1
|
Wang S, Wu S, Hao W, Liu M. Nanoaggregation-Enhanced and Inverted Circularly Polarized Luminescence in Isomeric Schiff Base Bis(boron difluoride) Complexes. Chem Asian J 2025:e00506. [PMID: 40391992 DOI: 10.1002/asia.202500506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2025] [Revised: 05/05/2025] [Accepted: 05/07/2025] [Indexed: 05/22/2025]
Abstract
To elucidate the emergence and amplification of circularly polarized luminescence (CPL) in chiral molecules and their assemblies, we designed positionally isomeric chiral V-shaped Schiff base ligands and their corresponding bis(boron difluoride) complexes. The ligands were synthesized by condensing chiral cyclohexanediamine with either 1-hydroxy-2-naphthaldehyde or 2-hydroxy-1-naphthaldehyde, followed by complexation with boron difluoride (BF2) to yield CNB1 and CNB2, respectively. While the parent Schiff bases exhibited no CPL, BF2 coordination induced strong CPL signals in solution. Remarkably, upon aggregation in a mixed solvent system, CNB2 displayed enhanced and inverted CPL, whereas its isomer CNB1 showed attenuated emission. Through comprehensive characterization and singlecrystal analysis, we attribute this divergent behavior to distinct molecular packing modes: CNB2 forms tightly stacked aggregates with efficient π─π interactions, while CNB1 adopts a less ordered arrangement. This study establishes a clear correlation between subtle structural modifications, supramolecular packing, and CPL performance, offering a rational strategy for tailoring chiroptical properties through precise molecular design and controlled self-assembly.
Collapse
Affiliation(s)
- Sipeng Wang
- Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou, 450003, P. R. China
- Beijing National Laboratory for Molecular Science (BNLMS), CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Shengfu Wu
- Beijing National Laboratory for Molecular Science (BNLMS), CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Wenchao Hao
- Beijing National Laboratory for Molecular Science (BNLMS), CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Minghua Liu
- Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou, 450003, P. R. China
- Beijing National Laboratory for Molecular Science (BNLMS), CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
2
|
Hu L, Li X. Tailored Nucleation-Growth Strategy for Precise Self-Assembly of Block Copolymers. Chemistry 2025; 31:e202404266. [PMID: 39868967 DOI: 10.1002/chem.202404266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 01/23/2025] [Accepted: 01/27/2025] [Indexed: 01/28/2025]
Abstract
The self-assembly of block copolymers (BCPs) to form nanostructures of various morphologies and controllable dimensions has been a very promising research area in nanotechnology in recent decades. This concept mainly summarizes the recent advances in precise and controllable self-assembly of BCPs through a tailored nucleation-growth strategy to modulate the self-assembly behavior of the BCPs. These efforts have led to a better understanding of the self-assembly mechanisms and opened new possibilities for creating novel materials with designable properties. We hope that the concept is more than a periodical summary of previous research work and can provide valuable inspiration for the research field.
Collapse
Affiliation(s)
- Lingjuan Hu
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Xiaoyu Li
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
- Key Laboratory of High Energy Density Materials, MOE. Beijing, Beijing Institute of Technology, Beijing, 100081, P. R. China
| |
Collapse
|
3
|
Liu Y, Jiao Y, Xiong L, Wei G, Xu B, Zhang G, Wang C, Zhao L. Sensitive detection of α-amylase based on host-guest inclusion system of γ-cyclodextrin and dansyl-derived diphenylalanine. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 326:125291. [PMID: 39427389 DOI: 10.1016/j.saa.2024.125291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/10/2024] [Accepted: 10/13/2024] [Indexed: 10/22/2024]
Abstract
A highly sensitive detection system for α-amylase was developed via host-guest complexation between γ-cyclodextrin and dansyl-modified diphenylalanine (FF-Dns). The host-guest inclusion of FF-Dns into the cavity of γ-CD in a HEPES buffer solution (10 mM, pH 7.4) significantly enhanced the fluorescence intensity, and the emission wavelength gradually shifted from 558 to 535 nm. The hydrolysis of γ-CD by the addition of α-amylase released FF-Dns, leading to the recovery of the fluorescence emission characteristics. Therefore, the FF-Dns/γ-CD host-guest complexation system can serve as a platform for the sensitive detection of α-amylase with good selectivity against potential interference. The limit of detection (LOD) of the system was 0.004 U/mL, with a linear working range of 0-6 U/mL. The detection assay was successfully applied in 0.1 % serum, achieving an LOD of 0.017 U/mL and a linear working range of 0-10 U/mL.
Collapse
Affiliation(s)
- Yu Liu
- School of Light Industry, Beijing Technology and Business University, Beijing 100048, PR China
| | - Yutian Jiao
- School of Light Industry, Beijing Technology and Business University, Beijing 100048, PR China
| | - Longjun Xiong
- School of Light Industry, Beijing Technology and Business University, Beijing 100048, PR China
| | - Gongli Wei
- School of Light Industry, Beijing Technology and Business University, Beijing 100048, PR China
| | - Baocai Xu
- School of Light Industry, Beijing Technology and Business University, Beijing 100048, PR China
| | - Guiju Zhang
- School of Light Industry, Beijing Technology and Business University, Beijing 100048, PR China
| | - Ce Wang
- School of Light Industry, Beijing Technology and Business University, Beijing 100048, PR China
| | - Li Zhao
- School of Light Industry, Beijing Technology and Business University, Beijing 100048, PR China.
| |
Collapse
|
4
|
Wang S, Xu H, Li Y, Zhang L, Xu S. Aggression to Biomembranes by Hydrophobic Tail Chains under the Stimulus of Reductant. Molecules 2024; 29:4001. [PMID: 39274849 PMCID: PMC11396224 DOI: 10.3390/molecules29174001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/05/2024] [Accepted: 08/21/2024] [Indexed: 09/16/2024] Open
Abstract
Stimulus-responsive materials hold significant promise for antitumor applications due to their variable structures and physical properties. In this paper, a series of peptides with a responsive viologen derivative, Pep-CnV (n = 1, 2, 3) were designed and synthesized. The process and mechanism of the interaction were studied and discussed. An ultraviolet-visible (UV) spectrophotometer and fluorescence spectrophotometer were used to study their redox responsiveness. Additionally, their secondary structures were measured by Circular Dichroism (CD) in the presence or absence of the reductant, Na2SO3. DPPC and DPPG liposomes were prepared to mimic normal and tumor cell membranes. The interaction between Pep-CnV and biomembranes was investigated by the measurements of surface tension and cargo leakage. Results proved Pep-CnV was more likely to interact with the DPPG liposome and destroy its biomembrane under the stimulus of the reductant. And the destruction increased with the length of the hydrophobic tail chain. Pep-CnV showed its potential as an intelligent antitumor agent.
