1
|
Ripenko V, Sham V, Levchenko V, Holovchuk S, Vysochyn D, Klymov I, Kyslyi D, Veselovych S, Zhersh S, Dmytriv Y, Tolmachev A, Sadkova I, Pishel I, Horbatok K, Kosach V, Nikandrova Y, Mykhailiuk PK. Light-enabled scalable synthesis of bicyclo[1.1.1]pentane halides and their functionalizations. NATURE SYNTHESIS 2024; 3:1538-1549. [PMID: 39664797 PMCID: PMC11628397 DOI: 10.1038/s44160-024-00637-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 08/02/2024] [Indexed: 12/13/2024]
Abstract
In 2012, bicyclo[1.1.1]pentanes were demonstrated to be bioisosteres of the benzene ring. Here, we report a general scalable reaction between alkyl iodides and propellane that provides bicyclo[1.1.1]pentane iodides in milligram, gram and even kilogram quantities. The reaction is performed in flow and requires just light; no catalysts, initiators or additives are needed. The reaction is clean enough that, in many cases, evaporation of the reaction mixture provides products in around 90% purity that can be directly used in further transformations without any purification. Combined with the subsequent functionalization, >300 bicyclo[1.1.1]pentanes for medicinal chemistry have been prepared. So far, this is the most general and scalable approach towards functionalized bicyclo[1.1.1]pentanes.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Yurii Dmytriv
- Enamine Ltd., Kyiv, Ukraine
- National Technical University of Ukraine, Igor Sikorsky Kyiv Polytechnic Institute, Kyiv, Ukraine
| | | | | | | | | | | | | | | |
Collapse
|
2
|
Nugent J, López-Francés A, Sterling AJ, Tay MY, Frank N, Mousseau JJ, Duarte F, Anderson EA. α-Amino bicycloalkylation through organophotoredox catalysis. Chem Sci 2024; 15:10918-10925. [PMID: 39027309 PMCID: PMC11253163 DOI: 10.1039/d4sc01368a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 05/29/2024] [Indexed: 07/20/2024] Open
Abstract
Bridged bicycloalkanes such as bicyclo[1.1.1]pentanes (BCPs) and bicyclo[3.1.1]heptanes (BCHeps) are important motifs in contemporary drug design due to their potential to act as bioisosteres of disubstituted benzene rings, often resulting in compounds with improved physicochemical and pharmacokinetic properties. Access to such motifs with proximal nitrogen atoms (i.e. α-amino/amido bicycloalkanes) is highly desirable for drug discovery applications, but their synthesis is challenging. Here we report an approach to α-amino BCPs and BCHeps through the visible-light enabled addition of α-amino radicals to the interbridgehead C-C bonds of [1.1.1] and [3.1.1]propellane respectively. The reaction proceeds under exceptionally mild conditions and displays broad substrate scope, providing access to an array of medicinally-relevant BCP and BCHep products. Experimental and computational mechanistic studies provide evidence for a radical chain pathway which depends critically on the stability of the α-amino radical, as well as effective catalyst turnover.
Collapse
Affiliation(s)
- Jeremy Nugent
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford 12 Mansfield Road Oxford OX1 3TA UK
| | - Adrián López-Francés
- Department of Organic Chemistry I, Faculty of Pharmacy and Lascaray Research Center, University of the Basque Country, UPV/EHU Paseo de la Universidad 7 01006 Vitoria-Gasteiz Spain
| | - Alistair J Sterling
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford 12 Mansfield Road Oxford OX1 3TA UK
| | - Min Yi Tay
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford 12 Mansfield Road Oxford OX1 3TA UK
| | - Nils Frank
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford 12 Mansfield Road Oxford OX1 3TA UK
| | - James J Mousseau
- Pfizer Worldwide Research and Development Eastern Point Road, Groton Connecticut 06340 USA
| | - Fernanda Duarte
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford 12 Mansfield Road Oxford OX1 3TA UK
| | - Edward A Anderson
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford 12 Mansfield Road Oxford OX1 3TA UK
| |
Collapse
|
3
|
Sánchez-Sordo I, Barbeira-Arán S, Fañanás-Mastral M. Enantioselective synthesis of chiral BCPs. Org Chem Front 2024; 11:916-928. [PMID: 38298565 PMCID: PMC10825854 DOI: 10.1039/d3qo01631e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 12/19/2023] [Indexed: 02/02/2024]
Abstract
Bicyclo[1.1.1]pentanes (BCPs) have emerged as an interesting scaffold in drug design. These strained molecules can act as bioisosteres of para-substituted phenyl rings, tert-butyl groups or internal alkynes, leading to drug analogues with enhanced pharmacokinetic and physicochemical properties. Thus, catalytic methodologies for the synthesis of BCPs represent a major goal in modern organic synthesis. In particular, asymmetric transformations that provide chiral BCPs bearing an adjacent stereocenter are particularly valuable to expand the chemical space of this important scaffold. In this article, we discuss the available methodologies for the asymmetric synthesis of α-chiral BCPs, their key mechanistic features and their application in bioisosteric replacements in drug design.
Collapse
Affiliation(s)
- Irene Sánchez-Sordo
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Universidade de Santiago de Compostela 15782 Santiago de Compostela Spain
| | - Sergio Barbeira-Arán
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Universidade de Santiago de Compostela 15782 Santiago de Compostela Spain
| | - Martín Fañanás-Mastral
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Universidade de Santiago de Compostela 15782 Santiago de Compostela Spain
| |
Collapse
|
4
|
Miles SA, Nillama JA, Hunter L. Tinker, Tailor, Soldier, Spy: The Diverse Roles That Fluorine Can Play within Amino Acid Side Chains. Molecules 2023; 28:6192. [PMID: 37687021 PMCID: PMC10489206 DOI: 10.3390/molecules28176192] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/17/2023] [Accepted: 08/17/2023] [Indexed: 09/10/2023] Open
Abstract
Side chain-fluorinated amino acids are useful tools in medicinal chemistry and protein science. In this review, we outline some general strategies for incorporating fluorine atom(s) into amino acid side chains and for elaborating such building blocks into more complex fluorinated peptides and proteins. We then describe the diverse benefits that fluorine can offer when located within amino acid side chains, including enabling 19F NMR and 18F PET imaging applications, enhancing pharmacokinetic properties, controlling molecular conformation, and optimizing target-binding.
