1
|
Yamaoka K, Fujii Y, Torikai N. Sol-Gel Transition of a Thermo-Responsive Polymer at the Closest Solid Interface. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:17405-17409. [PMID: 39106317 DOI: 10.1021/acs.langmuir.4c01522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/09/2024]
Abstract
Thermo-responsive polymers are applied as surface modifications for the temperature switching of hydrophilic and hydrophobic properties through adsorption and grafting on solid substrates. The current understanding of the influence of polymer chains bound to the solid surface on the transition behavior of thermo-responsive polymers is rather restricted. In this study, we aim to elucidate the effect of the bound polymer chains at the interface on the thermo-responsive sol-gel transition behavior of aqueous methylcellulose (MC) solutions by employing a quartz crystal microbalance (QCM) to evaluate the shear modulus near the solid interface. When the sample thickness was thinner on the order of the millimeter scale, the sol-gel transition temperature evaluated by the cloud point decreased because the condensation of MC near the solid interface promoted the sol-gel transition. On the other hand, focusing on the closest solid interface on the nanometer scale by QCM, the sol-gel transition temperature increased when approaching the solid interface. Adsorption and interfacial interactions reduced the chain mobility and restrained the sol-gel transition by preventing MC chain aggregation. We demonstrated the physical properties evaluation at the closest interface between the thermo-responsive polymer and solid substrate by combining a simple analytical model of QCM and controlling the analytical depth of the QCM sensors. In conclusion, the mobility change of the bound polymer chains at the solid interface caused by adsorption and interfacial interactions must be considered when a thermo-responsive polymer is applied as in adsorbed or thin films on solid substrates for the functionalization of biomaterials.
Collapse
Affiliation(s)
- Kenji Yamaoka
- Department of Chemistry for Materials, Graduate School of Engineering, Mie University, Tsu, Mie 514-8507, Japan
| | - Yoshihisa Fujii
- Department of Chemistry for Materials, Graduate School of Engineering, Mie University, Tsu, Mie 514-8507, Japan
| | - Naoya Torikai
- Department of Chemistry for Materials, Graduate School of Engineering, Mie University, Tsu, Mie 514-8507, Japan
| |
Collapse
|
2
|
Zhan Y, Broer DJ, Li J, Xue J, Liu D. A cold-responsive liquid crystal elastomer provides visual signals for monitoring a critical temperature decrease. MATERIALS HORIZONS 2023. [PMID: 37098874 DOI: 10.1039/d3mh00271c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Critical temperature indicators have been extensively utilized in various fields, ranging from healthcare to food safety. However, the majority of the temperature indicators are designed for upper critical temperature monitoring, indicating when the temperature rises and exceeds a predefined limit, whereas stringently demanded low critical temperature indicators are scarcely developed. Herein, we develop a new material and system that monitor temperature decrease, e.g., from ambient temperature to the freezing point, or even to an ultra-low temperature of -20 °C. For this purpose, we create a dynamic membrane which can open and close during temperature cycles from high temperature to low temperature. This membrane consists of a gold-liquid crystal elastomer (Au-LCE) bilayer structure. Unlike the commonly used thermo-responsive LCEs which actuate upon temperature rise, our LCE is cold-responsive. This means that geometric deformations occur when the environmental temperature decreases. Specifically, upon temperature decrease the LCE creates stresses at the gold interface by uniaxial deformation due to expansion along the molecular director and shrinkage perpendicular to it. At a critical stress, optimized to occur at the desired temperature, the brittle Au top layer fractures, which allows contact between the LCE and material on top of the gold layer. Material transport via cracks enables the onset of the visible signal for instance caused by a pH indicator substance. We apply the dynamic Au-LCE membrane for cold-chain applications, indicating the loss of the effectiveness of perishable goods. We anticipate that our newly developed low critical temperature/time indicator will be shortly implemented in supply chains to minimize food and medical product waste.
Collapse
Affiliation(s)
- Yuanyuan Zhan
- Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, Groene Loper 3, 5612 AE Eindhoven, The Netherlands.
- Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Groene Loper 3, 5612 AE Eindhoven, The Netherlands
| | - Dirk J Broer
- Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, Groene Loper 3, 5612 AE Eindhoven, The Netherlands.
- Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Groene Loper 3, 5612 AE Eindhoven, The Netherlands
| | - Junyu Li
- Molecular Materials and Nanosystems, Eindhoven University of Technology, Groene Loper 3, 5612 AE Eindhoven, The Netherlands
| | - Jiuzhi Xue
- Smart Liquid Crystal Technologies Co. Ltd, Jiangsu Industrial Technology Research Institute (JITRI), 280 Huangpujiang Road, Chuangshu, 215556, China
| | - Danqing Liu
- Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, Groene Loper 3, 5612 AE Eindhoven, The Netherlands.
- Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Groene Loper 3, 5612 AE Eindhoven, The Netherlands
| |
Collapse
|
3
|
Zhan Y, Broer DJ, Liu D. Perspiring Soft Robotics Skin Constituted by Dynamic Polarity-Switching Porous Liquid Crystal Membrane. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2211143. [PMID: 36608160 DOI: 10.1002/adma.202211143] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/26/2022] [Indexed: 06/17/2023]
Abstract
Secretion of functional fluids is essential for affecting surface properties in ecosystems. The existing polymer membranes that mimic human skin functions are limited to secreting, either apolar or polar, liquid. However, the development of membranes that grant exchange liquid with different polarities remains a grand challenge. This process is prohibited by the mismatch of the polarity between the carrier polymer and the loaded liquid. To conquer this limitation, an innovative strategy is reported to dynamically switch the polarity of the porous membrane, thereby empowering the exchange of apolar liquid with polar liquid and vice versa. This approach incorporates a benzoic acid derivative into the original apolar polymer network. The benzoic acid dimerizes and forms hydrogen bonds, which supports the molecular alignment, but can be broken into the ionic state when subjected to alkaline treatment, changing the polarity of themembrane. Consequently, the apolar liquid can be replaced with a more polar one. This polar liquid is ejected upon safe-dose UV illumination from the membrane. Reabsorption occurs on demand by illumination of visible light or when left in contact with the membrane, spontaneously in the dark. Based on this, the consumed membrane is replenished with the same or different exchanging liquid.
Collapse
Affiliation(s)
- Yuanyuan Zhan
- Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, Groene Loper 3, Eindhoven, 5612AE, The Netherlands
- Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Groene Loper 3, Eindhoven, 5612AE, The Netherlands
| | - Dirk J Broer
- Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, Groene Loper 3, Eindhoven, 5612AE, The Netherlands
- Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Groene Loper 3, Eindhoven, 5612AE, The Netherlands
| | - Danqing Liu
- Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, Groene Loper 3, Eindhoven, 5612AE, The Netherlands
- Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Groene Loper 3, Eindhoven, 5612AE, The Netherlands
| |
Collapse
|
4
|
Cao L, Huang Y, Parakhonskiy B, Skirtach AG. Nanoarchitectonics beyond perfect order - not quite perfect but quite useful. NANOSCALE 2022; 14:15964-16002. [PMID: 36278502 DOI: 10.1039/d2nr02537j] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Nanoarchitectonics, like architectonics, allows the design and building of structures, but at the nanoscale. Unlike those in architectonics, and even macro-, micro-, and atomic-scale architectonics, the assembled structures at the nanoscale do not always follow the projected design. In fact, they do follow the projected design but only for self-assembly processes producing structures with perfect order. Here, we look at nanoarchitectonics allowing the building of nanostructures without a perfect arrangement of building blocks. Here, fabrication of structures from molecules, polymers, nanoparticles, and nanosheets to polymer brushes, layer-by-layer assembly structures, and hydrogels through self-assembly processes is discussed, where perfect order is not necessarily the aim to be achieved. Both planar substrate and spherical template-based assemblies are discussed, showing the challenging nature of research in this field and the usefulness of such structures for numerous applications, which are also discussed here.
Collapse
Affiliation(s)
- Lin Cao
- Nano-Biotechnology Laboratory, Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium.
| | - Yanqi Huang
- Nano-Biotechnology Laboratory, Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium.
| | - Bogdan Parakhonskiy
- Nano-Biotechnology Laboratory, Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium.
| | - Andre G Skirtach
- Nano-Biotechnology Laboratory, Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium.