Collapse
Affiliation(s)
- Sijia Wang
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Huifang Xu
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Yuanyuan Li
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Lingyi Zhang
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Shouhong Xu
- Key Laboratory for Advanced Materials, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
5
|
Liu M, Wu B, Baryshnikov GV, Shen S, Sun H, Gu X, Ågren H, Xu Y, Zou Q, Qu DH, Zhu L. Photo-controlled order-to-order host-guest self-assembly transfer for an afterglow effect with water resistance. Chem Sci 2024; 15:12569-12579. [PMID: 39118609 PMCID: PMC11304790 DOI: 10.1039/d4sc03451a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 07/01/2024] [Indexed: 08/10/2024] Open
Abstract
Due to the general incompleteness of photochemical reactions, the photostationary structure in traditional photo-controlled host-guest self-assembly transfer is usually disordered or irregular. This fact readily affects the photoregulation or improvement of related material properties. Herein, a photoexcitation-induced aggregation molecule, hydroxyl hexa(thioaryl)benzene (HB), was grafted into β-cyclodextrin to form a host-guest system. Upon irradiation, the excited state conformational change of HB can drive an order-to-order phase transition of the system, enabling the transfer of the initial linear nanostructure to a photostationary worm-like nanostructure with orderliness and crystallinity capability. Along with the photoexcitation-controlled phase transition, an afterglow effect was obtained from the films prepared by doping the host-guest system into poly(vinyl alcohol). The afterglow effect had a superior water resistance, which successfully overcame the general sensitivity of doped materials with the afterglow effect to water vapor. These results are expected to provide new insights for pushing forward chemical self-assembly from the light perspective, towards materials with superior and stable properties under light treatment.
Collapse
Affiliation(s)
- Mouwei Liu
- Department of Macromolecular Science, State Key Laboratory of Molecular Engineering of Polymers, Fudan University Shanghai 200438 China
| | - Bin Wu
- Department of Macromolecular Science, State Key Laboratory of Molecular Engineering of Polymers, Fudan University Shanghai 200438 China
| | - Glib V Baryshnikov
- Department of Science and Technology, Laboratory of Organic Electronics, Linköping University Norrköping 60174 Sweden
| | - Shen Shen
- Department of Macromolecular Science, State Key Laboratory of Molecular Engineering of Polymers, Fudan University Shanghai 200438 China
| | - Hao Sun
- Department of Macromolecular Science, State Key Laboratory of Molecular Engineering of Polymers, Fudan University Shanghai 200438 China
| | - Xinyan Gu
- Department of Macromolecular Science, State Key Laboratory of Molecular Engineering of Polymers, Fudan University Shanghai 200438 China
| | - Hans Ågren
- Department of Physics and Astronomy, Uppsala University Box 516 Uppsala SE-751 20 Sweden
| | - Yifei Xu
- Department of Macromolecular Science, State Key Laboratory of Molecular Engineering of Polymers, Fudan University Shanghai 200438 China
| | - Qi Zou
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology Shanghai 200237 China
| | - Da-Hui Qu
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology Shanghai 200237 China
| | - Liangliang Zhu
- Department of Macromolecular Science, State Key Laboratory of Molecular Engineering of Polymers, Fudan University Shanghai 200438 China
| |
Collapse
|
6
|
Wang H, Liu H, Wang M, Hou J, Li Y, Wang Y, Zhao Y. Cucurbituril-based supramolecular host-guest complexes: single-crystal structures and dual-state fluorescence enhancement. Chem Sci 2024; 15:458-465. [PMID: 38179534 PMCID: PMC10762720 DOI: 10.1039/d3sc04813f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 11/29/2023] [Indexed: 01/06/2024] Open
Abstract
Two supramolecular complexes were prepared using cucurbiturils [CBs] as mediators and a four-armed p-xylene derivative (M1) as a guest molecule. The single crystals of these two complexes were obtained and successfully analyzed by single-crystal X-ray diffraction (SCXRD). An unexpected and intriguing 1 : 2 self-assembly arrangement between M1 and CB[8] was notably uncovered, marking its first observation. These host-guest complexes exhibit distinctive photophysical properties, especially emission behaviors. Invaluable insights can be derived from these single-crystal structures. The precious single-crystal structures provide both precise structural information regarding the supramolecular complexes and a deeper understanding of the intricate mechanisms governing their photophysical properties.
Collapse
Affiliation(s)
- Hui Wang
- College of Polymer Science and Engineering, Qingdao University of Science and Technology Qingdao 266042 China
- College of Chemical Engineering, Qingdao University of Science and Technology Qingdao 266042 China
| | - Hui Liu
- College of Polymer Science and Engineering, Qingdao University of Science and Technology Qingdao 266042 China
| | - Mingsen Wang
- College of Polymer Science and Engineering, Qingdao University of Science and Technology Qingdao 266042 China
| | - Jiaheng Hou
- College of Polymer Science and Engineering, Qingdao University of Science and Technology Qingdao 266042 China
| | - Yongjun Li
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS. Key Laboratory of Organic Solids, Institute of Chemistry, Chinese. Academy of Sciences Beijing 100190 P. R. China
| | - Yuancheng Wang
- College of Polymer Science and Engineering, Qingdao University of Science and Technology Qingdao 266042 China
| | - Yingjie Zhao
- College of Polymer Science and Engineering, Qingdao University of Science and Technology Qingdao 266042 China
| |
Collapse
|
7
|
Liu G, Tian C, Fan X, Xue X, Feng L, Wang C, Liu Y. Photocontrolled Reversibly Chiral-Ordered Assembly Based on Cucurbituril. JACS AU 2023; 3:2550-2556. [PMID: 37772187 PMCID: PMC10523366 DOI: 10.1021/jacsau.3c00342] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/08/2023] [Accepted: 08/08/2023] [Indexed: 09/30/2023]
Abstract
Chirality transfer and regulation, accompanied by morphology transformation, arouse widespread interest for application in materials and biological science. Here, a photocontrolled supramolecular chiral switch is fabricated from chiral diphenylalanine (l-Phe-l-Phe, FF) modified with naphthalene (2), achiral dithienylethene (DTE) photoswitch (1), and cucurbit[8]uril (CB[8]). Chirality transfer from the chiral FF moiety of 2 to a charge-transfer (CT) heterodimer consisting of achiral guest 1 and achiral naphthalene (NP) in 2 has been unprecedented achieved via the encapsulation of CB[8]. On the contrary, chirality transfer from chiral FF to NP cannot be conducted in only guest 2. Crucially, induced circular dichroism of the heterodimer can be further modulated by distinct light, attributing to reversible photoisomerization of the DTE. Meanwhile, topological nanostructures are changed from one-dimensional (1D) nanofibers to two-dimensional (2D) nanosheets in the orderly assembling process of the heterodimer, which further achieved reversible interconversion between 2D nanosheets and 1D nanorods with tunable-induced chirality stimulated by diverse light.
Collapse
Affiliation(s)
- Guoxing Liu
- College
of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, P. R. China
- College
of Science, Henan Agricultural University, Zhengzhou, Henan 450002, P. R. China
| | - Changming Tian
- College
of Science, Henan Agricultural University, Zhengzhou, Henan 450002, P. R. China
| | - Xinhui Fan
- College
of Science, Henan Agricultural University, Zhengzhou, Henan 450002, P. R. China
| | - Xiaoping Xue
- College
of Science, Henan Agricultural University, Zhengzhou, Henan 450002, P. R. China
| | - Li Feng
- College
of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Conghui Wang
- College
of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Yu Liu
- College
of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, P. R. China
| |
Collapse
|
8
|
Zhou JL, Li YH, Zhang YM, Chen L, Liu Y. Enhanced molecular binding affinity toward aromatic dications by anthracene-derived crown ethers in water. Org Biomol Chem 2022; 21:107-114. [PMID: 36484413 DOI: 10.1039/d2ob02010f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The pursuit of high molecular binding affinity using conventional crown ethers in water remains a challenging task in the field of supramolecular chemistry and may hold great promise in the creation of advanced biocompatible nanoconstructs. In this work, the molecular binding strength toward a series of structurally relevant cationic guests has been greatly enhanced by tetrasulfonated 1,5-dianthracenyl-42-crown-10 and as investigated by means of 1H NMR, UV-vis, and fluorescence spectroscopy, the host-guest association constants can reach up to 108 M-1 order of magnitude in aqueous solution. X-ray crystal diffraction analysis further demonstrates that the aromatic dication can be tightly encapsulated in the ring of anthracene-derived crown ether via multiple π-stacking and electrostatic interactions. Meanwhile, the obtained association constants are remarkably higher than the ones in the cases of the known benzene- and naphthalene-derived sulfonated crown ethers, substantiating that the appropriate extension of π-conjugation in the molecular skeleton of crown ether is a feasible method in attaining a highly affiliative host-guest complex. Taken together, our results indicate that the anthracene-based sulfonated crown ether can be developed as a new family of water-soluble macrocyclic receptors in the fabrication of functional nanoarchitectures.