Collapse
Affiliation(s)
| | | | - Luke Hunter
- School of Chemistry, The University of New South Wales (UNSW), Sydney 2052, Australia
| |
Collapse
|
5
|
Radhoff N, Daniliuc CG, Studer A. Lewis Acid Catalyzed Formal (3+2)-Cycloaddition of Bicyclo[1.1.0]butanes with Ketenes. Angew Chem Int Ed Engl 2023; 62:e202304771. [PMID: 37166141 DOI: 10.1002/anie.202304771] [Citation(s) in RCA: 65] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/04/2023] [Accepted: 05/11/2023] [Indexed: 05/12/2023]
Abstract
Design, synthesis and application of benzene bioisosteres have attracted a lot of attention in the past 20 years. Recently, bicyclo[2.1.1]hexanes have emerged as highly attractive bioisosteres for ortho- and meta-substituted benzenes. Herein we report a mild, scalable and transition-metal-free protocol for the construction of highly substituted bicyclo[2.1.1]hexan-2-ones through Lewis acid catalyzed (3+2)-cycloaddition of bicyclo[1.1.0]-butane ketones with disubstituted ketenes. The reaction shows high functional group tolerance as documented by the successful preparation of various 3-alkyl-3-aryl as well as 3,3-bisalkyl bicyclo[2.1.1]hexan-2-ones (26 examples, up to 89 % yield). Postfunctionalization of the exocyclic ketone moiety is also demonstrated.
Collapse
Affiliation(s)
- Niklas Radhoff
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität, Corrensstraße 40, 48149, Münster, Germany
| | - Constantin G Daniliuc
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität, Corrensstraße 40, 48149, Münster, Germany
| | - Armido Studer
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität, Corrensstraße 40, 48149, Münster, Germany
| |
Collapse
|
6
|
Denisenko A, Garbuz P, Voloshchuk NM, Holota Y, Al-Maali G, Borysko P, Mykhailiuk PK. 2-Oxabicyclo[2.1.1]hexanes as saturated bioisosteres of the ortho-substituted phenyl ring. Nat Chem 2023:10.1038/s41557-023-01222-0. [PMID: 37277469 PMCID: PMC10396955 DOI: 10.1038/s41557-023-01222-0] [Citation(s) in RCA: 58] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 04/25/2023] [Indexed: 06/07/2023]
Abstract
The ortho-substituted phenyl ring is a basic structural element in chemistry. It is found in more than three hundred drugs and agrochemicals. During the past decade, scientists have tried to replace the phenyl ring in bioactive compounds with saturated bioisosteres to obtain novel patentable structures. However, most of the research in this area has been devoted to the replacement of the para-substituted phenyl ring. Here we have developed saturated bioisosteres of the ortho-substituted phenyl ring with improved physicochemical properties: 2-oxabicyclo[2.1.1]hexanes. Crystallographic analysis revealed that these structures and the ortho-substituted phenyl ring indeed have similar geometric properties. Replacement of the phenyl ring in marketed agrochemicals fluxapyroxad (BASF) and boscalid (BASF) with 2-oxabicyclo[2.1.1]hexanes dramatically improved their water solubility, reduced lipophilicity and most importantly retained bioactivity. This work suggests an opportunity for chemists to replace the ortho-substituted phenyl ring in bioactive compounds with saturated bioisosteres in medicinal chemistry and agrochemistry.
Collapse
Affiliation(s)
| | | | | | | | - Galeb Al-Maali
- Bienta, Kyiv, Ukraine
- M.G. Kholodny Institute of Botany of the National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | | | | |
Collapse
|
7
|
Bychek R, Mykhailiuk PK. A Practical and Scalable Approach to Fluoro-Substituted Bicyclo[1.1.1]pentanes. Angew Chem Int Ed Engl 2022; 61:e202205103. [PMID: 35638404 PMCID: PMC9401599 DOI: 10.1002/anie.202205103] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Indexed: 12/27/2022]
Abstract
After more than 20 years of trials, a practical scalable approach to fluoro-substituted bicyclo[1.1.1]pentanes (F-BCPs) has been developed. The physicochemical properties of the F-BCPs have been studied, and the core was incorporated into the structure of the anti-inflammatory drug Flurbiprofen in place of the fluorophenyl ring.
Collapse
|
8
|
Bychek R, Mykhailiuk PK. A Practical and Scalable Approach to Fluoro‐Substituted Bicyclo[1.1.1]pentanes. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202205103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Roman Bychek
- Enamine Ltd. Chervonotkatska 60 02094 Kyiv Ukraine
| | | |
Collapse
|
9
|
Lasányi D, Máth D, Tolnai GL. Synthesis and Use of Bicyclo[1.1.1]pentylaldehyde Building Blocks. J Org Chem 2022; 87:2393-2401. [DOI: 10.1021/acs.joc.1c02267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Dániel Lasányi
- Institute of Chemistry, Eotvos Lorand University, Pazmany P. stny. 1/a, Budapest H1117, Hungary
| | - Dániel Máth
- Institute of Chemistry, Eotvos Lorand University, Pazmany P. stny. 1/a, Budapest H1117, Hungary
| | - Gergely L. Tolnai
- Institute of Chemistry, Eotvos Lorand University, Pazmany P. stny. 1/a, Budapest H1117, Hungary
| |
Collapse
|
10
|
Homon AA, Hryshchuk OV, Mykhailenko OV, Vashchenko BV, Melnykov KP, Michurin OM, Daniliuc CG, Gerus II, Kovtunenko VO, Kondratov IS, Grygorenko OO. 4‐(Di‐/Trifluoromethyl)‐2‐heterabicyclo[2.1.1]hexanes: Advanced Fluorinated Phenyl Isosteres and Proline analogues. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100414] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Anton A. Homon
