Tong Z. Selective Depolymerization of Lignin Towards Isolated Phenolic Acids Under Mild Conditions. CHEMSUSCHEM 2023; 16:e202300750. [PMID: 37419862 DOI: 10.1002/cssc.202300750] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/04/2023] [Accepted: 07/07/2023] [Indexed: 07/09/2023]
Abstract
The selective transformation of lignin to value-added biochemicals (e. g., phenolic acids) in high yields is incredibly challenging due to its structural complexity and many possible reaction pathways. Phenolic acids (PA) are key building blocks for various aromatic polymers, but the isolation of PAs from lignin is below 5 wt.% and requires harsh reaction conditions. Herein, we demonstrate an effective route to selectively convert lignin extracted from sweet sorghum and poplar into isolated PA in a high yield (up to 20 wt.% of lignin) using a low-cost graphene oxide-urea hydrogen peroxide (GO-UHP) catalyst under mild conditions (<120 °C). The lignin conversion yield is up to 95 %, and the remaining low molecular weight organic oils are ready for aviation fuel production to complete lignin utilization. Mechanistic studies demonstrate that pre-acetylation allows the selective depolymerization of lignin to aromatic aldehydes with a decent yield by GO through the Cα activation of β-O-4 cleavage. A urea-hydrogen peroxide (UHP) oxidative process is followed to transform aldehydes in the depolymerized product to PAs by avoiding the undesired Dakin side reaction due to the electron-withdrawing effect of the acetyl group. This study opens a new way to selectively cleave lignin side chains to isolated biochemicals under mild conditions.
Collapse
Affiliation(s)
- Wenbo Peng
- School of Chemical & Biomolecular Engineering Renewable Bioproduct Institute, Georgia Institute of Technology, Atlanta, GA 30318, USA
| | - Hanxi Bao
- Department of Agricultural and Biological Engineering, Institute of Food and Agricultural Sciences (IFAS), University of Florida, Raleigh, NC 27695, USA
| | - Yigui Wang
- Center for Integrative Materials Discovery, Department of Chemistry and Chemical Engineering, University of New Haven, West Haven, CT 06516, USA
| | - Elizabeth Cote
- Center for Integrative Materials Discovery, Department of Chemistry and Chemical Engineering, University of New Haven, West Haven, CT 06516, USA
| | - William J Sagues
- Department of Biological & Agricultural Engineering, North Carolina State University, Raleigh, NC 27695, USA
| | - Halena Hagelin-Weaver
- Department of Chemical Engineering, University of Florida, Gainesville, FL 32611, USA
| | - Ji Gao
- School of Chemical & Biomolecular Engineering Renewable Bioproduct Institute, Georgia Institute of Technology, Atlanta, GA 30318, USA
| | - Dequan Xiao
- Center for Integrative Materials Discovery, Department of Chemistry and Chemical Engineering, University of New Haven, West Haven, CT 06516, USA
| | - Zhaohui Tong
- School of Chemical & Biomolecular Engineering Renewable Bioproduct Institute, Georgia Institute of Technology, Atlanta, GA 30318, USA
| |
Collapse
|
3
|
Czieszowic Ł, Orlińska B, Lisicki D, Pankalla E. Efficient Synthesis of 2-Ethylhexanoic Acid via N-Hydroxyphthalimide Catalyzed Oxidation of 2-Ethylhexanal with Oxygen. MATERIALS (BASEL, SWITZERLAND) 2023; 16:5778. [PMID: 37687471 PMCID: PMC10489149 DOI: 10.3390/ma16175778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/17/2023] [Accepted: 08/19/2023] [Indexed: 09/10/2023]
Abstract
An efficient method for the synthesis of 2-ethylhexanoic acid has been reported. The method involves the 2-ethylhexanal oxidation using oxygen or air in the presence of N-hydroxyphthalimide in isobutanol as a solvent under mild conditions. A high selectivity of >99% for 2-ethylhexanoic acid was achieved. The influence of catalyst amount, solvent type and quantity, temperature, and reaction time on the product composition was studied. The developed method is in line with the global trends aimed at developing green oxidation processes as well as having potential for implementation in industry due to its high selectivity, cost-effective oxidizing agent, and mild reaction conditions. The use of isobutanol as a solvent is of crucial importance providing an opportunity for potential producers of 2-EHAL from butanal to employ the less valuable alcohol.
Collapse
Affiliation(s)
- Łukasz Czieszowic
- Grupa Azoty Zakłady Azotowe-Kędzierzyn-S.A., Mostowa 30A, 47-220 Kędzierzyn-Koźle, Poland
- Department of Chemical Organic Technology and Petrochemistry and PhD School, Silesian University of Technology, Akademicka 2A, 44-100 Gliwice, Poland
| | - Beata Orlińska
- Department of Chemical Organic Technology and Petrochemistry and PhD School, Silesian University of Technology, Akademicka 2A, 44-100 Gliwice, Poland
| | - Dawid Lisicki
- Department of Chemical Organic Technology and Petrochemistry and PhD School, Silesian University of Technology, Akademicka 2A, 44-100 Gliwice, Poland
| | - Ewa Pankalla
- Grupa Azoty Zakłady Azotowe-Kędzierzyn-S.A., Mostowa 30A, 47-220 Kędzierzyn-Koźle, Poland
| |
Collapse
|
4
|
Liu M, Dyson PJ. Direct conversion of lignin to functionalized diaryl ethers via oxidative cross-coupling. Nat Commun 2023; 14:2830. [PMID: 37217549 DOI: 10.1038/s41467-023-38534-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 05/03/2023] [Indexed: 05/24/2023] Open
Abstract
Efficient valorization of lignin, a sustainable source of functionalized aromatic products, would reduce dependence on fossil-derived feedstocks. Oxidative depolymerization is frequently applied to lignin to generate phenolic monomers. However, due to the instability of phenolic intermediates, repolymerization and dearylation reactions lead to low selectivity and product yields. Here, a highly efficient strategy to extract the aromatic monomers from lignin affording functionalized diaryl ethers using oxidative cross-coupling reactions is described, which overcomes the limitations of oxidative methods and affords high-value specialty chemicals. Reaction of phenylboronic acids with lignin converts the reactive phenolic intermediates into stable diaryl ether products in near-theoretical maximum yields (92% for beech lignin and 95% for poplar lignin based on the content of β-O-4 linkages). This strategy suppresses side reactions typically encountered in oxidative depolymerization reactions of lignin and provides a new approach for the direct transformation of lignin into valuable functionalized diaryl ethers, including key intermediates in pharmaceutical and natural product synthesis.
Collapse
Affiliation(s)
- Mingyang Liu
- Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Paul J Dyson
- Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland.
| |
Collapse
|
5
|
Jeong D, Kim H, Cho J. Oxidation of Aldehydes into Carboxylic Acids by a Mononuclear Manganese(III) Iodosylbenzene Complex through Electrophilic C-H Bond Activation. J Am Chem Soc 2023; 145:888-897. [PMID: 36598425 DOI: 10.1021/jacs.2c09274] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The oxidation of aldehyde is one of the fundamental reactions in the biological system. Various synthetic procedures and catalysts have been developed to convert aldehydes into corresponding carboxylic acids efficiently under ambient conditions. In this work, we report the oxidation of aldehydes by a mononuclear manganese(III) iodosylbenzene complex, [MnIII(TBDAP)(OIPh)(OH)]2+ (1), with kinetic and mechanistic studies in detail. The reaction of 1 with aldehydes resulted in the formation of corresponding carboxylic acids via a pre-equilibrium state. Hammett plot and reaction rates of 1 with 1°-, 2°-, and 3°-aldehydes revealed the electrophilicity of 1 in the aldehyde oxidation. A kinetic isotope effect experiment and reactivity of 1 toward cyclohexanecarboxaldehyde (CCA) analogues indicate that the reaction of 1 with aldehyde occurs through the rate-determining C-H bond activation at the formyl group. The reaction rate of 1 with CCA is correlated to the bond dissociation energy of the formyl group plotting a linear correlation with other aliphatic C-H bonds. Density functional theory calculations found that 1 electrostatically interacts with CCA at the pre-equilibrium state in which the C-H bond activation of the formyl group is performed as the most feasible pathway. Surprisingly, the rate-determining step is characterized as hydride transfer from CCA to 1, affording an (oxo)methylium intermediate. At the fundamental level, it is revealed that the hydride transfer is composed of H atom abstraction followed by a fast electron transfer. Catalytic reactions of aldehydes by 1 are also presented with a broad substrate scope. This novel mechanistic study gives better insights into the metal oxygen chemistry and would be prominently valuable for development of transition metal catalysts.