Collapse
Affiliation(s)
- Jia-Liang Zhou
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, P. R. China.
| | - Yan-Hong Li
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, P. R. China.
| | - Ying-Ming Zhang
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, P. R. China.
| | - Ling Chen
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, P. R. China.
| | - Yu Liu
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, P. R. China.
| |
Collapse
|
9
|
Fu S, Pang A, Guo X, He Y, Song S, Ge J, Li J, Li W, Xiong Y, Wang L, Wang D, Tang BZ. Bioinspired Supramolecular Nanotoroids with Aggregation-Induced Emission Characteristics. ACS NANO 2022; 16:12720-12726. [PMID: 35959972 DOI: 10.1021/acsnano.2c04480] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Supramolecular toroids have attracted continuous attention because of their fascinating topological structure and important role in biological systems. However, it still remains a great challenge to construct supramolecular functional toroids and clarify the formation mechanism. Herein, we develop a strategy to prepare supramolecular helical fluorescent nanotoroids by cooperative self-assembly of an amino acid and a dendritic amphiphile (AIE-den-1) with aggregation-induced emission characteristics. Mechanistic investigation on the basis of fluorescence and circular dichroism analyses suggests that the toroid formation can be driven by the interactions of AIE-den-1 with amino acid and goes through a topological morphology transformation from nanofibers to left-handed nanotoroids by means of a twist-fused-loop process.
Collapse
Affiliation(s)
- Shuang Fu
- Center for AIE Research, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
- Science and Technology on Aerospace Chemical Power Laboratory, Hubei Institute of Aerospace Chemotechnology, Xiangyang 441003, China
| | - Aimin Pang
- Science and Technology on Aerospace Chemical Power Laboratory, Hubei Institute of Aerospace Chemotechnology, Xiangyang 441003, China
| | - Xiang Guo
- Science and Technology on Aerospace Chemical Power Laboratory, Hubei Institute of Aerospace Chemotechnology, Xiangyang 441003, China
| | - Youling He
- Center for AIE Research, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Shanliang Song
- Center for AIE Research, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Jinyin Ge
- Center for AIE Research, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Jiangao Li
- Center for AIE Research, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Wei Li
- Science and Technology on Aerospace Chemical Power Laboratory, Hubei Institute of Aerospace Chemotechnology, Xiangyang 441003, China
| | - Yu Xiong
- Center for AIE Research, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Lei Wang
- Center for AIE Research, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Dong Wang
- Center for AIE Research, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Ben Zhong Tang
- School of Science and Engineering, Shenzhen Key Laboratory of Functional Aggregate Materials, The Chinese University of Hong Kong-Shenzhen, Shenzhen 518172, China
| |
Collapse
|
10
|
Liu Z, Li Z, Li B, Zhou L, Zhang H, Han J. Hybrid Macrocyclic Polymers: Self-Assembly Containing Cucurbit[m]uril-pillar[n]arene. Polymers (Basel) 2022; 14:1777. [PMID: 35566949 PMCID: PMC9106019 DOI: 10.3390/polym14091777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 04/23/2022] [Accepted: 04/26/2022] [Indexed: 02/01/2023] Open
Abstract
Supramolecular self-assembly by hybrid macrocycles containing both cucurbit[m]uril (CB[m]) and pillar[n]arene was discussed and summarized in this review. Due to different solubility, diverse-sized cavities, and various driving forces in recognizing guests, the role of CB[m] and pillar[n]arene in such hybrid macrocyclic systems could switch between competitor in capturing specialized guests, and cooperator for building advanced hybridized macrocycles, by controlling their characteristics in host-guest inclusions. Furthermore, both CB[m] and pillar[n]arene were employed for fabricating advanced supramolecular self-assemblies such as mechanically interlocked molecules and supramolecular polymers. In those self-assemblies, CB[m] and pillar[n]arene played significant roles in, e.g., microreactor for catalyzing particular reactions to bridge different small pieces together, molecular "joint" to connect different monomers into larger assemblies, and "stabilizer" in accommodating the guest molecules to adopt a favorite structure geometry ready for assembling.
Collapse
Affiliation(s)
- Zhaona Liu
- Medical School, Xi’an Peihua University, Xi’an 710125, China;
| | - Zhizheng Li
- School of Chemical Engineering and Technology, Xi’an Jiaotong University, Xi’an 710049, China; (Z.L.); (B.L.); (L.Z.)
| | - Bing Li
- School of Chemical Engineering and Technology, Xi’an Jiaotong University, Xi’an 710049, China; (Z.L.); (B.L.); (L.Z.)
| | - Le Zhou
- School of Chemical Engineering and Technology, Xi’an Jiaotong University, Xi’an 710049, China; (Z.L.); (B.L.); (L.Z.)
| | - Huacheng Zhang
- School of Chemical Engineering and Technology, Xi’an Jiaotong University, Xi’an 710049, China; (Z.L.); (B.L.); (L.Z.)
| | - Jie Han
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
11
|
Wang J, Cen M, Wang J, Wang D, Ding Y, Zhu G, Lu B, Yuan X, Wang Y, Yao Y. Water-soluble pillar[4]arene[1]quinone: Synthesis, host-guest property and application in the fluorescence turn-on sensing of ethylenediamine in aqueous solution, organic solvent and air. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.08.044] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
12
|
Photodimerization-induced transition of helixes to vesicles based on coumarin-12-crown-4. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2021.12.051] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
13
|
Liu H, Lin M, Cui Y, Gan W, Sun J, Li B, Zhao Y. Single-crystal structures of cucurbituril-based supramolecular host-guest complexes for bioimaging. Chem Commun (Camb) 2021; 57:10190-10193. [PMID: 34519729 DOI: 10.1039/d1cc04823f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Two single-crystal structures of cucurbit[n]uril mediated supramolecular complexes were obtained in which [1+3] and [2+3] self-assembly modes are adopted due to the different sizes of cucurbit[7]uril and cucurbit[8]uril. An obvious red-shift in absorption and emission was observed compared to the guest molecule itself which makes them good biolabels.