- Enamine Ltd. (www.enamine.net) Chervonotkatska Street 78 Kyiv 02094 Ukraine
- V.P. Kukhar Institute of Bioorganic Chemistry & Petrochemistry NAS of Ukraine Murmanska Street 1 Kyiv 02660 Ukraine
| | - Oleksandr V. Hryshchuk
- Enamine Ltd. (www.enamine.net) Chervonotkatska Street 78 Kyiv 02094 Ukraine
- Taras Shevchenko National University of Kyiv Volodymyrska Street 60 Kyiv 01601 Ukraine
| | - Olha V. Mykhailenko
- Enamine Ltd. (www.enamine.net) Chervonotkatska Street 78 Kyiv 02094 Ukraine
- Taras Shevchenko National University of Kyiv Volodymyrska Street 60 Kyiv 01601 Ukraine
| | - Bohdan V. Vashchenko
- Enamine Ltd. (www.enamine.net) Chervonotkatska Street 78 Kyiv 02094 Ukraine
- Taras Shevchenko National University of Kyiv Volodymyrska Street 60 Kyiv 01601 Ukraine
| | - Kostiantyn P. Melnykov
- Enamine Ltd. (www.enamine.net) Chervonotkatska Street 78 Kyiv 02094 Ukraine
- Taras Shevchenko National University of Kyiv Volodymyrska Street 60 Kyiv 01601 Ukraine
| | - Oleg M. Michurin
- Enamine Ltd. (www.enamine.net) Chervonotkatska Street 78 Kyiv 02094 Ukraine
| | - Constantin G. Daniliuc
- Organisch-Chemisches Institut Westfälische Wilhelms-Universität Münster Corrensstr. 40 48149 Münster Germany
| | - Igor I. Gerus
- V.P. Kukhar Institute of Bioorganic Chemistry & Petrochemistry NAS of Ukraine Murmanska Street 1 Kyiv 02660 Ukraine
| | | | - Ivan S. Kondratov
- Enamine Ltd. (www.enamine.net) Chervonotkatska Street 78 Kyiv 02094 Ukraine
- V.P. Kukhar Institute of Bioorganic Chemistry & Petrochemistry NAS of Ukraine Murmanska Street 1 Kyiv 02660 Ukraine
| | - Oleksandr O. Grygorenko
- Enamine Ltd. (www.enamine.net) Chervonotkatska Street 78 Kyiv 02094 Ukraine
- Taras Shevchenko National University of Kyiv Volodymyrska Street 60 Kyiv 01601 Ukraine
| |
Collapse
|
11
|
Ripenko V, Vysochyn D, Klymov I, Zhersh S, Mykhailiuk PK. Large-Scale Synthesis and Modifications of Bicyclo[1.1.1]pentane-1,3-dicarboxylic Acid (BCP). J Org Chem 2021; 86:14061-14068. [PMID: 34166594 PMCID: PMC8524415 DOI: 10.1021/acs.joc.1c00977] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
![]()
In flow photochemical addition of propellane to
diacetyl allowed construction of the bicyclo[1.1.1]pentane (BCP) core
in a 1 kg scale within 1 day. Haloform reaction of the formed diketone
in batch afforded bicyclo[1.1.1]pentane-1,3-dicarboxylic acid in a
multigram amount. Representative gram scale transformations of the
diacid were also performed to obtain various BCP-containing building
blocks—alcohols, acids, amines, trifluoroborates, amino acids, etc.—for medicinal chemistry.
Collapse
Affiliation(s)
- Vasyl Ripenko
- Enamine Ltd., Chervonotkatska 78, 02094 Kyiv, Ukraine
| | | | - Ivan Klymov
- Enamine Ltd., Chervonotkatska 78, 02094 Kyiv, Ukraine
| | - Serhii Zhersh
- Enamine Ltd., Chervonotkatska 78, 02094 Kyiv, Ukraine
| | | |
Collapse
|
12
|
Malashchuk A, Chernykh AV, Dobrydnev AV, Grygorenko OO. Fluorine‐Labelled Spiro[3.3]heptane‐Derived Building Blocks: Is Single Fluorine the Best? European J Org Chem 2021. [DOI: 10.1002/ejoc.202100804] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Andrii Malashchuk
- Enamine Ltd. Chervonotkatska Street 78 Kyiv 02094 Ukraine
- Taras Shevchenko National University of Kyiv Volodymyrska Street 60 Kyiv 01601 Ukraine
| | - Anton V. Chernykh
- Enamine Ltd. Chervonotkatska Street 78 Kyiv 02094 Ukraine
- Taras Shevchenko National University of Kyiv Volodymyrska Street 60 Kyiv 01601 Ukraine
| | - Alexey V. Dobrydnev
- Enamine Ltd. Chervonotkatska Street 78 Kyiv 02094 Ukraine
- Taras Shevchenko National University of Kyiv Volodymyrska Street 60 Kyiv 01601 Ukraine
| | - Oleksandr O. Grygorenko
- Enamine Ltd. Chervonotkatska Street 78 Kyiv 02094 Ukraine
- Taras Shevchenko National University of Kyiv Volodymyrska Street 60 Kyiv 01601 Ukraine
| |
Collapse
|
13
|
Zhao JX, Chang YX, He C, Burke BJ, Collins MR, Del Bel M, Elleraas J, Gallego GM, Montgomery TP, Mousseau JJ, Nair SK, Perry MA, Spangler JE, Vantourout JC, Baran PS. 1,2-Difunctionalized bicyclo[1.1.1]pentanes: Long-sought-after mimetics for ortho/ meta-substituted arenes. Proc Natl Acad Sci U S A 2021; 118:e2108881118. [PMID: 34244445 PMCID: PMC8285974 DOI: 10.1073/pnas.2108881118] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The development of a versatile platform for the synthesis of 1,2-difunctionalized bicyclo[1.1.1]pentanes to potentially mimic ortho/meta-substituted arenes is described. The syntheses of useful building blocks bearing alcohol, amine, and carboxylic acid functional handles have been achieved from a simple common intermediate. Several ortho- and meta-substituted benzene analogs, as well as simple molecular matched pairs, have also been prepared using this platform. The results of in-depth ADME (absorption, distribution, metabolism, and excretion) investigations of these systems are presented, as well as computational studies which validate the ortho- or meta-character of these bioisosteres.