Collapse
Affiliation(s)
- Donghyun Jeong
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan44919, Republic of Korea
| | - Hyokyung Kim
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan44919, Republic of Korea
| | - Jaeheung Cho
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan44919, Republic of Korea.,Graduate School of Carbon Neutrality, Ulsan National Institute of Science and Technology (UNIST), Ulsan44919, Republic of Korea
| |
Collapse
|
6
|
Nagy BS, Kappe CO, Ötvös SB. N
‐Hydroxyphthalimide Catalyzed Aerobic Oxidation of Aldehydes under Continuous Flow Conditions. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200124] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Bence S. Nagy
- Institute of Chemistry University of Graz NAWI Graz Heinrichstrasse 28 A-8010 Graz Austria
| | - C. Oliver Kappe
- Institute of Chemistry University of Graz NAWI Graz Heinrichstrasse 28 A-8010 Graz Austria
- Center for Continuous Flow Synthesis and Processing (CC FLOW) Research Center Pharmaceutical Engineering GmbH (RCPE) Inffeldgasse 13 A-8010 Graz Austria
| | - Sándor B. Ötvös
- Institute of Chemistry University of Graz NAWI Graz Heinrichstrasse 28 A-8010 Graz Austria
- Center for Continuous Flow Synthesis and Processing (CC FLOW) Research Center Pharmaceutical Engineering GmbH (RCPE) Inffeldgasse 13 A-8010 Graz Austria
| |
Collapse
|
7
|
Mishra S, Kumar S, Bhandari A, Das A, Mondal P, Hundal G, Olmstead MM, Patra AK. Reactivity of Nitric Oxide and Nitrosonium Ion with Copper(II/I) Schiff Base Complexes: Mechanistic Aspects of Imine C═N Bond Cleavage and Oxidation of Pyridine-2-aldehyde to Pyridine-2-carboxylic Acid. Inorg Chem 2022; 61:6421-6437. [PMID: 35451813 DOI: 10.1021/acs.inorgchem.1c04038] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Four Schiff base ligands of the general formulas [6-(R)-2-pyridyl-N-(2'-methylthiophenyl)methylenimine] (RL1) and 6-p-chlorophenyl-2-pyridyl-N-(2'-phenylthiophenyl)methylenimine (RL2), where R = H, Me, p-ClPh, and their bis-ligand copper(II) and copper(I) complexes, 1-4 and 1'-4', respectively, were synthesized and characterized. The reactivities of 1-4 with nitric oxide (NO) gas and of 1'-4' with solid NOBF4 (NO+) were examined in dry acetonitrile in the presence and absence of water (H2O). The results revealed that, in the absence of H2O, complexes 1-4 (or 1'-4') reacts with NO (or NOBF4), leading to imine C═N bond cleavage of both (or one) Schiff base(s) that generates 2 (or 1) equiv of 2-(methyl/phenyl)thiobenzenediazonium perchlorates (5/6) and the corresponding picolaldehyde (RPial) via a copper nitrosyl of a {CuNO}10-type intermediate. In the presence of H2O, the in situ formed RPial get oxidized to the corresponding picolinic acid (RPicH) via an in situ formed LCuIOH intermediate (LCuI + HO-NO → LCuIOH + NO+; L = RL1/RL2/RPic- and νO-H of CuIOH = 3650 cm-1) and subsequently produces, with the aid of NO+ oxidant, the picolinate-ligated copper(II) complexes (i) [(HPic)2Cu] (7), [(MePic)4Cu3(NO3)2]n·H2O (8·H2O), or [(ClPhPic)2Cu] (9) when NO reacts with 1-4 or (ii) [(RPic)CuII(RL1/RL2)]+ when NO+ reacts with 1'-4'. The CuII to CuI reduction of [(RPic)CuII(RL1/RL2)]+ is essential for C═N cleavage of the remaining RL1/RL2 Schiff base; excess NO can do it. The X-ray structures (1, 1', 3', 5, 7, and 8) and spectroscopic results revealed the role of CuII/I, NO, NO+, and H2O, shedding light on the mechanism of C═N bond cleavage and the oxidation of pyridine-2-aldehyde to pyridine-2-carboxylic acid. The reaction of 1 with 15NO revealed that the terminal N of the N2+ group of 5 originates from 15NO [ν14N14N- = 2248 cm-1 and ν15N14N- = 2212 cm-1].
Collapse
Affiliation(s)
- Saikat Mishra
- Department of Chemistry, National Institute of Technology Durgapur, Mahatma Gandhi Avenue, Durgapur 713209, West Bengal, India
| | - Shibaditya Kumar
- Department of Chemistry, National Institute of Technology Durgapur, Mahatma Gandhi Avenue, Durgapur 713209, West Bengal, India
| | - Anirban Bhandari
- Department of Chemistry, National Institute of Technology Durgapur, Mahatma Gandhi Avenue, Durgapur 713209, West Bengal, India
| | - Aniruddha Das
- Department of Chemistry, National Institute of Technology Durgapur, Mahatma Gandhi Avenue, Durgapur 713209, West Bengal, India
| | - Pallav Mondal
- Department of Chemistry, National Institute of Technology Durgapur, Mahatma Gandhi Avenue, Durgapur 713209, West Bengal, India
| | - Geeta Hundal
- Department of Chemistry, Guru Nanak Dev University, Amritsar 143005, Punjab, India
| | - Marilyn M Olmstead
- Department of Chemistry, University of California─Davis, Davis, California 95616, United States
| | - Apurba K Patra
- Department of Chemistry, National Institute of Technology Durgapur, Mahatma Gandhi Avenue, Durgapur 713209, West Bengal, India
| |
Collapse
|
8
|
Wang Z, Zhao B, Liu Y, Wan J. Recent Advances in Reactions Using Enaminone in Water or Aqueous Medium. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200144] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Zhouying Wang
- College of Chemistry and Chemical Engineering Jiangxi Normal University Nanchang 330022 People's Republic of China
| | - Baoli Zhao
- Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process Shaoxing University Shaoxing Zhejiang 312000 People's Republic of China
| | - Yunyun Liu
- College of Chemistry and Chemical Engineering Jiangxi Normal University Nanchang 330022 People's Republic of China
| | - Jie‐Ping Wan
- College of Chemistry and Chemical Engineering Jiangxi Normal University Nanchang 330022 People's Republic of China
| |
Collapse
|
9
|
Wang Z, Qin Y, Huang H, Li G, Xu Y, Jin P, Peng B, Zhao Y. Solvent Effect on Product Distribution in the Aerobic Autoxidation of 2-Ethylhexanal: Critical Role of Polarity. Front Chem 2022; 10:855843. [PMID: 35402373 PMCID: PMC8989829 DOI: 10.3389/fchem.2022.855843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 03/11/2022] [Indexed: 11/13/2022] Open
Abstract
In the aerobic oxidation of aldehydes to acids, how the solvent affect the reaction remains unclear. Herein, the solvent effect in the oxidation of 2-ethylhexanal (2-ETH) to 2-ethylhexanoic acid (2-ETA) was systematically investigated. The vastly different product distributions were observed which could be ascribed to the dominant intermolecular forces. Though strong intermolecular forces in protic solvents limit the oxidation, the optimal 2-ETA yield (96%) was obtained in ipropanol via gradually evaporating the solvent to remove the interactions. Theoretical calculations further revealed that the hydrogen bonds between reactant and protic solvent increase the C-H bond energy (-CHO in 2-ETH). Meanwhile, the hydrogen bonds may improve 2-ETA selectivity by promoting H transfer in the oxidation rearrangement step. Our work discloses the critical role of polarity in determining the reactivity and selectivity of 2-ETH oxidation, and could guide the rational design of more desirable reaction processes with solvent effect.
Collapse
Affiliation(s)
- Zheng Wang
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Yitong Qin
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Huijiang Huang
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Guobing Li
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Yan Xu
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Peng Jin
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin, China
- *Correspondence: Peng Jin, ; Bo Peng, ; Yujun Zhao,
| | - Bo Peng
- SINOPEC Research Institute of Petroleum Processing, Beijing, China
- *Correspondence: Peng Jin, ; Bo Peng, ; Yujun Zhao,
| | - Yujun Zhao
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
- *Correspondence: Peng Jin, ; Bo Peng, ; Yujun Zhao,
| |
Collapse
|
10
|
Biomass to drugs: Green production of salicylic acid from 2-furoic acid in two steps. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
11
|
Acceptorless Dehydrogenation of Primary Alcohols to Carboxylic Acids by Self-Supported NHC-Ru Single-Site Catalysts. J Catal 2022. [DOI: 10.1016/j.jcat.2022.02.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
12
|
Vanoye L, Favre-Réguillon A. Mechanistic Insights into the Aerobic Oxidation of Aldehydes: Evidence of Multiple Reaction Pathways during the Liquid Phase Oxidation of 2-Ethylhexanal. Org Process Res Dev 2022. [DOI: 10.1021/acs.oprd.1c00399] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Laurent Vanoye
- Université Lyon, Catalyse Polymérisation Procédés & Matériaux (CP2M), UMR 5128 CNRS − CPE Lyon, 43 boulevard du 11 novembre 1918, F-69100 Villeurbanne, France
| | - Alain Favre-Réguillon
- Université Lyon, Catalyse Polymérisation Procédés & Matériaux (CP2M), UMR 5128 CNRS − CPE Lyon, 43 boulevard du 11 novembre 1918, F-69100 Villeurbanne, France
- Conservatoire National des Arts et Métiers, EPN 7, 2 rue Conté, 75003 Paris, France
| |
Collapse
|
13
|
Xu S, Zhang X, Xiong W, Li P, Ma W, Hu X, Wu Y. Aerobic oxidation of aldehydes to acids in water with cyclic (alkyl)(amino)carbene copper under mild conditions. Chem Commun (Camb) 2021; 58:2132-2135. [PMID: 34704994 DOI: 10.1039/d1cc04812k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this work, cyclic (alkyl)(amino)carbene copper ((CAAC)Cu) catalyzed aerobic oxidation of aldehydes in water at room temperature has been reported. Good to excellent yields were obtained using different substrates. A possible reaction mechanism was proposed, in which (CAAC)Cu dioxygen activates the C-H bond of aldehyde with a low barrier of 10.6 kcal mol-1.