| |
Collapse
|
5
|
Zhang D, Liu D, Ubukata T, Seki T. Unconventional Approaches to Light-promoted Dynamic Surface Morphing on Polymer Films. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2021. [DOI: 10.1246/bcsj.20210348] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Dongyu Zhang
- Chemical Engineering and Chemistry, Eindhoven University of Technology, Helix building STO 0.41, Het Kranenveld 14, 5612AZ Eindhoven, The Netherlands
| | - Danqing Liu
- Chemical Engineering and Chemistry, Eindhoven University of Technology, Helix building STO 0.41, Het Kranenveld 14, 5612AZ Eindhoven, The Netherlands
| | - Takashi Ubukata
- Department of Chemistry and Life Science, Graduate School of Engineering Science, Yokohama National University, 79-5 Tokiwadai, Hodogaya, Yokohama 240-8501, Japan
| | - Takahiro Seki
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa, Nagoya 464-8603, Japan
| |
Collapse
|
6
|
Cao H, Dai L, Liu Y, Li X, Yang Z, Deng H. Methacrylic Block Copolymers Containing Liquid Crystalline and Fluorinated Side Chains Capable of Fast Formation of 4 nm Domains. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c00777] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Hui Cao
- School of Microelectronics and State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, China
| | - Le Dai
- School of Microelectronics and State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, China
| | - Yuyun Liu
- School of Microelectronics and State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, China
| | - Xuemiao Li
- School of Microelectronics and State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, China
| | - Zhenyu Yang
- School of Microelectronics and State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, China
| | - Hai Deng
- School of Microelectronics and State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, China
| |
Collapse
|
7
|
Synthesis of well-defined PS-based Azo-liquid crystals with control of phase transitions and photo-behaviors for liquid crystal networks with photomechanical deformation. POLYMER 2020. [DOI: 10.1016/j.polymer.2020.122749] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
8
|
Mukai K, Hara M, Nagano S, Seki T. Formation of High-Density Brush of Liquid Crystalline Polymer Block Associated with Dewetting Process on Amorphous Polymer Film. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:10397-10404. [PMID: 31317747 DOI: 10.1021/acs.langmuir.9b01689] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The understanding of polymer dewetting on solid surfaces is significant in both fundamental polymer physics and practical film technologies. When liquid crystalline (LC) polymers are dewetted, LC ordering is involved in the dewetting process. Here, we report on the characteristic dewetting processes of a diblock copolymer composed of a cyanobiphenyl side chain liquid crystalline polymer (SCLCP) block connected with polystyrene (PS) taking place on a PS base film. Thin films of the block copolymer were prepared by the water-floating method onto the PS film, and the dewetting process is observed in a softened state above the glass transition temperature of the PS. At the smectic A phase temperature of the SCLCP block, the dewetted surface layer generated a flat unique fingering pattern leading to a monolayered (two-dimensional) high-density LC polymer brush through the LC ordering. The important role of the anchoring PS block on the base PS film surface is suggested for the formation of highly stretched LC polymer brush. Above the isotropization temperature, in contrast, ordinary three-dimensional droplet morphologies with smooth round edges were observed. By photo-cross-linking the base PS film, the lateral diffusion rate was significantly reduced. This can be applied to an entropy-driven morphology patterning via dewetting. The polymer brush formation and its spatial controls are expected to provide new opportunities for the modification strategies of polymer surfaces.
Collapse
|
9
|
Liao F, Shi LY, Cheng LC, Lee S, Ran R, Yager KG, Ross CA. Self-assembly of a silicon-containing side-chain liquid crystalline block copolymer in bulk and in thin films: kinetic pathway of a cylinder to sphere transition. NANOSCALE 2018; 11:285-293. [PMID: 30534671 DOI: 10.1039/c8nr07685e] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The self-assembly of a high-χ silicon-containing side-chain liquid crystalline block copolymer (LC BCP) in bulk and in thin films is reported, and the structural transition process from the hexagonally packed cylinder (HEX) to the body-centered cubic structure (BCC) in thin films was examined by both reciprocal and real space experimental methods. The block copolymer, poly(dimethylsiloxane-b-11-(4'-cyanobiphenyl-4-yloxy)undecylmethacrylate) (PDMS-b-P(4CNB11C)MA) with a molecular weight of 19.5 kg mol-1 and a volume fraction of PDMS 27% self-assembled in bulk into a hierarchical nanostructure of sub-20 nm HEX cylinders of PDMS with the P(4CNB11C)MA block exhibiting a smectic LC phase with a 1.61 nm period. The structure remained HEX as the P(4CNB11C)MA block transformed to an isotropic phase at ∼120 °C. In the thin films, the PDMS cylindrical microdomains were oriented in layers parallel to the substrate surface. The LC block formed a smectic LC phase which transformed to an isotropic phase at ∼120 °C, and the microphase-separated nanostructure transformed from HEX to BCC spheres at ∼160 °C. The hierarchical structure as well as the dynamic structural transition of the thin films were characterized using in situ grazing-incidence small-angle X-ray scattering and grazing-incidence wide-angle X-ray scattering. The transient morphologies from the HEX to BCC structure in thin films were captured by scanning electron microscopy and atomic force microscopy, and the transition pathway was described.