Collapse
Affiliation(s)
- Jin-Xin Zhao
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, People's Republic of China
| | - Yu-Xuan Chang
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037
| | - Chi He
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037
| | - Benjamin J Burke
- Oncology Medicinal Chemistry, Pfizer Worldwide Research, Development and Medical, San Diego, CA 92121
| | - Michael R Collins
- Oncology Medicinal Chemistry, Pfizer Worldwide Research, Development and Medical, San Diego, CA 92121;
| | - Matthew Del Bel
- Oncology Medicinal Chemistry, Pfizer Worldwide Research, Development and Medical, San Diego, CA 92121
| | - Jeff Elleraas
- Oncology Medicinal Chemistry, Pfizer Worldwide Research, Development and Medical, San Diego, CA 92121
| | - Gary M Gallego
- Oncology Medicinal Chemistry, Pfizer Worldwide Research, Development and Medical, San Diego, CA 92121
| | - T Patrick Montgomery
- Oncology Medicinal Chemistry, Pfizer Worldwide Research, Development and Medical, San Diego, CA 92121
| | - James J Mousseau
- Discovery Sciences, Medicine Design, Pfizer Worldwide Research, Development and Medical, Groton, CT 06340
| | - Sajiv K Nair
- Oncology Medicinal Chemistry, Pfizer Worldwide Research, Development and Medical, San Diego, CA 92121
| | - Matthew A Perry
- Discovery Sciences, Medicine Design, Pfizer Worldwide Research, Development and Medical, Groton, CT 06340
| | - Jillian E Spangler
- Oncology Medicinal Chemistry, Pfizer Worldwide Research, Development and Medical, San Diego, CA 92121
| | | | - Phil S Baran
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037;
| |
Collapse
|
14
|
Zeng Z, Feceu A, Sivendran N, Gooßen LJ. Decarboxylation‐Initiated Intermolecular Carbon‐Heteroatom Bond Formation. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100211] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Zhongyi Zeng
- Fakultät für Chemie und Biochemie Ruhr-Universität Bochum Universitätsstraße 150 44801 Bochum Germany
| | - Abigail Feceu
- Fakultät für Chemie und Biochemie Ruhr-Universität Bochum Universitätsstraße 150 44801 Bochum Germany
| | - Nardana Sivendran
- Fakultät für Chemie und Biochemie Ruhr-Universität Bochum Universitätsstraße 150 44801 Bochum Germany
| | - Lukas J. Gooßen
- Fakultät für Chemie und Biochemie Ruhr-Universität Bochum Universitätsstraße 150 44801 Bochum Germany
| |
Collapse
|
15
|
Varenikov A, Shapiro E, Gandelman M. Decarboxylative Halogenation of Organic Compounds. Chem Rev 2021; 121:412-484. [PMID: 33200917 PMCID: PMC7884003 DOI: 10.1021/acs.chemrev.0c00813] [Citation(s) in RCA: 108] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Indexed: 12/13/2022]
Abstract
Decarboxylative halogenation, or halodecarboxylation, represents one of the fundamental key methods for the synthesis of ubiquitous organic halides. The method is based on conversion of carboxylic acids to the corresponding organic halides via selective cleavage of a carbon-carbon bond between the skeleton of the molecule and the carboxylic group and the liberation of carbon dioxide. In this review, we discuss and analyze major approaches for the conversion of alkanoic, alkenoic, acetylenic, and (hetero)aromatic acids to the corresponding alkyl, alkenyl, alkynyl, and (hetero)aryl halides. These methods include the preparation of families of valuable organic iodides, bromides, chlorides, and fluorides. The historic and modern methods for halodecarboxylation reactions are broadly discussed, including analysis of their advantages and drawbacks. We critically address the features, reaction selectivity, substrate scopes, and limitations of the approaches. In the available cases, mechanistic details of the reactions are presented, and the generality and uniqueness of the different mechanistic pathways are highlighted. The challenges, opportunities, and future directions in the field of decarboxylative halogenation are provided.
Collapse
Affiliation(s)
- Andrii Varenikov
- Schulich Faculty of Chemistry, Technion - Israel Institute of Technology, Technion City, Haifa 3200008, Israel
| | - Evgeny Shapiro
- Schulich Faculty of Chemistry, Technion - Israel Institute of Technology, Technion City, Haifa 3200008, Israel
| | - Mark Gandelman
- Schulich Faculty of Chemistry, Technion - Israel Institute of Technology, Technion City, Haifa 3200008, Israel
| |
Collapse
|
16
|
He FS, Xie S, Yao Y, Wu J. Recent advances in the applications of [1.1.1]propellane in organic synthesis. CHINESE CHEM LETT 2020. [DOI: 10.1016/j.cclet.2020.04.023] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
17
|
Zarate C, Ardolino M, Morriello GJ, Logan KM, Kaplan WP, Torres L, Li D, Chen M, Li H, Su J, Fuller P, Maddess ML, Song ZJ. Development of Scalable Routes to 1-Bicyclo[1.1.1]pentylpyrazoles. Org Process Res Dev 2020. [DOI: 10.1021/acs.oprd.0c00446] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Cayetana Zarate
- Department of Process Research and Development, Merck & Co., Inc., Boston, Massachusetts 02115, United States
| | - Michael Ardolino
- Department of Process Research and Development, Merck & Co., Inc., Boston, Massachusetts 02115, United States
| | - Gregori J. Morriello
- Department of Discovery Chemistry, Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Kaitlyn M. Logan
- Department of Discovery Chemistry, Merck & Co., Inc., Boston, Massachusetts 02115, United States
| | - William P. Kaplan
- Department of Discovery Chemistry, Merck & Co., Inc., Boston, Massachusetts 02115, United States
| | - Luis Torres
- Department of Discovery Chemistry, Merck & Co., Inc., Boston, Massachusetts 02115, United States
| | - Derun Li
- Department of Discovery Chemistry, Merck & Co., Inc., Boston, Massachusetts 02115, United States
| | - Meng Chen
- WuXi AppTec (Tianjin), Chemistry Service Unit, Tianjin 300457, China
| | - Hongming Li
- Department of Process Research and Development, Merck & Co., Inc., Boston, Massachusetts 02115, United States
| | - Jing Su
- Department of Discovery Chemistry, Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Peter Fuller
- Department of Discovery Chemistry, Merck & Co., Inc., Boston, Massachusetts 02115, United States
| | - Matthew L. Maddess
- Department of Process Research and Development, Merck & Co., Inc., Boston, Massachusetts 02115, United States
| | - Zhiguo Jake Song
- Department of Process Research and Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| |
Collapse
|
18
|
Denisenko A, Garbuz P, Shishkina SV, Voloshchuk NM, Mykhailiuk PK. Saturated Bioisosteres of
ortho
‐Substituted Benzenes. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202004183] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
| | - Pavel Garbuz
- Enamine Ltd Chervonotkatska 78 02094 Kyiv Ukraine
| | - Svetlana V. Shishkina
- “Institute for Single Crystals” National Academy of Science of Ukraine Lenina Ave. 60 61001 Kharkiv Ukraine
| | - Nataliya M. Voloshchuk
- National University of Life and Environmental Science of Ukraine Heroiv Oborony 15 03041 Kyiv Ukraine
| | - Pavel K. Mykhailiuk
- Enamine Ltd Chervonotkatska 78 02094 Kyiv Ukraine
- Taras Shevchenko National University of Kyiv Chemistry Department Volodymyrska 64 01601 Kyiv Ukraine
| |
Collapse
|
19
|
Brittain WDG, Lloyd CM, Cobb SL. Synthesis of complex unnatural fluorine-containing amino acids. J Fluor Chem 2020; 239:109630. [PMID: 33144742 PMCID: PMC7583769 DOI: 10.1016/j.jfluchem.2020.109630] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 08/12/2020] [Accepted: 08/12/2020] [Indexed: 01/01/2023]
Abstract
The area of fluorinated amino acid synthesis has seen rapid growth over the past decade. As reports of singly fluorinated natural amino acid derivatives have grown, researchers have turned their attention to develop methodology to access complex proteinogenic examples. A variety of reaction conditions have been employed in this area, exploiting new advances in the wider synthetic community such as photocatalysis and palladium cross-coupling. In addition, novel fluorinated functional groups have also been incorporated into amino acids, with SFX and perfluoro moieties now appearing with more frequency in the literature. This review focuses on synthetic methodology for accessing complex non-proteinogenic amino acids, along with amino acids containing multiple fluorine atoms such as CF3, SF5 and perfluoroaromatic groups.