Collapse
Affiliation(s)
- Songbo Xu
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China. .,Shandong Kanbo Biochemical Technology Co., Ltd, Dongying, 257400, P. R. China
| | - Xiaomin Zhang
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China. .,Yuxiu Postdoctoral Institute, Nanjing University, Nanjing 210023, P. R. China
| | - Wenjie Xiong
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China.
| | - Ping Li
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China.
| | - Wentao Ma
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China.
| | - Xingbang Hu
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China. .,Yuxiu Postdoctoral Institute, Nanjing University, Nanjing 210023, P. R. China
| | - Youting Wu
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China. .,Yuxiu Postdoctoral Institute, Nanjing University, Nanjing 210023, P. R. China
| |
Collapse
|
14
|
Saini P, Krishnan A, Yadav D, Hazra S, Elias AJ. External Catalyst‐Free Oxidation of Benzyl Halides to Benzoic Acids Using NaOH/TBHP in Water. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100390] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Parul Saini
- Department of Chemistry Indian Institute of Technology Delhi, Hauz Khas New Delhi 110016 India
| | - Anandhu Krishnan
- Department of Chemistry Indian Institute of Technology Delhi, Hauz Khas New Delhi 110016 India
| | - Deepak Yadav
- Department of Chemistry Indian Institute of Technology Delhi, Hauz Khas New Delhi 110016 India
| | - Susanta Hazra
- Department of Chemistry Indian Institute of Technology Delhi, Hauz Khas New Delhi 110016 India
| | - Anil J. Elias
- Department of Chemistry Indian Institute of Technology Delhi, Hauz Khas New Delhi 110016 India
| |
Collapse
|
15
|
Highly efficient, recyclable and alternative method of synthesizing phenols from phenylboronic acids using non-endangered metal: Samarium oxide. INORG CHEM COMMUN 2021. [DOI: 10.1016/j.inoche.2021.108749] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
16
|
Huang Z, Xu Z, Liu X, Zhao Y, Wang P, Liu Z, Sun W. A novel copper framework with amino tridentate N‐donor ligand as heterogeneous catalyst for ring opening of epoxides. Appl Organomet Chem 2021. [DOI: 10.1002/aoc.6262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Zi‐Qing Huang
- Coordination Chemistry Institute, State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing National Laboratory of Microstructures, Collaborative Innovation Center of Advanced Microstructures Nanjing University Nanjing China
| | - Zou‐Hong Xu
- Coordination Chemistry Institute, State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing National Laboratory of Microstructures, Collaborative Innovation Center of Advanced Microstructures Nanjing University Nanjing China
| | - Xiao‐Hui Liu
- Coordination Chemistry Institute, State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing National Laboratory of Microstructures, Collaborative Innovation Center of Advanced Microstructures Nanjing University Nanjing China
| | - Yue Zhao
- Coordination Chemistry Institute, State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing National Laboratory of Microstructures, Collaborative Innovation Center of Advanced Microstructures Nanjing University Nanjing China
| | - Peng Wang
- Coordination Chemistry Institute, State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing National Laboratory of Microstructures, Collaborative Innovation Center of Advanced Microstructures Nanjing University Nanjing China
| | - Zhi‐Qiang Liu
- Coordination Chemistry Institute, State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing National Laboratory of Microstructures, Collaborative Innovation Center of Advanced Microstructures Nanjing University Nanjing China
- School of Chemistry and Chemical Engineering, Anhui Key Laboratory of Functional Coordination Compounds Anqing Normal University Anqing China
| | - Wei‐Yin Sun
- Coordination Chemistry Institute, State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing National Laboratory of Microstructures, Collaborative Innovation Center of Advanced Microstructures Nanjing University Nanjing China
| |
Collapse
|
17
|
Luo J, Fu Q. Aldehyde‐Directed C(
sp
2
)−H Functionalization under Transition‐Metal Catalysis. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100325] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Junfei Luo
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province School of Materials Science and Chemical Engineering Ningbo University Ningbo 315211 P. R. China
| | - Qiang Fu
- School of Pharmacy Southwest Medical University Luzhou 610041 P. R. China
- Department of Pharmacy The Affiliated Hospital of Southwest Medical University Luzhou 646000 P. R. China
| |
Collapse
|
18
|
Mittal R, Kumar A, Awasthi SK. Practical scale up synthesis of carboxylic acids and their bioisosteres 5-substituted-1 H-tetrazoles catalyzed by a graphene oxide-based solid acid carbocatalyst. RSC Adv 2021; 11:11166-11176. [PMID: 35423636 PMCID: PMC8695831 DOI: 10.1039/d1ra01053k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 02/26/2021] [Indexed: 12/25/2022] Open
Abstract
Herein, catalytic application of a metal-free sulfonic acid functionalized reduced graphene oxide (SA-rGO) material is reported for the synthesis of both carboxylic acids and their bioisosteres, 5-substituted-1H-tetrazoles. SA-rGO as a catalytic material incorporates the intriguing properties of graphene oxide material with additional benefits of highly acidic sites due to sulfonic acid groups. The oxidation of aldehydes to carboxylic acids could be efficiently achieved using H2O2 as a green oxidant with high TOF values (9.06-9.89 h-1). The 5-substituted-1H-tetrazoles could also be effectively synthesized with high TOF values (12.08-16.96 h-1). The synthesis of 5-substituted-1H-tetrazoles was corroborated by single crystal X-ray analysis and computational calculations of the proposed reaction mechanism which correlated well with experimental findings. Both of the reactions could be performed efficiently at gram scale (10 g) using the SA-rGO catalyst. SA-rGO displays eminent reusability up to eight runs without significant decrease in its productivity. Thus, these features make SA-rGO riveting from an industrial perspective.
Collapse
Affiliation(s)
- Rupali Mittal
- Chemical Biology Laboratory, Department of Chemistry, University of Delhi Delhi-110007 India
| | - Amit Kumar
- Department of Chemistry, Jamia Millia Islamia Jamia Nagar New Delhi-110025 India
| | - Satish Kumar Awasthi
- Chemical Biology Laboratory, Department of Chemistry, University of Delhi Delhi-110007 India
| |
Collapse
|
19
|
Li P, Zhang T, Mushtaq MA, Wu S, Xiang X, Yan D. Research Progress in Organic Synthesis by Means of Photoelectrocatalysis. CHEM REC 2021; 21:841-857. [PMID: 33656241 DOI: 10.1002/tcr.202000186] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 02/17/2021] [Accepted: 02/17/2021] [Indexed: 01/20/2023]
Abstract
The rapid development of radical chemistry has spurred several innovative strategies for organic synthesis. The novel approaches for organic synthesis play a critical role in promoting and regulating the single-electron redox activity. Among them, photoelectrocatalysis (PEC) has attained considerable attention as the most promising strategy to convert organic compounds into fine chemicals. This review highlights the current progress in organic synthesis through PEC, including various catalytic reactions, catalyst systems and practical applications. The numerous catalytic reactions suffer the high overpotential and poor conversion efficiency, depending on the design of electrolyzers and the reaction mechanisms. We also considered the recent developments with special emphasis on scientific problems and efficient solutions, which enhance accessibility to utilize and further develop the photoelectrocatalytic technology for the specific chemical bonds formation and the fabrication of numerous catalytic systems.
Collapse
Affiliation(s)
- Pengyan Li
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, and Key Laboratory of Radiopharmaceuticals, Ministry of Education, Beijing Normal University, Beijing, 100875, P. R. China
| | - Tingting Zhang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Muhammad Asim Mushtaq
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Siqin Wu
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, and Key Laboratory of Radiopharmaceuticals, Ministry of Education, Beijing Normal University, Beijing, 100875, P. R. China
| | - Xu Xiang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Dongpeng Yan
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, and Key Laboratory of Radiopharmaceuticals, Ministry of Education, Beijing Normal University, Beijing, 100875, P. R. China.,College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou, 450001, P. R. China
| |
Collapse
|
20
|
Yu M, Wu C, Zhou L, Zhu L, Yao X. Aerobic Oxidation of Aldehydes to Carboxylic Acids Catalyzed by Recyclable Ag/C3N4 Catalyst. LETT ORG CHEM 2021. [DOI: 10.2174/1570178617999200807210137] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The oxidation of aldehydes is an efficient methodology for the synthesis of carboxylic acids. Herein we hope to report a simple, efficient and recyclable protocol for aerobic oxidation of aldehydes to carboxylic acid by using C3N4 supported silver nanoparticles (Ag/3N4) as a catalyst in aqueous solution under mild conditions. Under standard conditions, the corresponding carboxylic acids can be obtained in good to excellent yields. In addition, Ag/C3N4 is convenient for recovery and could be reused three times with satisfactory yields.