Collapse
Affiliation(s)
- Hui Liu
- College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China.
| | - Min Lin
- College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China.
| | - Yu Cui
- College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China.
| | - Weijin Gan
- College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China.
| | - Jing Sun
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China.
| | - Bo Li
- Department of Cardiology, Zibo Central Hospital, Shandong University, Zibo 255000, P. R. China.
| | - Yingjie Zhao
- College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China.
| |
Collapse
|
14
|
Liu G, Xu X, Dai X, Jiang C, Zhou Y, Lu L, Liu Y. Cucurbituril-activated photoreaction of dithienylethene for controllable targeted lysosomal imaging and anti-counterfeiting. MATERIALS HORIZONS 2021; 8:2494-2502. [PMID: 34870307 DOI: 10.1039/d1mh00811k] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Supramolecular macrocycle-mediated photoreaction has been a research hotspot recently. Herein, we fabricated a photo-responsive intelligent supramolecular assembly that consisted of a water-soluble dithienylethene derivative (DTE-MPBT) and cucurbit[n]urils (CB[n]). Importantly, CB[n], especially CB[8], could act as activators and trigger conformational alteration of the arm parts (typical molecular rotors) of DTE-MPBT, achieving dual functions, i.e. high-efficiency visible-light-cyclization reaction of the DTE core and fluorescence enhancement of DTE-MPBT, resulting in the formation of a dual visible light-driven fluorescent switch. These unexpected discoveries prompted the supramolecular assembly to be applied to dual-visible-light-controlled targeted lysosomal imaging and QR code information recognition. Moreover, the solid-state assembly exhibited more outstanding fluorescence and visible-light-switched fluorescence performance because of the host-guest-induced aggregation synergistic effect, showing fascinating applications, such as light-manipulative data storage and anti-counterfeiting. In brief, we unprecedentedly adopted a supramolecular strategy of "killing two birds with one stone", i.e. assembly-activated photochromism (AAP) and assembly-activated emission enhancement (AAEE), to fabricate dual-visible-light-driven fluorescent switches, which show promising application prospects in biomimetic smart nanomaterials based on supramolecular self-assembly systems.
Collapse
Affiliation(s)
- Guoxing Liu
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, P. R. China.
- College of Science, Henan Agricultural University, Zhengzhou, Henan 450002, P. R. China
| | - Xiufang Xu
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, P. R. China.
| | - Xianyin Dai
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, P. R. China.
| | - Chunhui Jiang
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, P. R. China.
| | - Yu Zhou
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, P. R. China.
| | - Lei Lu
- College of Information Science and Engineering, Henan University of Technology, Zhengzhou 450001, P. R. China
| | - Yu Liu
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, P. R. China.
| |
Collapse
|
15
|
Zhang ZY, Chen Y, Zhou Y, Liu Y. Tunable Supramolecular Nanoarchitectures Constructed by the Complexation of Diphenanthro-24-Crown-8/Cesium(I) with Nickel(II) and Silver(I) Ions. Chempluschem 2020; 84:161-165. [PMID: 31950690 DOI: 10.1002/cplu.201900002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 01/09/2019] [Indexed: 12/18/2022]
Abstract
Tunable supramolecular nanoarchitectures have received enormous attention because of their potential in materials fabrication. Herein, a variety of morphologically intriguing nanoarchitectures have been constructed from diphenanthro-24-crown-8 ether (DPC) and metal ions. SEM and TEM showed that the self-assembled nanofibers undergo a CsI -induced transformation into regular nanoribbons, and further into nanospheres and nanoparticles by the complexation of NiII and AgI ions because of the strong ion-dipole interaction. Moreover, the X-ray crystal structure determination and powder X-diffraction data further confirmed that these morphological transformations resulted from the different complexation between DPC and metal ions. This result provides a new strategy for the subtle manipulation of supramolecular assemblies.
Collapse
Affiliation(s)
- Zhi-Yuan Zhang
- Department of Chemistry State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Yong Chen
- Department of Chemistry State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Yan Zhou
- Department of Chemistry State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Yu Liu
- Department of Chemistry State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, P. R. China.,Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin, 300071, P. R. China
| |
Collapse
|
16
|
Li FQ, Yu QL, Liu YH, Yu HJ, Chen Y, Liu Y. Highly efficient photocontrolled targeted delivery of siRNA by a cyclodextrin-based supramolecular nanoassembly. Chem Commun (Camb) 2020; 56:3907-3910. [DOI: 10.1039/d0cc00629g] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
A binary supramolecular nanoassembly that can efficiently load siRNA into A549 cancer cells and inhibited cell growth by photo-irradiation was fabricated using α-CD-modified hyaluronic acid and an azobenzene-modified diphenylalanine derivative.
Collapse
Affiliation(s)
- Feng-Qing Li
- College of Chemistry
- State Key Laboratory of Elemento-Organic Chemistry
- Nankai University
- Tianjin 300071
- China
| | - Qi-Lin Yu
- College of Chemistry
- State Key Laboratory of Elemento-Organic Chemistry
- Nankai University
- Tianjin 300071
- China
| | - Yao-Hua Liu
- College of Chemistry
- State Key Laboratory of Elemento-Organic Chemistry
- Nankai University
- Tianjin 300071
- China
| | - Hua-Jiang Yu
- College of Chemistry
- State Key Laboratory of Elemento-Organic Chemistry
- Nankai University
- Tianjin 300071
- China
| | - Yong Chen
- College of Chemistry
- State Key Laboratory of Elemento-Organic Chemistry
- Nankai University
- Tianjin 300071
- China
| | - Yu Liu
- College of Chemistry
- State Key Laboratory of Elemento-Organic Chemistry
- Nankai University
- Tianjin 300071
- China
| |
Collapse
|
17
|
Chen G, Zhang G, Jin B, Luo M, Luo Y, Aya S, Li X. Supramolecular Hexagonal Platelet Assemblies with Uniform and Precisely-Controlled Dimensions. J Am Chem Soc 2019; 141:15498-15503. [DOI: 10.1021/jacs.9b08316] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
| | | | | | | | | | - Satoshi Aya
- RIKEN Centre for Emergent Matter Science, Saitama 351-0198, Japan
| | | |
Collapse
|
18
|
Yuan T, Qu X, Cui X, Sun J. Self-Healing and Recyclable Hydrogels Reinforced with in Situ-Formed Organic Nanofibrils Exhibit Simultaneously Enhanced Mechanical Strength and Stretchability. ACS APPLIED MATERIALS & INTERFACES 2019; 11:32346-32353. [PMID: 31407576 DOI: 10.1021/acsami.9b08208] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
In this work, self-healing and recyclable polymer hydrogels with simultaneously enhanced mechanical strength and stretchability are fabricated through the complexation of poly(acrylic acid) (PAA) with complexes of branched poly(ethylenimine) and 1-pyrenybutyric acid (PEI-PYA) to generate PAA/PEI-PYA complexes, which are further molded, dried, and rehydrated. The in situ-formed PYA nanofibrils with aggregated structures during the complexation process enable the simultaneous enhancement of the tensile strength and stretchability of the PAA/PEI-PYA hydrogels. The PAA/PEI-PYA hydrogels have a tensile strength of 1.13 ± 0.04 MPa and stretchability of 2970 ± 154%, which are 2.2 and 2.1 times higher than those of the PAA/PEI hydrogels. Meanwhile, the damaged PAA/PEI-PYA hydrogels can be efficiently healed or recycled at room temperature to regain their original mechanical strength and integrity because the dynamic nature of hydrogen-bonding and electrostatic interactions among PAA, PEI, and PYA endows the hydrogels with excellent healing and recycling capacity. This strategy of using aggregated nanofibrils to simultaneously enhance the tensile strength and stretchability of hydrogels can be extended to PAA/PEI hydrogels reinforced with aggregated nanofibrils of 9-anthracenecarboxylic acid and N,N'-di(propanoic acid)-perylene-3,4,9,10-tetracarboxylic diimide, demonstrating its generality for fabricating hydrogels with enhanced mechanical properties.