Collapse
Affiliation(s)
| | - Carissa M Lloyd
- Department of Chemistry, Durham University, Durham DH1 3LE, United Kingdom
| | - Steven L Cobb
- Department of Chemistry, Durham University, Durham DH1 3LE, United Kingdom
| |
Collapse
|
20
|
Denisenko A, Garbuz P, Shishkina SV, Voloshchuk NM, Mykhailiuk PK. Saturated Bioisosteres of ortho-Substituted Benzenes. Angew Chem Int Ed Engl 2020; 59:20515-20521. [PMID: 32662201 DOI: 10.1002/anie.202004183] [Citation(s) in RCA: 104] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 04/28/2020] [Indexed: 12/22/2022]
Abstract
Saturated bioisosteres of ortho-disubstituted benzenes (bicyclo[2.1.1]hexanes) were synthesized, characterized and validated. These cores were incorporated into the bioactive compounds Valsartan, Boskalid and Fluxapyroxad instead of the benzene ring. The saturated analogues showed a similar level of antifungal activity compared to that of Boskalid and Fluxapyroxad.
Collapse
Affiliation(s)
| | - Pavel Garbuz
- Enamine Ltd, Chervonotkatska 78, 02094, Kyiv, Ukraine
| | - Svetlana V Shishkina
- "Institute for Single Crystals", National Academy of Science of Ukraine, Lenina Ave. 60, 61001, Kharkiv, Ukraine
| | - Nataliya M Voloshchuk
- National University of Life and Environmental Science of Ukraine, Heroiv Oborony 15, 03041, Kyiv, Ukraine
| | - Pavel K Mykhailiuk
- Enamine Ltd, Chervonotkatska 78, 02094, Kyiv, Ukraine.,Taras Shevchenko National University of Kyiv, Chemistry Department, Volodymyrska 64, 01601, Kyiv, Ukraine
| |
Collapse
|
21
|
Yu S, Jing C, Noble A, Aggarwal VK. Iridium-Catalyzed Enantioselective Synthesis of α-Chiral Bicyclo[1.1.1]pentanes by 1,3-Difunctionalization of [1.1.1]Propellane. Org Lett 2020; 22:5650-5655. [PMID: 32638587 DOI: 10.1021/acs.orglett.0c02017] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Bicyclo[1.1.1]pentanes (BCPs) have found application as bioisosteres of aromatic rings in drug development. However, catalytic construction of this motif with adjacent stereocenters with high enantioselectivity from readily available starting materials still constitutes a significant synthetic challenge. Herein we report a direct stereoselective synthesis of α-chiral allylic BCPs by 1,3-difunctionalization of [1.1.1]propellane with Grignard reagents and allyl carbonates using iridium catalysis. This mild protocol proceeds via initial organometallic addition to [1.1.1]propellane followed by asymmetric allylic substitution, providing the products with high enantioselectivities over a broad range of substrates. Further derivatization of the products demonstrates the applicability of this method to the preparation of structurally diverse libraries of chiral BCP derivatives.
Collapse
Affiliation(s)
- Songjie Yu
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, U.K
| | - Changcheng Jing
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, U.K
| | - Adam Noble
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, U.K
| | - Varinder K Aggarwal
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, U.K
| |
Collapse
|
22
|
Levterov VV, Panasyuk Y, Pivnytska VO, Mykhailiuk PK. Water‐Soluble Non‐Classical Benzene Mimetics. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202000548] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
| | | | | | - Pavel K. Mykhailiuk
- Enamine Ltd. Chervonotkatska 78 02094 Kyiv Ukraine
- Taras Shevchenko National University of Kyiv Chemistry Department Volodymyrska 64 01601 Kyiv Ukraine
| |
Collapse
|
23
|
Levterov VV, Panasyuk Y, Pivnytska VO, Mykhailiuk PK. Water-Soluble Non-Classical Benzene Mimetics. Angew Chem Int Ed Engl 2020; 59:7161-7167. [PMID: 32060990 DOI: 10.1002/anie.202000548] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 02/13/2020] [Indexed: 12/20/2022]
Abstract
A new generation of saturated benzene mimetics, 2-oxabicyclo[2.1.1]hexanes, was developed. These compounds were designed as analogues of bicyclo[1.1.1]pentane with an improved water solubility. Crystallographic analysis of 2-oxabicyclo[2.1.1]hexanes revealed that they occupy a novel chemical space, but, at the same time, resemble the motif of meta-disubstituted benzenes.
Collapse
Affiliation(s)
| | | | | | - Pavel K Mykhailiuk
- Enamine Ltd., Chervonotkatska 78, 02094, Kyiv, Ukraine.,Taras Shevchenko National University of Kyiv, Chemistry Department, Volodymyrska 64, 01601, Kyiv, Ukraine
| |
Collapse
|
24
|
|
25
|
Drouin M, Wadhwani P, Grage SL, Bürck J, Reichert J, Tremblay S, Mayer MS, Diel C, Staub A, Paquin JF, Ulrich AS. Monofluoroalkene-Isostere as a 19 F NMR Label for the Peptide Backbone: Synthesis and Evaluation in Membrane-Bound PGLa and (KIGAKI) 3. Chemistry 2020; 26:1511-1517. [PMID: 31867761 DOI: 10.1002/chem.201905054] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 12/18/2019] [Indexed: 12/12/2022]
Abstract
Solid-state 19 F NMR is a powerful method to study the interactions of biologically active peptides with membranes. So far, in labelled peptides, the 19 F-reporter group has always been installed on the side chain of an amino acid. Given the fact that monofluoroalkenes are non-hydrolyzable peptide bond mimics, we have synthesized a monofluoroalkene-based dipeptide isostere, Val-Ψ[(Z)-CF=CH]-Gly, and inserted it in the sequence of two well-studied antimicrobial peptides: PGLa and (KIGAKI)3 are representatives of an α-helix and a β-sheet. The conformations and biological activities of these labeled peptides were studied to assess the suitability of monofluoroalkenes for 19 F NMR structure analysis.