Collapse
Affiliation(s)
- Min Yu
- College of Material Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016,China
| | - Chaolong Wu
- College of Material Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016,China
| | - Li Zhou
- College of Material Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016,China
| | - Li Zhu
- School of Pharmacy, Nanjing Medical University, Nanjing 210029,China
| | - Xiaoquan Yao
- College of Material Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016,China
| |
Collapse
|
21
|
Wang T, Zhou Y, Xu Y, Cheng GJ. Computational exploration of copper catalyzed vinylogous aerobic oxidation of unsaturated compounds. Sci Rep 2021; 11:1304. [PMID: 33446723 PMCID: PMC7809353 DOI: 10.1038/s41598-020-80188-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 12/09/2020] [Indexed: 11/23/2022] Open
Abstract
Selective oxidation is one of the most important and challenging transformations in both academic research and chemical industry. Recently, a highly selective and efficient way to synthesize biologically active γ-hydroxy-α,β-unsaturated molecules from Cu-catalyzed vinylogous aerobic oxidation of α,β- and β,γ-unsaturated compounds has been developed. However, the detailed reaction mechanism remains elusive. Herein, we report a density functional theory study on this Cu-catalyzed vinylogous aerobic oxidation of γ,γ-disubstituted α,β- and β,γ-unsaturated isomers. Our computational study unveils detailed mechanism for each elementary step, i.e. deprotonation, O2 activation, and reduction. Besides, the origin of regioselectivity, divergent reactivities of substrates as well as reducing agents, and the byproduct generation have also been investigated. Notably, the copper catalyst retains the + 2 oxidation state through the whole catalytic cycle and plays essential roles in multiple steps. These findings would provide hints on mechanistic studies and future development of transition metal-catalyzed aerobic oxidation reactions.
Collapse
Affiliation(s)
- Ting Wang
- Warshel Institute for Computational Biology, Shenzhen Key Laboratory of Steroid Drug Development, School of Life and Health Sciences, The Chinese University of Hong Kong (Shenzhen), Shenzhen, 518172, China
| | - Yu Zhou
- Warshel Institute for Computational Biology, Shenzhen Key Laboratory of Steroid Drug Development, School of Life and Health Sciences, The Chinese University of Hong Kong (Shenzhen), Shenzhen, 518172, China
- School of Life Sciences, University of Science and Technology of China, Hefei, 230027, Anhui, China
| | - Yao Xu
- Warshel Institute for Computational Biology, Shenzhen Key Laboratory of Steroid Drug Development, School of Life and Health Sciences, The Chinese University of Hong Kong (Shenzhen), Shenzhen, 518172, China
- School of Life Sciences, University of Science and Technology of China, Hefei, 230027, Anhui, China
| | - Gui-Juan Cheng
- Warshel Institute for Computational Biology, Shenzhen Key Laboratory of Steroid Drug Development, School of Life and Health Sciences, The Chinese University of Hong Kong (Shenzhen), Shenzhen, 518172, China.
| |
Collapse
|
22
|
Troiano D, Orsat V, Dumont MJ. Status of Biocatalysis in the Production of 2,5-Furandicarboxylic Acid. ACS Catal 2020. [DOI: 10.1021/acscatal.0c02378] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Derek Troiano
- Bioresource Engineering Department, McGill University, Ste-Anne-de-Bellevue, Quebec H9X 3V9, Canada
| | - Valérie Orsat
- Bioresource Engineering Department, McGill University, Ste-Anne-de-Bellevue, Quebec H9X 3V9, Canada
| | - Marie-Josée Dumont
- Bioresource Engineering Department, McGill University, Ste-Anne-de-Bellevue, Quebec H9X 3V9, Canada
| |
Collapse
|
23
|
Cu(II) and magnetite nanoparticles decorated melamine-functionalized chitosan: A synergistic multifunctional catalyst for sustainable cascade oxidation of benzyl alcohols/Knoevenagel condensation. Sci Rep 2019; 9:17758. [PMID: 31780721 PMCID: PMC6883033 DOI: 10.1038/s41598-019-53765-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 11/04/2019] [Indexed: 01/07/2023] Open
Abstract
The uniform decoration of Cu(II) species and magnetic nanoparticles on the melamine-functionalized chitosan afforded a new supramolecular biopolymeric nanocomposite (Cs-Pr-Me-Cu(II)-Fe3O4). The morphology, structure, and catalytic activity of the Cs-Pr-Me-Cu(II)-Fe3O4 nanocomposite have been systematically investigated. It was found that Cs-Pr-Me-Cu(II)-Fe3O4 nanocomposite can smoothly promote environmentally benign oxidation of different benzyl alcohol derivatives by tert-butyl hydroperoxide (TBHP) to their corresponding benzaldehydes and subsequent Knoevenagel condensation with malononitrile, as a multifunctional catalyst. Interestingly, Fe3O4 nanoparticles enhance the catalytic activity of Cu(II) species. The corresponding benzylidenemalononitriles were formed in high to excellent yields at ambient pressure and temperature. The heterogeneous Cs-Pr-Me-Cu(II)-Fe3O4 catalyst was also very stable with almost no leaching of the Cu(II) species into the reaction medium and could be easily recovered by an external magnet. The recycled Cs-Pr-Me-Cu(II)-Fe3O4 was reused at least four times with slight loss of its activity. This is a successful example of the combination of chemo- and bio-drived materials catalysis for mimicing biocatalysis as well as sustainable and one pot multistep synthesis.
Collapse
|
24
|
Liu M, Zhang Z, Song J, Liu S, Liu H, Han B. Nitrogen Dioxide Catalyzed Aerobic Oxidative Cleavage of C(OH)–C Bonds of Secondary Alcohols to Produce Acids. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201908788] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Mingyang Liu
- Beijing National Laboratory for Molecular SciencesKey Laboratory of Colloid and Interface and ThermodynamicsCAS Research/Education Center for Excellence in Molecular SciencesInstitute of ChemistryChinese Academy of Sciences Zhongguancun North First Street 2 100190 Beijing P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
- Physical Science LaboratoryHuairou National Comprehensive Science Center No. 5 Yanqi East Second Street Beijing 101400 China
| | - Zhanrong Zhang
- Beijing National Laboratory for Molecular SciencesKey Laboratory of Colloid and Interface and ThermodynamicsCAS Research/Education Center for Excellence in Molecular SciencesInstitute of ChemistryChinese Academy of Sciences Zhongguancun North First Street 2 100190 Beijing P. R. China
| | - Jinliang Song
- Beijing National Laboratory for Molecular SciencesKey Laboratory of Colloid and Interface and ThermodynamicsCAS Research/Education Center for Excellence in Molecular SciencesInstitute of ChemistryChinese Academy of Sciences Zhongguancun North First Street 2 100190 Beijing P. R. China
- Physical Science LaboratoryHuairou National Comprehensive Science Center No. 5 Yanqi East Second Street Beijing 101400 China
| | - Shuaishuai Liu
- Beijing National Laboratory for Molecular SciencesKey Laboratory of Colloid and Interface and ThermodynamicsCAS Research/Education Center for Excellence in Molecular SciencesInstitute of ChemistryChinese Academy of Sciences Zhongguancun North First Street 2 100190 Beijing P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
- Physical Science LaboratoryHuairou National Comprehensive Science Center No. 5 Yanqi East Second Street Beijing 101400 China
| | - Huizhen Liu
- Beijing National Laboratory for Molecular SciencesKey Laboratory of Colloid and Interface and ThermodynamicsCAS Research/Education Center for Excellence in Molecular SciencesInstitute of ChemistryChinese Academy of Sciences Zhongguancun North First Street 2 100190 Beijing P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
- Physical Science LaboratoryHuairou National Comprehensive Science Center No. 5 Yanqi East Second Street Beijing 101400 China
| | - Buxing Han
- Beijing National Laboratory for Molecular SciencesKey Laboratory of Colloid and Interface and ThermodynamicsCAS Research/Education Center for Excellence in Molecular SciencesInstitute of ChemistryChinese Academy of Sciences Zhongguancun North First Street 2 100190 Beijing P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