Collapse
Affiliation(s)
- Tao Yuan
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry , Jilin University , Changchun 130012 , P. R. China
| | - Xinxin Qu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry , Jilin University , Changchun 130012 , P. R. China
| | - Xinming Cui
- Department of Pathology, College of Basic Medical Science , Jilin University , Changchun 130021 , P. R. China
| | - Junqi Sun
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry , Jilin University , Changchun 130012 , P. R. China
| |
Collapse
|
19
|
Yao K, Yuan Q, Qu X, Liu Y, Liu D, Zhang W. Pd-catalyzed asymmetric allylic substitution cascade using α-(pyridin-1-yl)-acetamides formed in situ as nucleophiles. Chem Sci 2019; 10:1767-1772. [PMID: 30842843 PMCID: PMC6369409 DOI: 10.1039/c8sc04626c] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 12/01/2018] [Indexed: 12/13/2022] Open
Abstract
A Pd-catalyzed asymmetric allylic substitution cascade reaction, using α-(pyridin-1-yl)-acetamides (formed in situ) as nucleophiles, has been developed, generating chiral piperidine-containing amino acid derivatives via a one-pot procedure in high yields and with up to 96% ee. The products can be easily converted into potential bioactive compounds, unnatural chiral amino acids and dipeptides.
Collapse
Affiliation(s)
- Kun Yao
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs , School of Pharmacy , Shanghai Jiao Tong University , 800 Dongchuan Road , Shanghai 200240 , P. R. China . ;
| | - Qianjia Yuan
- School of Chemistry and Chemical Engineering , Shanghai Jiao Tong University , 800 Dongchuan Road , Shanghai 200240 , P. R. China
| | - Xingxin Qu
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs , School of Pharmacy , Shanghai Jiao Tong University , 800 Dongchuan Road , Shanghai 200240 , P. R. China . ;
| | - Yangang Liu
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs , School of Pharmacy , Shanghai Jiao Tong University , 800 Dongchuan Road , Shanghai 200240 , P. R. China . ;
| | - Delong Liu
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs , School of Pharmacy , Shanghai Jiao Tong University , 800 Dongchuan Road , Shanghai 200240 , P. R. China . ;
| | - Wanbin Zhang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs , School of Pharmacy , Shanghai Jiao Tong University , 800 Dongchuan Road , Shanghai 200240 , P. R. China . ;
- School of Chemistry and Chemical Engineering , Shanghai Jiao Tong University , 800 Dongchuan Road , Shanghai 200240 , P. R. China
| |
Collapse
|
20
|
Liu Y, Shi K, Ma D. Water-Soluble Pillar[n]arene Mediated Supramolecular Self-Assembly: Multi-Dimensional Morphology Controlled by Host Size. Chem Asian J 2019; 14:307-312. [PMID: 30520241 DOI: 10.1002/asia.201801705] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Indexed: 11/08/2022]
Abstract
We report tunable supramolecular self-assemblies formed by water-soluble pillar[n]arenes (WPns, n=5-7) and bipyridinium-azobenzene guests. Nanoscale or microscale morphology of self-assemblies in water was controlled by the host size of WPn. Supramolecular self-assemblies could undergo morphology conversion under irradiation with UV light.
Collapse
Affiliation(s)
- Yamin Liu
- Department of Chemistry, Fudan University, 220 Handan Road, Shanghai, 200433, China
| | - Kejia Shi
- Department of Chemistry, Fudan University, 220 Handan Road, Shanghai, 200433, China
| | - Da Ma
- Department of Chemistry, Fudan University, 220 Handan Road, Shanghai, 200433, China
| |
Collapse
|
21
|
Zhu Y, Xu L, Wang L, Tang H, Cao D. Effect of scaffold structures on the artificial light-harvesting systems: a case study with an AIEE-active pillar[5]arene dyad. Chem Commun (Camb) 2019; 55:5910-5913. [DOI: 10.1039/c9cc02585e] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The presence of a supramolecular polymeric scaffold structure enhanced the energy transfer capacity of the artificial light-harvesting nanoparticles.
Collapse
Affiliation(s)
- Yao Zhu
- State Key Laboratory of Luminescent Materials and Devices
- School of Chemistry and Chemical Engineering
- South China University of Technology
- Guangzhou 510641
- China
| | - Linxian Xu
- State Key Laboratory of Luminescent Materials and Devices
- School of Chemistry and Chemical Engineering
- South China University of Technology
- Guangzhou 510641
- China
| | - Lingyun Wang
- State Key Laboratory of Luminescent Materials and Devices
- School of Chemistry and Chemical Engineering
- South China University of Technology
- Guangzhou 510641
- China
| | - Hao Tang
- State Key Laboratory of Luminescent Materials and Devices
- School of Chemistry and Chemical Engineering
- South China University of Technology
- Guangzhou 510641
- China
| | - Derong Cao
- State Key Laboratory of Luminescent Materials and Devices
- School of Chemistry and Chemical Engineering
- South China University of Technology
- Guangzhou 510641
- China
| |
Collapse
|
22
|
|
23
|
Li X, Wang L, Deng Y, Luo Z, Zhang Q, Dong S, Han C. Preparation of cross-linked supramolecular polymers based on benzo-21-crown-7/secondary ammonium salt host-guest interactions. Chem Commun (Camb) 2018; 54:12459-12462. [PMID: 30335096 DOI: 10.1039/c8cc07657j] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We found that TC7 not only self-assembles into one-dimensional supramolecular aggregates in chloroform, but also forms cross-linked supramolecular polymers via host-guest complexation between benzo-21-crown-7 and secondary ammonium salts. Compared with one-dimensional linear supramolecular polymers, soft and long viscous fibers were pulled out from a concentrated solution of cross-linked supramolecular polymers as a result of higher viscosity and lower diffusion coefficients.
Collapse
Affiliation(s)
- Xing Li
- College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, Hunan, P. R. China.
| | | | | | | | | | | | | |
Collapse
|
24
|
Zhang D, Yang C, Niu Z, Wang C, Mukherjee S, Wang D, Li X, Liu R, Gao J, Chen Y. Construction of Crowning β-cyclodextrin with Temperature Response and Efficient Properties of Host-Guest Inclusion. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:11567-11574. [PMID: 30153028 DOI: 10.1021/acs.langmuir.8b02293] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Promoting a drug inclusion proportion in hydrophobic cavity of β-cyclodextrin using simple methods is a highly ambitious task. Herein, we report the crowning β-cyclodextrins formed by intramolecular hydrogen bonding interaction, which has greatly prolonged the cavity depth of β-cyclodextrin, and therefore further efficiently improved the inclusion proportion to complex drug molecule (vitamin E). Furthermore, the self-assembly behaviors, controllable release, and antioxidant properties of vitamin E embedded into the cavity of crowning β-cyclodextrins was investigated, and host-guest inclusions exhibited temperature-responsive controlled release, excellent antioxidant activity, and photostability.