Collapse
Affiliation(s)
- Myriam Drouin
- PROTEO, CCVC, Département de chimie, Université Laval, 1045 avenue de la Médecine, Québec, Québec, G1V 0A6, Canada
| | - Parvesh Wadhwani
- Institute of Biological Interfaces (IBG-2), Karlsruhe Institute of Technology, P. O. Box 3640, 76021, Karlsruhe, Germany
| | - Stephan L Grage
- Institute of Biological Interfaces (IBG-2), Karlsruhe Institute of Technology, P. O. Box 3640, 76021, Karlsruhe, Germany
| | - Jochen Bürck
- Institute of Biological Interfaces (IBG-2), Karlsruhe Institute of Technology, P. O. Box 3640, 76021, Karlsruhe, Germany
| | - Johannes Reichert
- Institute of Biological Interfaces (IBG-2), Karlsruhe Institute of Technology, P. O. Box 3640, 76021, Karlsruhe, Germany
| | - Sébastien Tremblay
- PROTEO, CCVC, Département de chimie, Université Laval, 1045 avenue de la Médecine, Québec, Québec, G1V 0A6, Canada
| | - Marie Sabine Mayer
- PROTEO, CCVC, Département de chimie, Université Laval, 1045 avenue de la Médecine, Québec, Québec, G1V 0A6, Canada.,Institute of Biological Interfaces (IBG-2), Karlsruhe Institute of Technology, P. O. Box 3640, 76021, Karlsruhe, Germany
| | - Christian Diel
- PROTEO, CCVC, Département de chimie, Université Laval, 1045 avenue de la Médecine, Québec, Québec, G1V 0A6, Canada.,Institute of Biological Interfaces (IBG-2), Karlsruhe Institute of Technology, P. O. Box 3640, 76021, Karlsruhe, Germany
| | - Alexander Staub
- Institute of Biological Interfaces (IBG-2), Karlsruhe Institute of Technology, P. O. Box 3640, 76021, Karlsruhe, Germany
| | - Jean-François Paquin
- PROTEO, CCVC, Département de chimie, Université Laval, 1045 avenue de la Médecine, Québec, Québec, G1V 0A6, Canada
| | - Anne S Ulrich
- Institute of Biological Interfaces (IBG-2), Karlsruhe Institute of Technology, P. O. Box 3640, 76021, Karlsruhe, Germany
| |
Collapse
|
26
|
Ma X, Nhat Pham L. Selected Topics in the Syntheses of Bicyclo[1.1.1]Pentane (BCP) Analogues. ASIAN J ORG CHEM 2019. [DOI: 10.1002/ajoc.201900589] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Xiaoshen Ma
- Department of Discovery ChemistryMerck & Co., Inc. 33 Ave. Louis Pasteur Boston MA 02215 USA
| | - Luu Nhat Pham
- Department of Discovery ChemistryMerck & Co., Inc. 33 Ave. Louis Pasteur Boston MA 02215 USA
| |
Collapse
|
27
|
Abstract
The replacement of para-substituted benzenes with saturated bi- and polycyclic bioisosteres - bicyclo[1.1.1]pentane, bicyclo[2.2.2]octane and cubane, - often increases the potency, selectivity and metabolic stability of bioactive compounds. The currently remaining challenge for chemists, however, is to rationally design, synthesize and validate the saturated bioisosteres for ortho- and meta-substituted benzenes.
Collapse
|
28
|
Bychek RM, Hutskalova V, Bas YP, Zaporozhets OA, Zozulya S, Levterov VV, Mykhailiuk PK. Difluoro-Substituted Bicyclo[1.1.1]pentanes for Medicinal Chemistry: Design, Synthesis, and Characterization. J Org Chem 2019; 84:15106-15117. [PMID: 31553875 DOI: 10.1021/acs.joc.9b01947] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A practical synthetic approach to the difluoro-substituted bicyclo[1.1.1]pentanes was developed. The key step was an addition of difluorocarbene (:CF2) to electron-rich bicyclo[1.1.0]butanes by the CF3TMS/NaI system. The obtained difluoro-bicyclo[1.1.1]pentanes are suggested to be used as saturated bioisosteres of benzene rings for the purpose of drug discovery projects.
Collapse
Affiliation(s)
- Roman M Bychek
- Enamine Ltd. , Chervonotkatska 78 , Kyiv 02094 , Ukraine
| | - Valeriia Hutskalova
- Enamine Ltd. , Chervonotkatska 78 , Kyiv 02094 , Ukraine.,Taras Shevchenko National University of Kyiv , Chemistry Department , Volodymyrska 64 , Kyiv 01601 , Ukraine
| | - Yuliya P Bas
- Taras Shevchenko National University of Kyiv , Chemistry Department , Volodymyrska 64 , Kyiv 01601 , Ukraine
| | - Olga A Zaporozhets
- Taras Shevchenko National University of Kyiv , Chemistry Department , Volodymyrska 64 , Kyiv 01601 , Ukraine
| | - Sergey Zozulya
- Enamine Ltd. , Chervonotkatska 78 , Kyiv 02094 , Ukraine.,Bienta , Chervonotkatska 78 , Kyiv 02094 , Ukraine
| | | | - Pavel K Mykhailiuk
- Enamine Ltd. , Chervonotkatska 78 , Kyiv 02094 , Ukraine.,Taras Shevchenko National University of Kyiv , Chemistry Department , Volodymyrska 64 , Kyiv 01601 , Ukraine
| |
Collapse
|
29
|
Wong MLJ, Mousseau JJ, Mansfield SJ, Anderson EA. Synthesis of Enantioenriched α-Chiral Bicyclo[1.1.1]pentanes. Org Lett 2019; 21:2408-2411. [PMID: 30869907 DOI: 10.1021/acs.orglett.9b00691] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Bicyclo[1.1.1]pentanes (BCPs), useful surrogates for para-substituted arenes, alkynes, and tert-butyl groups in medicinal chemistry, are challenging to prepare when featuring stereogenic centers adjacent to the BCP. We report the development of an efficient route to α-chiral BCPs, via highly diastereoselective asymmetric enolate functionalization. We also describe the application of this chemistry to the synthesis of BCP analogues of phenylglycine and tarenflurbil, the single enantiomer of the NSAID flurbiprofen.
Collapse
Affiliation(s)
- Marie L J Wong
- Chemistry Research Laboratory , University of Oxford , 12 Mansfield Road , Oxford OX1 3TA , U.K
| | - James J Mousseau
- Pfizer Worldwide Research and Development , Eastern Point Road , Groton , Connecticut 06340 , United States
| | - Steven J Mansfield
- Chemistry Research Laboratory , University of Oxford , 12 Mansfield Road , Oxford OX1 3TA , U.K
| | - Edward A Anderson
- Chemistry Research Laboratory , University of Oxford , 12 Mansfield Road , Oxford OX1 3TA , U.K
| |
Collapse
|
30
|
Locke GM, Bernhard SSR, Senge MO. Nonconjugated Hydrocarbons as Rigid-Linear Motifs: Isosteres for Material Sciences and Bioorganic and Medicinal Chemistry. Chemistry 2019; 25:4590-4647. [PMID: 30387906 DOI: 10.1002/chem.201804225] [Citation(s) in RCA: 145] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Revised: 10/20/2018] [Indexed: 01/02/2023]
Abstract
Nonconjugated hydrocarbons, like bicyclo[1.1.1]pentane, bicyclo[2.2.2]octane, triptycene, and cubane are a unique class of rigid linkers. Due to their similarity in size and shape they are useful mimics of classic benzene moieties in drugs, so-called bioisosteres. Moreover, they also fulfill an important role in material sciences as linear linkers, in order to arrange various functionalities in a defined spatial manner. In this Review article, recent developments and usages of these special, rectilinear systems are discussed. Furthermore, we focus on covalently linked, nonconjugated linear arrangements and discuss the physical and chemical properties and differences of individual linkers, as well as their application in material and medicinal sciences.