- Physical Science LaboratoryHuairou National Comprehensive Science Center No. 5 Yanqi East Second Street Beijing 101400 China
| |
Collapse
|
25
|
Liu M, Zhang Z, Song J, Liu S, Liu H, Han B. Nitrogen Dioxide Catalyzed Aerobic Oxidative Cleavage of C(OH)–C Bonds of Secondary Alcohols to Produce Acids. Angew Chem Int Ed Engl 2019; 58:17393-17398. [DOI: 10.1002/anie.201908788] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 09/05/2019] [Indexed: 02/05/2023]
Affiliation(s)
- Mingyang Liu
- Beijing National Laboratory for Molecular SciencesKey Laboratory of Colloid and Interface and ThermodynamicsCAS Research/Education Center for Excellence in Molecular SciencesInstitute of ChemistryChinese Academy of Sciences Zhongguancun North First Street 2 100190 Beijing P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
- Physical Science LaboratoryHuairou National Comprehensive Science Center No. 5 Yanqi East Second Street Beijing 101400 China
| | - Zhanrong Zhang
- Beijing National Laboratory for Molecular SciencesKey Laboratory of Colloid and Interface and ThermodynamicsCAS Research/Education Center for Excellence in Molecular SciencesInstitute of ChemistryChinese Academy of Sciences Zhongguancun North First Street 2 100190 Beijing P. R. China
| | - Jinliang Song
- Beijing National Laboratory for Molecular SciencesKey Laboratory of Colloid and Interface and ThermodynamicsCAS Research/Education Center for Excellence in Molecular SciencesInstitute of ChemistryChinese Academy of Sciences Zhongguancun North First Street 2 100190 Beijing P. R. China
- Physical Science LaboratoryHuairou National Comprehensive Science Center No. 5 Yanqi East Second Street Beijing 101400 China
| | - Shuaishuai Liu
- Beijing National Laboratory for Molecular SciencesKey Laboratory of Colloid and Interface and ThermodynamicsCAS Research/Education Center for Excellence in Molecular SciencesInstitute of ChemistryChinese Academy of Sciences Zhongguancun North First Street 2 100190 Beijing P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
- Physical Science LaboratoryHuairou National Comprehensive Science Center No. 5 Yanqi East Second Street Beijing 101400 China
| | - Huizhen Liu
- Beijing National Laboratory for Molecular SciencesKey Laboratory of Colloid and Interface and ThermodynamicsCAS Research/Education Center for Excellence in Molecular SciencesInstitute of ChemistryChinese Academy of Sciences Zhongguancun North First Street 2 100190 Beijing P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
- Physical Science LaboratoryHuairou National Comprehensive Science Center No. 5 Yanqi East Second Street Beijing 101400 China
| | - Buxing Han
- Beijing National Laboratory for Molecular SciencesKey Laboratory of Colloid and Interface and ThermodynamicsCAS Research/Education Center for Excellence in Molecular SciencesInstitute of ChemistryChinese Academy of Sciences Zhongguancun North First Street 2 100190 Beijing P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
- Physical Science LaboratoryHuairou National Comprehensive Science Center No. 5 Yanqi East Second Street Beijing 101400 China
| |
Collapse
|
26
|
Song WL, Dong Q, Hong L, Tian ZQ, Tang LN, Hao W, Zhang H. Activating molecular oxygen with Au/CeO 2 for the conversion of lignin model compounds and organosolv lignin. RSC Adv 2019; 9:31070-31077. [PMID: 35529355 PMCID: PMC9072557 DOI: 10.1039/c9ra04838c] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 09/25/2019] [Indexed: 11/21/2022] Open
Abstract
Au/CeO2 was demonstrated to be a high efficiency catalyst for the conversion of 2-phenoxyacetophenol (PP-ol) employing O2 as an oxidant and methyl alcohol as the solvent without using an erosive strong base or acid. Mechanistic investigations, including emission quenching experiments, electron spin-resonance (ESR) and intermediate verification experiments, were carried out. The results verified that the superoxide anion activated by Au/CeO2 from molecular oxygen plays a vital role in the oxidation of lignin model compounds, and the cleavage of both the β-O-4 and Cα-Cβ linkages was involved. Au/CeO2 also performed well in the oxidative conversion of organosolv lignin under mild conditions (453 K), producing vanillin (10.5 wt%), methyl vanillate (6.8 wt%), methylene syringate (3.4 wt%) and a ring-opened product. Based on the detailed characterization data and mechanistic results, Au/CeO2 was confirmed to be a promising catalytic system.
Collapse
Affiliation(s)
- Wu-Lin Song
- Department of Chemistry and Applied Chemistry, Changji University Changji 831100 Xinjiang China
| | - Qingmeng Dong
- Department of Chemistry and Applied Chemistry, Changji University Changji 831100 Xinjiang China
| | - Liang Hong
- Department of Chemistry and Applied Chemistry, Changji University Changji 831100 Xinjiang China
- Product Quality Inspection Institute of Changji Hui Autonomous Prefecture Changji 831100 Xinjiang China
| | - Zhou-Qi Tian
- Department of Chemistry and Applied Chemistry, Changji University Changji 831100 Xinjiang China
| | - Li-Na Tang
- Department of Chemistry and Applied Chemistry, Changji University Changji 831100 Xinjiang China
| | - Wenli Hao
- Department of Chemistry and Applied Chemistry, Changji University Changji 831100 Xinjiang China
| | - Hongxi Zhang
- Department of Chemistry and Applied Chemistry, Changji University Changji 831100 Xinjiang China
| |
Collapse
|
27
|
Li F, Li X, Gong T, Fu Y. Selective Conversion of Furoic Acid Derivatives to Multi‐Substituted Furanacrylate by a Ruthenium Catalyst. ChemCatChem 2019. [DOI: 10.1002/cctc.201901365] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Feng Li
- Hefei National Laboratory for Physical Sciences at the Microscale, iChEM CAS Key Laboratory of Urban Pollutant Conversion Anhui Province Key Laboratory of Biomass Clean Energy Department of ChemistryUniversity of Science and Technology of China Hefei 230026 P. R. China
| | - Xinglong Li
- Hefei National Laboratory for Physical Sciences at the Microscale, iChEM CAS Key Laboratory of Urban Pollutant Conversion Anhui Province Key Laboratory of Biomass Clean Energy Department of ChemistryUniversity of Science and Technology of China Hefei 230026 P. R. China
| | - Tianjun Gong
- Hefei National Laboratory for Physical Sciences at the Microscale, iChEM CAS Key Laboratory of Urban Pollutant Conversion Anhui Province Key Laboratory of Biomass Clean Energy Department of ChemistryUniversity of Science and Technology of China Hefei 230026 P. R. China
| | - Yao Fu
- Hefei National Laboratory for Physical Sciences at the Microscale, iChEM CAS Key Laboratory of Urban Pollutant Conversion Anhui Province Key Laboratory of Biomass Clean Energy Department of ChemistryUniversity of Science and Technology of China Hefei 230026 P. R. China
| |
Collapse
|
28
|
Bi HY, Du M, Pan CX, Xiao Y, Su GF, Mo DL. Nickel(II)-Catalyzed [5 + 1] Annulation of 2-Carbonyl-1-propargylindoles with Hydroxylamine To Synthesize Pyrazino[1,2- a]indole-2-oxides in Water. J Org Chem 2019; 84:9859-9868. [PMID: 31347845 DOI: 10.1021/acs.joc.9b00784] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
An atom-economical and practical method for the efficient synthesis of various pyrazino[1,2-a]indole-2-oxides was developed through a nickel(II)-catalyzed [5 + 1] annulation of 2-carbonyl-1-propargylindoles with hydroxylamine in water without using an organic solvent. The reaction involved an initial condensation of 2-carbonyl-1-propargylindoles with hydroxylamine to afford oxime intermediates, which then underwent a nickel(II)-catalyzed 6-exo-dig cyclization. Preliminary studies showed that (n-Bu)4NI served as a phase transfer catalyst and promoted the formation of active nickel(II) species. More importantly, the nickel(II) salt and phase transfer catalyst-in-water could be recycled seven times, and a gram scalable product was easily obtained in good yields through a filtration and washing protocol.