Collapse
Affiliation(s)
- Dongmei Zhang
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering , Jiangnan University , Wuxi 214122 , China
| | - Cheng Yang
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering , Jiangnan University , Wuxi 214122 , China
| | - Ziru Niu
- The Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering , Shaanxi Normal University , Xi'an 710062 , China
| | - Changhao Wang
- The Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering , Shaanxi Normal University , Xi'an 710062 , China
| | - Somnath Mukherjee
- The Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering , Shaanxi Normal University , Xi'an 710062 , China
| | - Dan Wang
- The Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering , Shaanxi Normal University , Xi'an 710062 , China
| | - Xi Li
- The Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering , Shaanxi Normal University , Xi'an 710062 , China
| | - Ruiqi Liu
- The Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering , Shaanxi Normal University , Xi'an 710062 , China
| | - Jin Gao
- The Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering , Shaanxi Normal University , Xi'an 710062 , China
| | - Yashao Chen
- The Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering , Shaanxi Normal University , Xi'an 710062 , China
| |
Collapse
|
25
|
Chen Y, Huang F, Li ZT, Liu Y. Controllable macrocyclic supramolecular assemblies in aqueous solution. Sci China Chem 2018. [DOI: 10.1007/s11426-018-9337-4] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
26
|
Wang S, Wang J, Xu G, Wei L, Fu B, Wu L, Song Y, Yang X, Li C, Liu S, Zhou X. The Cucurbit[7]Uril-Based Supramolecular Chemistry for Reversible B/Z-DNA Transition. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2018; 5:1800231. [PMID: 30027051 PMCID: PMC6051393 DOI: 10.1002/advs.201800231] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Revised: 03/07/2018] [Indexed: 06/08/2023]
Abstract
As a left-handed helical structure, Z-DNA is biologically active and it may be correlated with transcription and genome stability. Until recently, it remained a significant challenge to control the B/Z-DNA transition under physiological conditions. The current study represents the first to reversibly control B/Z-DNA transition using cucurbit[7]uril-based supramolecular approach. It is demonstrated that cucurbit[7]uril can encapsulate the central butanediamine moiety [HN(CH2)4NH] and reverses Z-DNA caused by spermine back to B-DNA. The subsequent treatment with 1-adamantanamine disassembles the cucurbit[7]uril/spermine complex and readily induces reconversion of B- into Z-DNA. The DNA conformational change is unequivocally demonstrated using different independent methods. Direct evidence for supramolecular interactions involved in DNA conformational changes is further provided. These findings can therefore open a new route to control DNA helical structure in a reversible way.
Collapse
Affiliation(s)
- Shao‐Ru Wang
- College of Chemistry and Molecular SciencesKey Laboratory of Biomedical Polymers of Ministry of EducationWuhan UniversityWuhan430072HubeiChina
| | - Jia‐Qi Wang
- College of Chemistry and Molecular SciencesKey Laboratory of Biomedical Polymers of Ministry of EducationWuhan UniversityWuhan430072HubeiChina
| | - Guo‐Hua Xu
- Key Laboratory of Magnetic Resonance in Biological SystemsState Key Laboratory of Magnetic Resonance and Atomic and Molecular PhysicsWuhan Institute of Physics and MathematicsChinese Academy of SciencesWuhan430071HubeiChina
| | - Lai Wei
- College of Chemistry and Molecular SciencesKey Laboratory of Biomedical Polymers of Ministry of EducationWuhan UniversityWuhan430072HubeiChina
| | - Bo‐Shi Fu
- College of Chemistry and Molecular SciencesKey Laboratory of Biomedical Polymers of Ministry of EducationWuhan UniversityWuhan430072HubeiChina
| | - Ling‐Yu Wu
- College of Chemistry and Molecular SciencesKey Laboratory of Biomedical Polymers of Ministry of EducationWuhan UniversityWuhan430072HubeiChina
| | - Yan‐Yan Song
- College of Chemistry and Molecular SciencesKey Laboratory of Biomedical Polymers of Ministry of EducationWuhan UniversityWuhan430072HubeiChina
| | - Xi‐Ran Yang
- College of Chemical Engineering and TechnologyWuhan University of Science and TechnologyWuhan430081HubeiChina
| | - Conggang Li
- Key Laboratory of Magnetic Resonance in Biological SystemsState Key Laboratory of Magnetic Resonance and Atomic and Molecular PhysicsWuhan Institute of Physics and MathematicsChinese Academy of SciencesWuhan430071HubeiChina
| | - Si‐Min Liu
- College of Chemical Engineering and TechnologyWuhan University of Science and TechnologyWuhan430081HubeiChina
| | - Xiang Zhou
- College of Chemistry and Molecular SciencesKey Laboratory of Biomedical Polymers of Ministry of EducationWuhan UniversityWuhan430072HubeiChina
| |
Collapse
|
27
|
Zhu JM, Chen LX, Chen K, Zeng X, Tao Z. Synthesis of a functionalised calix[4]arene and its interactions with hemicucurbit[6,7]urils and cucurbit[8]uril. Tetrahedron 2018. [DOI: 10.1016/j.tet.2018.06.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
28
|
Yang B, Yu SB, Wang H, Zhang DW, Li ZT. 2:2 Complexes from Diphenylpyridiniums and Cucurbit[8]uril: Encapsulation-Promoted Dimerization of Electrostatically Repulsing Pyridiniums. Chem Asian J 2018; 13:1312-1317. [PMID: 29480650 DOI: 10.1002/asia.201701816] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Revised: 01/29/2018] [Indexed: 01/07/2023]
Abstract
Rigid linear compounds G1 and G2, which contained two 4-phenylpyridinium (PhPy+ ) units, have been prepared to investigate their binding with cucurbit[8]uril (CB[8]). X-ray crystallographic structures revealed that in the solid state both compounds were included by CB[8], through antiparallel stacking, to form 2:2 quaternary complexes (G1)2 @(CB[8])2 and (G2)2 @(CB[8])2 . For the former complex, CB[8] entrapped G1 by holding two heterodimers of its Py+ and benzyl units, which were at opposite ends of the backbone. In contrast, for the first time, the second complex disclosed parallel stacking of two cationic Py+ units of G2 in the cavity of CB[8] in the solid state, despite the generation of important electrostatic repulsion. Isothermal titrations in water afforded high apparent association constants of 4.36×106 and 6.43×106 m-1 for 1:1 complexes G1@CB[8] and G2@CB[8], respectively, and 1 H NMR spectroscopy experiments in D2 O confirmed a similar stacking pattern to that observed in the solid state. A previous study and crystal structures of the 2:1 complexes formed between three new controls, G3-5, and CB[8] did not display such unusual stacking of the cationic Py+ unit; this may be attributed to the multivalency of the two CB[8] encapsulation interactions.