Collapse
Affiliation(s)
- Gemma M Locke
- School of Chemistry, SFI Tetrapyrrole Laboratory, Trinity Biomedical Sciences Institute, Trinity College Dublin, The University of Dublin, 152-160 Pearse Street, Dublin, 2, Ireland
| | - Stefan S R Bernhard
- School of Chemistry, SFI Tetrapyrrole Laboratory, Trinity Biomedical Sciences Institute, Trinity College Dublin, The University of Dublin, 152-160 Pearse Street, Dublin, 2, Ireland
| | - Mathias O Senge
- School of Chemistry, SFI Tetrapyrrole Laboratory, Trinity Biomedical Sciences Institute, Trinity College Dublin, The University of Dublin, 152-160 Pearse Street, Dublin, 2, Ireland
| |
Collapse
|
31
|
Ni S, Garrido-Castro AF, Merchant RR, de Gruyter JN, Schmitt DC, Mousseau JJ, Gallego GM, Yang S, Collins MR, Qiao JX, Yeung KS, Langley DR, Poss MA, Scola PM, Qin T, Baran PS. A General Amino Acid Synthesis Enabled by Innate Radical Cross-Coupling. Angew Chem Int Ed Engl 2018; 57:14560-14565. [PMID: 30212610 PMCID: PMC6352899 DOI: 10.1002/anie.201809310] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Indexed: 01/21/2023]
Abstract
The direct union of primary, secondary, and tertiary carboxylic acids with a chiral glyoxylate-derived sulfinimine provides rapid access into a variety of enantiomerically pure α-amino acids (>85 examples). Characterized by operational simplicity, this radical-based reaction enables the modular assembly of exotic α-amino acids, including both unprecedented structures and those of established industrial value. The described method performs well in high-throughput library synthesis, and has already been implemented in three distinct medicinal chemistry campaigns.
Collapse
Affiliation(s)
- Shengyang Ni
- Scripps Research, North Torrey Pines Road, La Jolla, CA, 92037, USA
| | | | - Rohan R Merchant
- Scripps Research, North Torrey Pines Road, La Jolla, CA, 92037, USA
| | | | - Daniel C Schmitt
- Pfizer Medicinal Sciences, Eastern Point Road, Groton, CT, 06340, USA
| | - James J Mousseau
- Pfizer Medicinal Sciences, Eastern Point Road, Groton, CT, 06340, USA
| | - Gary M Gallego
- Department of Chemistry, La Jolla Laboratories, Pfizer, 10770 Science Center Drive, San Diego, CA, 92121, USA
| | - Shouliang Yang
- Department of Chemistry, La Jolla Laboratories, Pfizer, 10770 Science Center Drive, San Diego, CA, 92121, USA
| | - Michael R Collins
- Department of Chemistry, La Jolla Laboratories, Pfizer, 10770 Science Center Drive, San Diego, CA, 92121, USA
| | - Jennifer X Qiao
- Department of Discovery Chemistry, Bristol-Myers Squibb Company, Research and Development, P.O. Box 4000, Princeton, NJ, 08543, USA
| | - Kap-Sun Yeung
- Department of Discovery Chemistry, Bristol-Myers Squibb Research and Development, 5 Research Parkway, Wallingford, CT, 06492, USA
| | - David R Langley
- Department of Discovery Chemistry, Bristol-Myers Squibb Research and Development, 5 Research Parkway, Wallingford, CT, 06492, USA
| | - Michael A Poss
- Department of Discovery Chemistry, Bristol-Myers Squibb Company, Research and Development, P.O. Box 4000, Princeton, NJ, 08543, USA
| | - Paul M Scola
- Department of Discovery Chemistry, Bristol-Myers Squibb Research and Development, 5 Research Parkway, Wallingford, CT, 06492, USA
| | - Tian Qin
- Scripps Research, North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Phil S Baran
- Scripps Research, North Torrey Pines Road, La Jolla, CA, 92037, USA
| |
Collapse
|
32
|
Wei Q, Ma Y, Li L, Liu Q, Liu Z, Liu G. Synthesis of Quaternary α-Fluorinated α-Amino Acid Derivatives via Coordinating Cu(II) Catalytic α-C(sp 3)-H Direct Fluorination. Org Lett 2018; 20:7100-7103. [PMID: 30362773 DOI: 10.1021/acs.orglett.8b03044] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A coordinating, copper-catalyzed direct α-C(sp3)-H fluorination method has been developed to prepare vital quaternary α-fluorinated α-amino acid derivatives. A Cu(II) catalytic SET oxidative addition mechanism is proposed, involving a key fluoride-coupled Cu(II) charge transfer complex. The protocol can tolerate a rich variety of α-amino acids, for which the auxiliary group is removed in high yield and substituted for the direct preparation of dipeptide derivatives with detachable, single absolute configurations of the target compounds.