Collapse
Affiliation(s)
- Hong-Yan Bi
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Ministry of Science and Technology of China, School of Chemistry & Pharmaceutical Sciences , Guangxi Normal University , 15 Yu Cai Road , Guilin 541004 , China
| | - Min Du
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Ministry of Science and Technology of China, School of Chemistry & Pharmaceutical Sciences , Guangxi Normal University , 15 Yu Cai Road , Guilin 541004 , China
| | - Cheng-Xue Pan
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Ministry of Science and Technology of China, School of Chemistry & Pharmaceutical Sciences , Guangxi Normal University , 15 Yu Cai Road , Guilin 541004 , China
| | - Yuhong Xiao
- School of Chemistry and Chemical Engineering , Hunan University of Science and Technology , Xiangtan 411201 , P. R. China
| | - Gui-Fa Su
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Ministry of Science and Technology of China, School of Chemistry & Pharmaceutical Sciences , Guangxi Normal University , 15 Yu Cai Road , Guilin 541004 , China
| | - Dong-Liang Mo
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Ministry of Science and Technology of China, School of Chemistry & Pharmaceutical Sciences , Guangxi Normal University , 15 Yu Cai Road , Guilin 541004 , China
| |
Collapse
|
29
|
Bao P, Wang L, Liu Q, Yang D, Wang H, Zhao X, Yue H, Wei W. Direct coupling of haloquinolines and sulfonyl chlorides leading to sulfonylated quinolines in water. Tetrahedron Lett 2019. [DOI: 10.1016/j.tetlet.2018.12.016] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
30
|
Jiang YY, Li G, Yang D, Zhang Z, Zhu L, Fan X, Bi S. Mechanism of Cu-Catalyzed Aerobic C(CO)–CH3 Bond Cleavage: A Combined Computational and Experimental Study. ACS Catal 2018. [DOI: 10.1021/acscatal.8b03993] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Yuan-Ye Jiang
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, People’s Republic of China
| | - Guoqing Li
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, People’s Republic of China
| | - Daoshan Yang
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, People’s Republic of China
- College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, People’s Republic of China
| | - Zhaoshun Zhang
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, People’s Republic of China
| | - Ling Zhu
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, People’s Republic of China
| | - Xia Fan
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, People’s Republic of China
| | - Siwei Bi
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, People’s Republic of China
| |
Collapse
|
31
|
Xu L, Chen Y, Shen Z, Wang Y, Li M. I2/Fe(NO3)3·9H2O-catalyzed oxidative synthesis of aryl carboxylic acids from aryl alkyl ketones and secondary benzylic alcohols. Tetrahedron Lett 2018. [DOI: 10.1016/j.tetlet.2018.10.060] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
32
|
Ochen A, Whitten R, Aylott HE, Ruffell K, Williams GD, Slater F, Roberts A, Evans P, Steves JE, Sanganee MJ. Development of a Large-Scale Copper(I)/TEMPO-Catalyzed Aerobic Alcohol Oxidation for the Synthesis of LSD1 Inhibitor GSK2879552. Organometallics 2018. [DOI: 10.1021/acs.organomet.8b00546] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | | | | | | | | | | | | | | | - Janelle E. Steves
- API Chemistry, GlaxoSmithKline, 1250 South Collegeville Rd., Collegeville, Pennsylvania 19426, United States
| | | |
Collapse
|
33
|
Zeng M, Chen K, Tan J, Zhang J, Wei Y. A Supramolecular Catalyst Self-Assembled From Polyoxometalates and Cationic Pillar[5]arenes for the Room Temperature Oxidation of Aldehydes. Front Chem 2018; 6:457. [PMID: 30386765 PMCID: PMC6198131 DOI: 10.3389/fchem.2018.00457] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 09/13/2018] [Indexed: 11/17/2022] Open
Abstract
Oxidizing aldehydes to generate carboxylic acids is a crucial reaction in nature and in chemical industry. The aldehyde oxidation, an easily achieved process in liver cells, is inert toward autoxidation in industrial production and difficultly achieved under enzymatic condition (in water, at pH 7, at room temperature). Herein, we prepared a supramolecular catalyst which are nanospheres assembled in aqueous media by chromium centered Anderson polyoxometalates Na3[CrMo6O18(OH)3] (namely, CrMo6) and cationic pillar[5]arenes (namely, P5A) with 10 positive charges which can be used as the phase transfer catalysts (PTCs). This supramolecular catalyst was exploited on aldehydes oxidation under enzymatic condition with relatively good conversion. Through DLS monitoring, the diameters of nanospheres were variable while changing the charge ratios of the ionic complexes (P5A-CrMo6), and it is probably because of the closer charge ratios causing the more compact assemblies. Also, the nano-morphologies were monitored by TEM and SEM, and the nanostructures were characterized by zeta potential, the X-ray energy-dispersive spectroscopy (EDS), elemental analysis.
Collapse
Affiliation(s)
- Mengyan Zeng
- Key Lab of Organic Optoelectronics & Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, China
| | - Kun Chen
- Key Lab of Organic Optoelectronics & Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, China
| | - Junyan Tan
- Beijing National Lab for Molecular Sciences, Key Lab of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Jie Zhang
- Beijing National Lab for Molecular Sciences, Key Lab of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Yongge Wei
- Key Lab of Organic Optoelectronics & Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, China
| |
Collapse
|
34
|
An J, Wang Y, Zhang Z, Zhao Z, Zhang J, Wang F. The Synthesis of Quinazolinones from Olefins, CO, and Amines over a Heterogeneous Ru-clusters/Ceria Catalyst. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201806266] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Jinghua An
- State Key Laboratory of Catalysis (SKLC); Dalian National Laboratory for Clean Energy (DNL); Dalian Institute of Chemical Physics (DICP); Chinese Academy of Sciences; Dalian 116023 China
- University of Chinese Academy of Sciences; Beijing 100049 China
| | - Yehong Wang
- State Key Laboratory of Catalysis (SKLC); Dalian National Laboratory for Clean Energy (DNL); Dalian Institute of Chemical Physics (DICP); Chinese Academy of Sciences; Dalian 116023 China
| | - Zhixin Zhang
- State Key Laboratory of Catalysis (SKLC); Dalian National Laboratory for Clean Energy (DNL); Dalian Institute of Chemical Physics (DICP); Chinese Academy of Sciences; Dalian 116023 China
| | - Zhitong Zhao
- State Key Laboratory of Catalysis (SKLC); Dalian National Laboratory for Clean Energy (DNL); Dalian Institute of Chemical Physics (DICP); Chinese Academy of Sciences; Dalian 116023 China
- University of Chinese Academy of Sciences; Beijing 100049 China
| | - Jian Zhang
- State Key Laboratory of Catalysis (SKLC); Dalian National Laboratory for Clean Energy (DNL); Dalian Institute of Chemical Physics (DICP); Chinese Academy of Sciences; Dalian 116023 China
| | - Feng Wang
- State Key Laboratory of Catalysis (SKLC); Dalian National Laboratory for Clean Energy (DNL); Dalian Institute of Chemical Physics (DICP); Chinese Academy of Sciences; Dalian 116023 China
| |
Collapse
|
35
|
Wagh R, Nerurkar G, Nagarkar J. Highly Efficient and Selective Method for Oxidation of Aldehydes to Carboxylic Acids. ChemistrySelect 2018. [DOI: 10.1002/slct.201802220] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Ravindra Wagh
- Department of Chemistry; Institute of Chemical Technology, N. Parekh Marg, Matunga; Mumbai- 400 019 India
| | - Gaurav Nerurkar
- Department of Chemistry; Institute of Chemical Technology, N. Parekh Marg, Matunga; Mumbai- 400 019 India
| | - Jayashree Nagarkar
- Department of Chemistry; Institute of Chemical Technology, N. Parekh Marg, Matunga; Mumbai- 400 019 India
| |
Collapse
|
36
|
Knaus T, Tseliou V, Humphreys LD, Scrutton NS, Mutti FG. A biocatalytic method for the chemoselective aerobic oxidation of aldehydes to carboxylic acids. GREEN CHEMISTRY : AN INTERNATIONAL JOURNAL AND GREEN CHEMISTRY RESOURCE : GC 2018; 20:3931-3943. [PMID: 33568964 PMCID: PMC7116709 DOI: 10.1039/c8gc01381k] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Herein, we present a study on the oxidation of aldehydes to carboxylic acids using three recombinant aldehyde dehydrogenases (ALDHs). The ALDHs were used in purified form with a nicotinamide oxidase (NOx), which recycles the catalytic NAD+ at the expense of dioxygen (air at atmospheric pressure). The reaction was studied also with lyophilised whole cell as well as resting cell biocatalysts for more convenient practical application. The optimised biocatalytic oxidation runs in phosphate buffer at pH 8.5 and at 40 °C. From a set of sixty-one aliphatic, aryl-aliphatic, benzylic, hetero-aromatic and bicyclic aldehydes, fifty were converted with elevated yield (up to >99%). The exceptions were a few ortho-substituted benzaldehydes, bicyclic heteroaromatic aldehydes and 2-phenylpropanal. In all cases, the expected carboxylic acid was shown to be the only product (>99% chemoselectivity). Other oxidisable functionalities within the same molecule (e.g. hydroxyl, alkene, and heteroaromatic nitrogen or sulphur atoms) remained untouched. The reaction was scaled for the oxidation of 5-(hydroxymethyl)furfural (2 g), a bio-based starting material, to afford 5-(hydroxymethyl)furoic acid in 61% isolated yield. The new biocatalytic method avoids the use of toxic or unsafe oxidants, strong acids or bases, or undesired solvents. It shows applicability across a wide range of substrates, and retains perfect chemoselectivity. Alternative oxidisable groups were not converted, and other classical side-reactions (e.g. halogenation of unsaturated functionalities, Dakin-type oxidation) did not occur. In comparison to other established enzymatic methods such as the use of oxidases (where the concomitant oxidation of alcohols and aldehydes is common), ALDHs offer greatly improved selectivity.