Collapse
Affiliation(s)
- Bo Yang
- Department of Chemistry, Collaborative Innovation Centre of, Chemistry for Energy Materials (iChEM), Shanghai Key, Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, 220 Handan Road, Shanghai, 200433, P.R. China
| | - Shang-Bo Yu
- Department of Chemistry, Collaborative Innovation Centre of, Chemistry for Energy Materials (iChEM), Shanghai Key, Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, 220 Handan Road, Shanghai, 200433, P.R. China
| | - Hui Wang
- Department of Chemistry, Collaborative Innovation Centre of, Chemistry for Energy Materials (iChEM), Shanghai Key, Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, 220 Handan Road, Shanghai, 200433, P.R. China
| | - Dan-Wei Zhang
- Department of Chemistry, Collaborative Innovation Centre of, Chemistry for Energy Materials (iChEM), Shanghai Key, Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, 220 Handan Road, Shanghai, 200433, P.R. China
| | - Zhan-Ting Li
- Department of Chemistry, Collaborative Innovation Centre of, Chemistry for Energy Materials (iChEM), Shanghai Key, Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, 220 Handan Road, Shanghai, 200433, P.R. China
| |
Collapse
|
29
|
Guo Y, Lu J, Kang Q, Wang T, Yu L. Photo-responsive Supra-Amphiphilic Aggregates with Differential Morphology and Fluorescent Property Mediated by the Substituent Position in the Counterions of Bola-Amphiphiles. ChemistrySelect 2018. [DOI: 10.1002/slct.201800350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Yongxian Guo
- Key laboratory of Colloid and Interface Chemistry, Shandong University; Ministry of Education; Jinan 250100, P. R. China
| | - Jie Lu
- Key laboratory of Colloid and Interface Chemistry, Shandong University; Ministry of Education; Jinan 250100, P. R. China
| | - Qi Kang
- College of Chemistry, Chemical Engineering and Materials Science; Shandong Normal University; Jinan 250014, P. R. China
| | - Tao Wang
- Petroleum Engineering Technology Research Institute of Shengli Oilfield, Sinopec; Dongying 257000, P. R. China
| | - Li Yu
- Key laboratory of Colloid and Interface Chemistry, Shandong University; Ministry of Education; Jinan 250100, P. R. China
| |
Collapse
|
30
|
Wang K, Ren XW, Cui JH, Guo JS, Xing SY, Dou HX, Wang MM. Multistimuli Responsive Supramolecular Polymeric Nanoparticles Formed by Calixpyridinium and Chondroitin 4-Sulfate. ChemistrySelect 2018. [DOI: 10.1002/slct.201800570] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Kui Wang
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules; Key Laboratory of Inorganic-Organic Hybrid Functional Materials Chemistry (Tianjin Normal University), Ministry of Education; College of Chemistry; Tianjin Normal University; Tianjin 300387 China
| | - Xiao-Wei Ren
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules; Key Laboratory of Inorganic-Organic Hybrid Functional Materials Chemistry (Tianjin Normal University), Ministry of Education; College of Chemistry; Tianjin Normal University; Tianjin 300387 China
| | - Jian-Hua Cui
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules; Key Laboratory of Inorganic-Organic Hybrid Functional Materials Chemistry (Tianjin Normal University), Ministry of Education; College of Chemistry; Tianjin Normal University; Tianjin 300387 China
| | - Jia-Shuang Guo
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules; Key Laboratory of Inorganic-Organic Hybrid Functional Materials Chemistry (Tianjin Normal University), Ministry of Education; College of Chemistry; Tianjin Normal University; Tianjin 300387 China
| | - Si-Yang Xing
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules; Key Laboratory of Inorganic-Organic Hybrid Functional Materials Chemistry (Tianjin Normal University), Ministry of Education; College of Chemistry; Tianjin Normal University; Tianjin 300387 China
| | - Hong-Xi Dou
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules; Key Laboratory of Inorganic-Organic Hybrid Functional Materials Chemistry (Tianjin Normal University), Ministry of Education; College of Chemistry; Tianjin Normal University; Tianjin 300387 China
| | - Meng-Meng Wang
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules; Key Laboratory of Inorganic-Organic Hybrid Functional Materials Chemistry (Tianjin Normal University), Ministry of Education; College of Chemistry; Tianjin Normal University; Tianjin 300387 China
| |
Collapse
|
31
|
Wang K, Cui JH, Xing SY, Ren XW. A hyaluronidase/temperature dual-responsive supramolecular assembly based on the anionic recognition of calixpyridinium. Chem Commun (Camb) 2018. [PMID: 28631800 DOI: 10.1039/c7cc02693e] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
We have successfully constructed a supramolecular assembly based on the anionic recognition of calixpyridinium for the first time employing native biocompatible polysaccharide hyaluronan as the guest, which showed hyaluronidase-responsive disassembly and temperature-responsive morphological conversion from a nanosphere to a nanosquare upon increasing the temperature.
Collapse
Affiliation(s)
- Kui Wang
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, Key Laboratory of Inorganic-Organic Hybrid Functional Materials Chemistry (Tianjin Normal University), Ministry of Education, College of Chemistry, Tianjin Normal University, Tianjin 300387, P. R. China.
| | | | | | | |
Collapse
|
32
|
Ye R, Cui Q, Yao C, Liu R, Li L. Tunable fluorescence behaviors of a supramolecular system based on a fluorene derivative and cucurbit[8]uril and its application for ATP sensing. Phys Chem Chem Phys 2018; 19:31306-31315. [PMID: 29148551 DOI: 10.1039/c7cp06434a] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In this work, we developed a supramolecular fluorescent system based on host-guest interactions between a fluorene derivative carrying two bispyridinium units (FPy) and cucurbit[8]uril (CB[8]). In aqueous solution, the system showed outstanding tunable emission properties. After being encapsulated into the rigid hydrophobic cavity of the CB[8] host, the fluorescence emission of fluorene had an obvious red-shift with enhanced quantum yield. Interestingly, the emission behavior of the FPy/CB[8] complex showed a two-step self-assembly process when the molar ratio of FPy to CB[8] changed from 1 : 1 to 1 : 2. Besides, the influence of several factors on the emission properties of the FPy/CB[8] complex was also investigated, like pH value, salt concentration, and temperature. Finally, the fluorescent FPy/CB[8] complexes displayed a good performance for detection of adenosine-5'-triphosphate (ATP), which can cause aggregation-induced quenching of the complexes via electrostatic attraction.
Collapse
Affiliation(s)
- Rongqin Ye
- State Key Lab for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China.
| | | | | | | | | |
Collapse
|
33
|
Sang Y, Duan P, Liu M. Nanotrumpets and circularly polarized luminescent nanotwists hierarchically self-assembled from an achiralC3-symmetric ester. Chem Commun (Camb) 2018; 54:4025-4028. [DOI: 10.1039/c8cc02130a] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
An achiralC3-symmetric molecule was found to self-assemble into various hierarchical nanostructures such as nanotwists, nanotrumpets and nanobelts, in which the twisted fibers showed supramolecular chirality as well as circularly polarized luminescence although the compound is achiral.
Collapse
Affiliation(s)
- Yutao Sang
- CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences
- Beijing
- P. R. China
- University of Chinese Academy of Sciences
- Beijing
| | - Pengfei Duan
- National Center for Nanoscience and Technology, China
- P. R. China
| | - Minghua Liu
- CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences
- Beijing
- P. R. China
- University of Chinese Academy of Sciences
- Beijing
| |
Collapse
|
34
|
Zhang CC, Zhang YM, Liu Y. Photocontrolled reversible conversion of a lamellar supramolecular assembly based on cucurbiturils and a naphthalenediimide derivative. Chem Commun (Camb) 2018; 54:13591-13594. [DOI: 10.1039/c8cc08260j] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Lamellar and helical supramolecular assemblies were constructed using cucurbiturils and a naphthalenediimide derivative. The formation of the lamellar assembly could be reversibly photocontrolled.