Collapse
Affiliation(s)
- Fen Liao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.
| | | | | | | | | | | | | |
Collapse
|
10
|
Seki T. A Wide Array of Photoinduced Motions in Molecular and Macromolecular Assemblies at Interfaces. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2018. [DOI: 10.1246/bcsj.20180076] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Takahiro Seki
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa, Nagoya, Aichi 464-8603, Japan
| |
Collapse
|
11
|
Nagano S. Surface and interface designs in side-chain liquid crystalline polymer systems for photoalignment. Polym J 2018. [DOI: 10.1038/s41428-018-0100-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
12
|
Kawatsuki N, Inada S, Fujii R, Kondo M. Photoinduced Birefringent Pattern and Photoinactivation of Liquid-Crystalline Copolymer Films with Benzoic Acid and Phenylaldehyde Side Groups. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:2089-2095. [PMID: 29320192 DOI: 10.1021/acs.langmuir.7b04096] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
In situ formation of N-benzylideneaniline (NBA) side groups achieved photoinduced cooperative reorientation of photoinactive copolymers with phenylaldehyde (PA) and benzoic acid (BA) side groups doped with 4-methoxyaniline (AN) molecules. Thermally stimulated molecular reorientation of the side groups was generated due to the axis-selective photoreaction of the NBA moieties. Selective coating with AN on the copolymer film formed NBA moieties in the desired region, resulting in a photoinduced birefringent pattern. Additionally, postannealing at an elevated temperature for a long time attained photoinactivation of the reoriented film, and recoating with AN to form NBA achieved the multiple birefringent patterns and repatterning of the reoriented structures. The slow thermal hydrolysis of NBA, which was 50 times slower than the thermally stimulated self-organization of the side groups due to the presence of BA side groups, contributed to the photodurability of the reoriented film and multiple birefringent patterns.
Collapse
Affiliation(s)
- Nobuhiro Kawatsuki
- Department of Applied Chemistry, Graduate School of Engineering, University of Hyogo , Shosha, Himeji 671-2280, Japan
| | - Shogo Inada
- Department of Applied Chemistry, Graduate School of Engineering, University of Hyogo , Shosha, Himeji 671-2280, Japan
| | - Ryosuke Fujii
- Department of Applied Chemistry, Graduate School of Engineering, University of Hyogo , Shosha, Himeji 671-2280, Japan
| | - Mizuho Kondo
- Department of Applied Chemistry, Graduate School of Engineering, University of Hyogo , Shosha, Himeji 671-2280, Japan
| |
Collapse
|
13
|
Shidara Y, Yunoki T, Miura S, Shibasaki Y, Fujimori A. Effect of the isothermal crystallization method on amorphous block copolymers of aromatic polyamides and their packing behavior in two-dimensional films for screening of potential crystallization ability. POLYM ENG SCI 2017. [DOI: 10.1002/pen.24812] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Yusaku Shidara
- Graduate School of Science and Engineering, Faculty of Engineering; Saitama University, 255 Shimo-okubo; Sakura-ku Saitama 338-8570 Japan
| | - Takeru Yunoki
- Department of Functional Materials Science, Faculty of Engineering; Saitama University, 255 Shimo-okubo; Sakura-ku Saitama 338-8570 Japan
| | - Shuntaro Miura
- Graduate School of Science and Engineering, Faculty of Engineering; Saitama University, 255 Shimo-okubo; Sakura-ku Saitama 338-8570 Japan
| | - Yuji Shibasaki
- Department of Chemistry, Faculty of Science & Engineering; Iwate University, 4-3-5 Ueda; Morioka Iwate 020-8552 Japan
- Department of Biological Sciences, Faculty of Science & Engineering; Iwate University, 4-3-5 Ueda; Morioka Iwate, 020-8552 Japan
| | - Atsuhiro Fujimori
- Graduate School of Science and Engineering, Faculty of Engineering; Saitama University, 255 Shimo-okubo; Sakura-ku Saitama 338-8570 Japan
| |
Collapse
|