Collapse
Affiliation(s)
- Tanja Knaus
- Van’t Hoff Institute for Molecular Sciences, HIMS-Biocat, University of Amsterdam, Science Park 904, 1098 XH, The Netherlands
| | - Vasilis Tseliou
- Van’t Hoff Institute for Molecular Sciences, HIMS-Biocat, University of Amsterdam, Science Park 904, 1098 XH, The Netherlands
| | - Luke D. Humphreys
- GlaxoSmithKline Medicines Research Centre, Gunnel’s Wood Road, Stevenage, SG1 2NY, UK
| | - Nigel S. Scrutton
- Manchester Institute of Biotechnology, School of Chemistry, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
| | - Francesco G. Mutti
- Van’t Hoff Institute for Molecular Sciences, HIMS-Biocat, University of Amsterdam, Science Park 904, 1098 XH, The Netherlands
| |
Collapse
|
37
|
An J, Wang Y, Zhang Z, Zhao Z, Zhang J, Wang F. The Synthesis of Quinazolinones from Olefins, CO, and Amines over a Heterogeneous Ru-clusters/Ceria Catalyst. Angew Chem Int Ed Engl 2018; 57:12308-12312. [DOI: 10.1002/anie.201806266] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 07/14/2018] [Indexed: 02/02/2023]
Affiliation(s)
- Jinghua An
- State Key Laboratory of Catalysis (SKLC); Dalian National Laboratory for Clean Energy (DNL); Dalian Institute of Chemical Physics (DICP); Chinese Academy of Sciences; Dalian 116023 China
- University of Chinese Academy of Sciences; Beijing 100049 China
| | - Yehong Wang
- State Key Laboratory of Catalysis (SKLC); Dalian National Laboratory for Clean Energy (DNL); Dalian Institute of Chemical Physics (DICP); Chinese Academy of Sciences; Dalian 116023 China
| | - Zhixin Zhang
- State Key Laboratory of Catalysis (SKLC); Dalian National Laboratory for Clean Energy (DNL); Dalian Institute of Chemical Physics (DICP); Chinese Academy of Sciences; Dalian 116023 China
| | - Zhitong Zhao
- State Key Laboratory of Catalysis (SKLC); Dalian National Laboratory for Clean Energy (DNL); Dalian Institute of Chemical Physics (DICP); Chinese Academy of Sciences; Dalian 116023 China
- University of Chinese Academy of Sciences; Beijing 100049 China
| | - Jian Zhang
- State Key Laboratory of Catalysis (SKLC); Dalian National Laboratory for Clean Energy (DNL); Dalian Institute of Chemical Physics (DICP); Chinese Academy of Sciences; Dalian 116023 China
| | - Feng Wang
- State Key Laboratory of Catalysis (SKLC); Dalian National Laboratory for Clean Energy (DNL); Dalian Institute of Chemical Physics (DICP); Chinese Academy of Sciences; Dalian 116023 China
| |
Collapse
|
38
|
Li C, Wang SM, Qin HL. A Rh-Catalyzed Air and Moisture Tolerable Aldehyde (Ketone)-Directed Fluorosulfonylvinylation of Aryl C(sp2)–H Bonds. Org Lett 2018; 20:4699-4703. [DOI: 10.1021/acs.orglett.8b02037] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Chen Li
- State Key Laboratory of Silicate Materials for Architectures; and School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 205 Luoshi Road, Wuhan, 430070, China
| | - Shi-Meng Wang
- State Key Laboratory of Silicate Materials for Architectures; and School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 205 Luoshi Road, Wuhan, 430070, China
| | - Hua-Li Qin
- State Key Laboratory of Silicate Materials for Architectures; and School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 205 Luoshi Road, Wuhan, 430070, China
| |
Collapse
|
39
|
Fang K, Li G, She Y. Metal-Free Aerobic Oxidation of Nitro-Substituted Alkylarenes to Carboxylic Acids or Benzyl Alcohols Promoted by NaOH. J Org Chem 2018; 83:8092-8103. [PMID: 29905478 DOI: 10.1021/acs.joc.8b00903] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Efficient and selective aerobic oxidation of nitro-substituted alkylarenes to functional compounds is a fundamental process that remains a challenge. Here, we report a metal-free, efficient, and practical approach for the direct and selective aerobic oxidation of nitro-substituted alkylarenes to carboxylic acids or benzyl alcohols. This sustainable system uses O2 as clean oxidant in a cheap and green NaOH/EtOH mixture. The position and type of substituent critically affect the products. In addition, this sustainable protocol enabled gram-scale preparation of carboxylic acid and benzyl alcohol derivatives with high chemoselectivities. Finally, the reactions can be conducted in a pressure reactor, which can conserve oxygen and prevent solvent loss. The approach was conducive to environmental protection and potential industrial application.
Collapse
Affiliation(s)
- Kun Fang
- College of Chemical Engineering , Zhejiang University of Technology , Hangzhou , Zhejiang 310014 , People's Republic of China
| | - Guijie Li
- College of Chemical Engineering , Zhejiang University of Technology , Hangzhou , Zhejiang 310014 , People's Republic of China
| | - Yuanbin She
- College of Chemical Engineering , Zhejiang University of Technology , Hangzhou , Zhejiang 310014 , People's Republic of China
| |
Collapse
|
40
|
Yan X, Lai YH, Zare RN. Preparative microdroplet synthesis of carboxylic acids from aerobic oxidation of aldehydes. Chem Sci 2018; 9:5207-5211. [PMID: 29997875 PMCID: PMC6001248 DOI: 10.1039/c8sc01580e] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 05/12/2018] [Indexed: 12/18/2022] Open
Abstract
Single liquid-phase and liquid-liquid phase reactions in microdroplets have shown much faster kinetics than that in the bulk phase. This work extends the scope of microdroplet reactions to gas-liquid reactions and achieves preparative synthesis. We report highly efficient aerobic oxidation of aldehydes to carboxylic acids in microdroplets. Molecular oxygen plays two roles: (1) as the sheath gas to shear the aldehyde solution into microdroplets, and (2) as the sole oxidant. The dramatic increase of the surface-area-to-volume ratio of microdroplets compared to bulk solution, and the efficient mixing of gas and liquid phases using spray nozzles allow effective mass transfer between aldehydes and molecular oxygen. The addition of catalytic nickel(ii) acetate is shown to accelerate further microdroplet reactions of this kind. We show that aliphatic, aromatic, and heterocyclic aldehydes can be oxidized to the corresponding carboxylic acids in a mixture of water and ethanol using the nickel(ii) acetate catalyst, in moderate to excellent yields (62-91%). The microdroplet synthesis is scaled up to make it preparative. For example, aerobic oxidation of 4-tert-butylbenzaldehyde to 4-tert-butylbenzoic acid was achieved at a rate of 10.5 mg min-1 with an isolated product yield of 66%.
Collapse
Affiliation(s)
- Xin Yan
- Department of Chemistry , Stanford University , Stanford , CA 94305-5080 , USA .
| | - Yin-Hung Lai
- Department of Chemistry , Stanford University , Stanford , CA 94305-5080 , USA .
| | - Richard N Zare
- Department of Chemistry , Stanford University , Stanford , CA 94305-5080 , USA .
| |
Collapse
|
41
|
Zhang HJ, Schuppe AW, Pan ST, Chen JX, Wang BR, Newhouse TR, Yin L. Copper-Catalyzed Vinylogous Aerobic Oxidation of Unsaturated Compounds with Air. J Am Chem Soc 2018; 140:5300-5310. [DOI: 10.1021/jacs.8b01886] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Hai-Jun Zhang
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Alexander W. Schuppe
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520-8107, United States
| | - Shi-Tao Pan
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Jin-Xiang Chen
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Bo-Ran Wang
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Timothy R. Newhouse
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520-8107, United States
| | - Liang Yin
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| |
Collapse
|
42
|
Chen ZB, Liu K, Zhang FL, Yuan Q, Zhu YM. Palladium-catalyzed oxidative coupling of arylboronic acid with isocyanide to form aromatic carboxylic acids. Org Biomol Chem 2018; 15:8078-8083. [PMID: 28905063 DOI: 10.1039/c7ob01428g] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A valuable palladium-catalyzed oxidative coupling of aryl- and alkenyl borides with isocyanide for the synthesis of corresponding carboxylic acids has been developed. With wide substrate scopes and good functional group tolerance, this reaction offers corresponding carboxylic acids in moderate to excellent yields.
Collapse
Affiliation(s)
- Zhen-Bang Chen
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China.