Collapse
Affiliation(s)
- Qiang Wei
- Tsinghua-Peking Center for Life Sciences, School of Life Sciences , Tsinghua University , Beijing 100084 , China
| | - Yao Ma
- Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College , Beijing 100050 , China
| | - Li Li
- Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College , Beijing 100050 , China
| | - Qingfei Liu
- School of Pharmaceutical Sciences , Tsinghua University , Beijing 100084 , China
| | - Zijie Liu
- Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College , Beijing 100050 , China
| | - Gang Liu
- Tsinghua-Peking Center for Life Sciences, School of Life Sciences , Tsinghua University , Beijing 100084 , China.,School of Pharmaceutical Sciences , Tsinghua University , Beijing 100084 , China
| |
Collapse
|
33
|
Ni S, Garrido-Castro AF, Merchant RR, de Gruyter JN, Schmitt DC, Mousseau JJ, Gallego GM, Yang S, Collins MR, Qiao JX, Yeung KS, Langley DR, Poss MA, Scola PM, Qin T, Baran PS. A General Amino Acid Synthesis Enabled by Innate Radical Cross-Coupling. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201809310] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Shengyang Ni
- Scripps Research; North Torrey Pines Road La Jolla CA 92037 USA
| | | | | | | | | | | | - Gary M. Gallego
- Department of Chemistry; La Jolla Laboratories; Pfizer; 10770 Science Center Drive San Diego CA 92121 USA
| | - Shouliang Yang
- Department of Chemistry; La Jolla Laboratories; Pfizer; 10770 Science Center Drive San Diego CA 92121 USA
| | - Michael R. Collins
- Department of Chemistry; La Jolla Laboratories; Pfizer; 10770 Science Center Drive San Diego CA 92121 USA
| | - Jennifer X. Qiao
- Department of Discovery Chemistry; Bristol-Myers Squibb Company; Research and Development; P.O. Box 4000 Princeton NJ 08543 USA
| | - Kap-Sun Yeung
- Department of Discovery Chemistry; Bristol-Myers Squibb Research and Development; 5 Research Parkway Wallingford CT 06492 USA
| | - David R. Langley
- Department of Discovery Chemistry; Bristol-Myers Squibb Research and Development; 5 Research Parkway Wallingford CT 06492 USA
| | - Michael A. Poss
- Department of Discovery Chemistry; Bristol-Myers Squibb Company; Research and Development; P.O. Box 4000 Princeton NJ 08543 USA
| | - Paul M. Scola
- Department of Discovery Chemistry; Bristol-Myers Squibb Research and Development; 5 Research Parkway Wallingford CT 06492 USA
| | - Tian Qin
- Scripps Research; North Torrey Pines Road La Jolla CA 92037 USA
| | - Phil S. Baran
- Scripps Research; North Torrey Pines Road La Jolla CA 92037 USA
| |
Collapse
|
34
|
Affiliation(s)
- Zhenchuang Xu
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai 200032, China
| | - Chao Liu
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai 200032, China
| | - Shujuan Zhao
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai 200032, China
| | - Si Chen
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai 200032, China
| | - Yanchuan Zhao
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai 200032, China
| |
Collapse
|
35
|
Caputo DFJ, Arroniz C, Dürr AB, Mousseau JJ, Stepan AF, Mansfield SJ, Anderson EA. Synthesis and applications of highly functionalized 1-halo-3-substituted bicyclo[1.1.1]pentanes. Chem Sci 2018; 9:5295-5300. [PMID: 29997886 PMCID: PMC6001403 DOI: 10.1039/c8sc01355a] [Citation(s) in RCA: 116] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 05/20/2018] [Indexed: 12/11/2022] Open
Abstract
Bicyclo[1.1.1]pentanes (BCPs) are important bioisosteres of 1,4-disubstituted arenes, tert-butyl and acetylenic groups that can impart physicochemical benefits on drug candidates. Here we describe the synthesis of BCPs bearing carbon and halogen substituents under exceptionally mild reaction conditions, via triethylborane-initiated atom-transfer radical addition ring-opening of tricyclo[1.1.1.01,3]pentane (TCP) with alkyl halides. This chemistry displays broad substrate scope and functional group tolerance, enabling application to BCP analogues of biologically-relevant targets such as peptides, nucleosides, and pharmaceuticals. The BCP halide products can be converted to the parent phenyl/tert-butyl surrogates through triethylborane-promoted dehalogenation, or to other derivatives including carbonyls, alcohols, and heterocycles.
Collapse
Affiliation(s)
- Dimitri F J Caputo
- Chemistry Research Laboratory , 12 Mansfield Road , Oxford , OX1 3TA , UK .
| | - Carlos Arroniz
- Chemistry Research Laboratory , 12 Mansfield Road , Oxford , OX1 3TA , UK .
| | - Alexander B Dürr
- Chemistry Research Laboratory , 12 Mansfield Road , Oxford , OX1 3TA , UK .
| | - James J Mousseau
- Pfizer Worldwide Research and Development , Eastern Point Road, Groton , CT 06340 , USA
| | - Antonia F Stepan
- Pfizer Worldwide Research and Development , 600 Main Street , Cambridge , MA 02139 , USA
| | - Steven J Mansfield
- Chemistry Research Laboratory , 12 Mansfield Road , Oxford , OX1 3TA , UK .
| | - Edward A Anderson
- Chemistry Research Laboratory , 12 Mansfield Road , Oxford , OX1 3TA , UK .
| |
Collapse
|
36
|
Michurin OM, Tolmachova K, Afonin S, Babii O, Grage SL, Ulrich AS, Komarov IV, Radchenko DS. Conformationally Constrained Mono-Fluorinated Arginine as a Cationic Label for Solid-State 19
F NMR Analysis of Membrane-Bound Peptides. European J Org Chem 2018. [DOI: 10.1002/ejoc.201800473] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
| | - Kateryna Tolmachova
- Enamine Ltd.; vul. Chervonotkatska 78 02094 Kyiv Ukraine
- Institute of Bioorganic Chemistry and Petrochemistry; National Academy of Sciences of Ukraine; vul. Murmanska 1 02660 Kyiv Ukraine
| | - Sergii Afonin
- Institute of Biological Interfaces (IBG-2); Karlsruhe Institute of Technology (KIT); POB 3640 76021 Karlsruhe Germany
| | - Oleg Babii
- Institute of Organic Chemistry (IOC); KIT; Fritz-Haber-Weg 6 76131 Karlsruhe Germany
| | - Stephan L. Grage
- Institute of Biological Interfaces (IBG-2); Karlsruhe Institute of Technology (KIT); POB 3640 76021 Karlsruhe Germany
| | - Anne S. Ulrich
- Institute of Biological Interfaces (IBG-2); Karlsruhe Institute of Technology (KIT); POB 3640 76021 Karlsruhe Germany
- Institute of Organic Chemistry (IOC); KIT; Fritz-Haber-Weg 6 76131 Karlsruhe Germany
| | - Igor V. Komarov
- Taras Shevchenko National University of Kyiv; Taras Shevchenko National University of Kyiv; vul. Volodymyrska 60 01601 Kyiv Ukraine
| | - Dmytro S. Radchenko
- Enamine Ltd.; vul. Chervonotkatska 78 02094 Kyiv Ukraine
- Taras Shevchenko National University of Kyiv; Taras Shevchenko National University of Kyiv; vul. Volodymyrska 60 01601 Kyiv Ukraine
| |
Collapse
|
37
|
New insights into the influence of monofluorination on dimyristoylphosphatidylcholine membrane properties: A solid-state NMR study. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2018; 1860:654-663. [DOI: 10.1016/j.bbamem.2017.12.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 11/29/2017] [Accepted: 12/04/2017] [Indexed: 10/18/2022]
|
38
|
|