Collapse
Affiliation(s)
- Cai-Cai Zhang
- College of Chemistry
- State Key Laboratory of Elemento-Organic Chemistry
- Nankai University
- Tianjin 300071
- China
| | - Ying-Ming Zhang
- College of Chemistry
- State Key Laboratory of Elemento-Organic Chemistry
- Nankai University
- Tianjin 300071
- China
| | - Yu Liu
- College of Chemistry
- State Key Laboratory of Elemento-Organic Chemistry
- Nankai University
- Tianjin 300071
- China
| |
Collapse
|
35
|
pH-Switched fluorescent pseudo rotaxane assembly of cucurbit[7]uril with bispyridinium ethylene derivatives. CHINESE CHEM LETT 2018. [DOI: 10.1016/j.cclet.2017.08.049] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
36
|
Wang SR, Song YY, Wei L, Liu CX, Fu BS, Wang JQ, Yang XR, Liu YN, Liu SM, Tian T, Zhou X. Cucurbit[7]uril-Driven Host-Guest Chemistry for Reversible Intervention of 5-Formylcytosine-Targeted Biochemical Reactions. J Am Chem Soc 2017; 139:16903-16912. [PMID: 29091409 DOI: 10.1021/jacs.7b09635] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
5-Formylcytosine (5fC) is identified as one of the key players in active DNA demethylation and also as an epigenetic mark in mammals, thus representing a novel attractive target to chemical intervention. The current study represents an attempt to develop a reversible 5fC-targeted intervention tool. A supramolecular aldehyde reactive probe was therefore introduced for selective conversion of the 5fC to 5fC-AD nucleotide. Using various methods, we demonstrate that cucurbit[7]uril (CB7) selectively targets the 5fC-AD nucleotide in DNA, however, the binding of CB7 to 5fC-AD does not affect the hydrogen bonding properties of natural nucleobases in duplex DNA. Importantly, CB7-driven host-guest chemistry has been applied for reversible intervention of a variety of 5fC-targeted biochemical reactions, including restriction endonuclease digestion, DNA polymerase elongation, and polymerase chain reaction. On the basis of the current study, the macrocyclic CB7 creates obstructions that, through steric hindrance, prevent the enzyme from binding to the substrate, whereas the CB7/5fC-AD host-guest interactions can be reversed by treatment with adamantanamine. Moreover, fragment- and site-specific identification of 5fC modification in DNA has been accomplished without sequence restrictions. These findings thus show promising potential of host-guest chemistry for DNA/RNA epigenetics.
Collapse
Affiliation(s)
- Shao-Ru Wang
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, Wuhan University , Wuhan 430072, Hubei, China
| | - Yan-Yan Song
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, Wuhan University , Wuhan 430072, Hubei, China
| | - Lai Wei
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, Wuhan University , Wuhan 430072, Hubei, China
| | - Chao-Xing Liu
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, Wuhan University , Wuhan 430072, Hubei, China
| | - Bo-Shi Fu
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, Wuhan University , Wuhan 430072, Hubei, China
| | - Jia-Qi Wang
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, Wuhan University , Wuhan 430072, Hubei, China
| | - Xi-Ran Yang
- College of Chemical Engineering and Technology, Wuhan University of Science and Technology , Wuhan 430081, Hubei, China
| | - Yi-Nong Liu
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, Wuhan University , Wuhan 430072, Hubei, China
| | - Si-Min Liu
- College of Chemical Engineering and Technology, Wuhan University of Science and Technology , Wuhan 430081, Hubei, China
| | - Tian Tian
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, Wuhan University , Wuhan 430072, Hubei, China
| | - Xiang Zhou
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, Wuhan University , Wuhan 430072, Hubei, China
| |
Collapse
|
37
|
Krishnan SB, Gopidas KR. Observation of Supramolecular Chirality in a Hierarchically Self‐Assembled Mixed‐Stack Charge‐Transfer Complex. Chemistry 2017; 23:9600-9606. [DOI: 10.1002/chem.201701123] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Indexed: 01/22/2023]
Affiliation(s)
- Sumesh Babu Krishnan
- Photosciences and Photonics SectionChemical Sciences and Technology DivisionCSIR-National Institute for Interdisciplinary Science and Technology, Trivandrum 695 019 India
- Academy of Scientific and Innovative Research (AcSIR) New Delhi 110001 India
| | - Karical Raman Gopidas
- Photosciences and Photonics SectionChemical Sciences and Technology DivisionCSIR-National Institute for Interdisciplinary Science and Technology, Trivandrum 695 019 India
- Academy of Scientific and Innovative Research (AcSIR) New Delhi 110001 India
| |
Collapse
|
38
|
Hou C, Huang Z, Fang Y, Liu J. Construction of protein assemblies by host–guest interactions with cucurbiturils. Org Biomol Chem 2017; 15:4272-4281. [DOI: 10.1039/c7ob00686a] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Protein assembly is important in nature and bionics. Herein, we have reviewed the recent progress in protein assemblies induced by cucurbituril-based supramolecular interactions and their applications.
Collapse
Affiliation(s)
- Chunxi Hou
- State Key laboratory of Supramolecular Structure and Materials
- College of Chemistry
- Jilin University
- Changchun 130012
- China
| | - Zupeng Huang
- State Key laboratory of Supramolecular Structure and Materials
- College of Chemistry
- Jilin University
- Changchun 130012
- China
| | - Yu Fang
- State Key laboratory of Supramolecular Structure and Materials
- College of Chemistry
- Jilin University
- Changchun 130012
- China
| | - Junqiu Liu
- State Key laboratory of Supramolecular Structure and Materials
- College of Chemistry
- Jilin University
- Changchun 130012
- China
| |
Collapse
|
39
|
Wu J, Xu Y, Li D, Ma X, Tian H. End-to-end assembly and disassembly of gold nanorods based on photo-responsive host–guest interaction. Chem Commun (Camb) 2017; 53:4577-4580. [DOI: 10.1039/c7cc01678f] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The end-to-end assembly and disassembly of gold nanorods were realized via HS-β-CD recognition and controllable by both UV light irradiation and guest competition.
Collapse
Affiliation(s)
- Jie Wu
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals
- College of Chemistry and Molecular Engineering
- East China University of Science & Technology
- Shanghai 200237
- P. R. China
| | - Yun Xu
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals
- College of Chemistry and Molecular Engineering
- East China University of Science & Technology
- Shanghai 200237
- P. R. China
| | - Dengfeng Li
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals
- College of Chemistry and Molecular Engineering
- East China University of Science & Technology
- Shanghai 200237
- P. R. China
| | - Xiang Ma
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals
- College of Chemistry and Molecular Engineering
- East China University of Science & Technology
- Shanghai 200237
- P. R. China
| | - He Tian
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals
- College of Chemistry and Molecular Engineering
- East China University of Science & Technology
- Shanghai 200237
- P. R. China
| |
Collapse
|
40
|
Yang LP, Jia F, Pan F, Pan ZS, Rissanen K, Jiang W. Effects of side chains of oxatub[4]arene on its conformational interconversion, molecular recognition and macroscopic self-assembly. Chem Commun (Camb) 2017; 53:12572-12575. [DOI: 10.1039/c7cc07630d] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The side-chain length of oxatub[4]arenes was shown to affect its conformational interconversion, molecular recognition and macroscopic self-assembly behavior.
Collapse
Affiliation(s)
- Liu-Pan Yang
- Department of Chemistry
- South University of Science and Technology of China
- Shenzhen
- China
| | - Fei Jia
- Department of Chemistry
- South University of Science and Technology of China
- Shenzhen
- China
- Institut für Chemie und Biochemie
| | - Fangfang Pan
- College of Chemistry
- Central China Normal University Wuhan
- China
| | - Zhi-Sheng Pan
- Department of Chemistry
- South University of Science and Technology of China
- Shenzhen
- China
| | - Kari Rissanen
- Department of Chemistry and Nanoscience Center
- University of Jyvaskyla
- Jyvaskyla
- Finland
| | - Wei Jiang
- Department of Chemistry
- South University of Science and Technology of China
- Shenzhen
- China
| |
Collapse
|