| | | | | | | | | |
Collapse
|
43
|
Sun Y, Ma H, Luo Y, Zhang S, Gao J, Xu J. Activation of Molecular Oxygen Using Durable Cobalt Encapsulated with Nitrogen‐Doped Graphitic Carbon Shells for Aerobic Oxidation of Lignin‐Derived Alcohols. Chemistry 2018; 24:4653-4661. [DOI: 10.1002/chem.201705824] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Indexed: 11/06/2022]
Affiliation(s)
- Yuxia Sun
- State Key Laboratory of CatalysisDalian Institute of Chemical PhysicsChinese Academy of SciencesDalian National Laboratory for Clean Energy Dalian 116023 P.R. China
- University of Chinese Academy of Sciences Beijing 100049 P.R. China
| | - Hong Ma
- State Key Laboratory of CatalysisDalian Institute of Chemical PhysicsChinese Academy of SciencesDalian National Laboratory for Clean Energy Dalian 116023 P.R. China
| | - Yang Luo
- State Key Laboratory of CatalysisDalian Institute of Chemical PhysicsChinese Academy of SciencesDalian National Laboratory for Clean Energy Dalian 116023 P.R. China
- University of Chinese Academy of Sciences Beijing 100049 P.R. China
| | - Shujing Zhang
- State Key Laboratory of CatalysisDalian Institute of Chemical PhysicsChinese Academy of SciencesDalian National Laboratory for Clean Energy Dalian 116023 P.R. China
- University of Chinese Academy of Sciences Beijing 100049 P.R. China
| | - Jin Gao
- State Key Laboratory of CatalysisDalian Institute of Chemical PhysicsChinese Academy of SciencesDalian National Laboratory for Clean Energy Dalian 116023 P.R. China
| | - Jie Xu
- State Key Laboratory of CatalysisDalian Institute of Chemical PhysicsChinese Academy of SciencesDalian National Laboratory for Clean Energy Dalian 116023 P.R. China
| |
Collapse
|
44
|
Yu H, Ru S, Zhai Y, Dai G, Han S, Wei Y. An Efficient Aerobic Oxidation Protocol of Aldehydes to Carboxylic Acids in Water Catalyzed by an Inorganic-Ligand-Supported Copper Catalyst. ChemCatChem 2018. [DOI: 10.1002/cctc.201701599] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Han Yu
- School of Chemical and Environmental Engineering; Shanghai Institute of Technology; 100 Haiquan Road Shanghai 201418 P.R. China
- Key Lab of Organic Optoelectronics & Molecular Engineering of the Ministry of Education; Department of Chemistry; Tsinghua University; Beijing 100084 P.R. China
- State Key Laboratory of Natural and Biomimetic Drugs; Peking University; Beijing 100191 P.R. China
| | - Shi Ru
- School of Chemical and Environmental Engineering; Shanghai Institute of Technology; 100 Haiquan Road Shanghai 201418 P.R. China
| | - Yongyan Zhai
- School of Chemical and Environmental Engineering; Shanghai Institute of Technology; 100 Haiquan Road Shanghai 201418 P.R. China
| | - Guoyong Dai
- School of Chemical and Environmental Engineering; Shanghai Institute of Technology; 100 Haiquan Road Shanghai 201418 P.R. China
| | - Sheng Han
- School of Chemical and Environmental Engineering; Shanghai Institute of Technology; 100 Haiquan Road Shanghai 201418 P.R. China
| | - Yongge Wei
- Key Lab of Organic Optoelectronics & Molecular Engineering of the Ministry of Education; Department of Chemistry; Tsinghua University; Beijing 100084 P.R. China
- State Key Laboratory of Natural and Biomimetic Drugs; Peking University; Beijing 100191 P.R. China
| |
Collapse
|
45
|
Cheng Y, Shan Q, Zhang Y, Quan Z, Zhang K, Wang B. A highly efficient one-enzyme protocol using ω-transaminase and an amino donor enabling equilibrium displacement assisted by molecular oxygen. Org Chem Front 2018. [DOI: 10.1039/c8qo00100f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A highly efficient one-enzyme procedure using ω-transaminase promoted by molecular oxygen for preparing high enantiomeric purity chiral amines was described.
Collapse
Affiliation(s)
- Yujia Cheng
- Key Laboratory of Advanced Materials of Tropical Island Resources (Hainan University)
- Ministry of Education
- Haikou 570228
- PR China
- Department of Chemical Engineering
| | - Qiheng Shan
- Key Laboratory of Advanced Materials of Tropical Island Resources (Hainan University)
- Ministry of Education
- Haikou 570228
- PR China
- Department of Chemical Engineering
| | - Yue Zhang
- Key Laboratory of Advanced Materials of Tropical Island Resources (Hainan University)
- Ministry of Education
- Haikou 570228
- PR China
- Department of Chemical Engineering
| | - Ziyi Quan
- Key Laboratory of Advanced Materials of Tropical Island Resources (Hainan University)
- Ministry of Education
- Haikou 570228
- PR China
- Department of Chemical Engineering
| | - Kuan Zhang
- Key Laboratory of Advanced Materials of Tropical Island Resources (Hainan University)
- Ministry of Education
- Haikou 570228
- PR China
- Department of Chemical Engineering
| | - Bo Wang
- Key Laboratory of Advanced Materials of Tropical Island Resources (Hainan University)
- Ministry of Education
- Haikou 570228
- PR China
- Department of Chemical Engineering
| |
Collapse
|
46
|
Zhou H, Liu Q, Hua M, Wang C, Chen D, Fu H. Silver-Mediated 2-Arylation/Alkylation/Acylation of Benzothiazoles with Aldehydes in Water. HETEROCYCLES 2018. [DOI: 10.3987/com-18-13934] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
47
|
Kitanosono T, Masuda K, Xu P, Kobayashi S. Catalytic Organic Reactions in Water toward Sustainable Society. Chem Rev 2017; 118:679-746. [PMID: 29218984 DOI: 10.1021/acs.chemrev.7b00417] [Citation(s) in RCA: 403] [Impact Index Per Article: 50.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Traditional organic synthesis relies heavily on organic solvents for a multitude of tasks, including dissolving the components and facilitating chemical reactions, because many reagents and reactive species are incompatible or immiscible with water. Given that they are used in vast quantities as compared to reactants, solvents have been the focus of environmental concerns. Along with reducing the environmental impact of organic synthesis, the use of water as a reaction medium also benefits chemical processes by simplifying operations, allowing mild reaction conditions, and sometimes delivering unforeseen reactivities and selectivities. After the "watershed" in organic synthesis revealed the importance of water, the development of water-compatible catalysts has flourished, triggering a quantum leap in water-centered organic synthesis. Given that organic compounds are typically practically insoluble in water, simple extractive workup can readily separate a water-soluble homogeneous catalyst as an aqueous solution from a product that is soluble in organic solvents. In contrast, the use of heterogeneous catalysts facilitates catalyst recycling by allowing simple centrifugation and filtration methods to be used. This Review addresses advances over the past decade in catalytic reactions using water as a reaction medium.
Collapse
Affiliation(s)
- Taku Kitanosono
- Department of Chemistry, School of Science, The University of Tokyo , Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Koichiro Masuda
- Department of Chemistry, School of Science, The University of Tokyo , Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Pengyu Xu
- Department of Chemistry, School of Science, The University of Tokyo , Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Shu Kobayashi
- Department of Chemistry, School of Science, The University of Tokyo , Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
48
|
Jiang X, Zhai Y, Chen J, Han Y, Yang Z, Ma S. Iron-Catalyzed Aerobic Oxidation of Aldehydes: Single Component Catalyst and Mechanistic Studies. CHINESE J CHEM 2017. [DOI: 10.1002/cjoc.201700576] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Xingguo Jiang
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry; Chinese Academy of Sciences, 345 Lingling Lu; Shanghai 200032 China
- University of Chinese Academy of Sciences; Beijing 100049 China
| | - Yizhan Zhai
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry; Chinese Academy of Sciences, 345 Lingling Lu; Shanghai 200032 China
- University of Chinese Academy of Sciences; Beijing 100049 China
| | - Junyu Chen
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry; Chinese Academy of Sciences, 345 Lingling Lu; Shanghai 200032 China
- University of Chinese Academy of Sciences; Beijing 100049 China
| | - Yulin Han
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry; Chinese Academy of Sciences, 345 Lingling Lu; Shanghai 200032 China
- University of Chinese Academy of Sciences; Beijing 100049 China
| | - Zheng Yang
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry; Chinese Academy of Sciences, 345 Lingling Lu; Shanghai 200032 China
- University of Chinese Academy of Sciences; Beijing 100049 China
| | - Shengming Ma
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry; Chinese Academy of Sciences, 345 Lingling Lu; Shanghai 200032 China
- Department of Chemistry; Fudan University, 220 Handan Lu; Shanghai 200433 China
| |
Collapse
|
49
|
Yang Z, Luo R, Zhu Z, Yang X, Tang W. Harnessing the Reactivity of Iridium Hydrides by Air: Iridium-Catalyzed Oxidation of Aldehydes to Acids in Water. Organometallics 2017. [DOI: 10.1021/acs.organomet.7b00634] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Zhanhui Yang
- School
of Pharmacy, University of Wisconsin, 777 Highland Avenue, Madison, Wisconsin 53705, United States
- Faculty
of Science, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Renshi Luo
- School
of Pharmacy, University of Wisconsin, 777 Highland Avenue, Madison, Wisconsin 53705, United States
- School
of Pharmacy, Gannan Medical University, Ganzhou, Jiangxi Province, PR China
| | - Zhongpeng Zhu
- School
of Pharmacy, University of Wisconsin, 777 Highland Avenue, Madison, Wisconsin 53705, United States
| | - Xuerong Yang
- School
of Pharmacy, University of Wisconsin, 777 Highland Avenue, Madison, Wisconsin 53705, United States
| | - Weiping Tang
- School
of Pharmacy, University of Wisconsin, 777 Highland Avenue, Madison, Wisconsin 53705, United States
- Department
of Chemistry, University of Wisconsin, Madison, Wisconsin 53706, United States
| |
Collapse
|
50
|
Huo N, Ma H, Wang X, Wang T, Wang G, Wang T, Hou L, Gao J, Xu J. High-efficiency oxidative esterification of furfural to methylfuroate with a non-precious metal Co-N-C/MgO catalyst. CHINESE JOURNAL OF CATALYSIS 2017. [DOI: 10.1016/s1872-2067(17)62841-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|