1
|
Luong NT, Boily JF. Water Film-Driven Brucite Nanosheet Growth and Stacking. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:11090-11098. [PMID: 37486722 PMCID: PMC10413962 DOI: 10.1021/acs.langmuir.3c01411] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/11/2023] [Indexed: 07/25/2023]
Abstract
Thin water films that form by the adhesion and condensation of air moisture on minerals can initiate phase transformation reactions with broad implications in nature and technology. We here show important effects of water film coverages on reaction rates and products during the transformation of periclase (MgO) nanocubes to brucite [Mg(OH)2] nanosheets. Using vibrational spectroscopy, we found that the first minutes to hours of Mg(OH)2 growth followed first-order kinetics, with rates scaling with water loadings. Growth was tightly linked to periclase surface hydration and to the formation of a brucite precursor solid, akin to poorly stacked/dislocated nanosheets. These nanosheets were the predominant forms of Mg(OH)2 growth in the 2D-like hydration environments of sub-monolayer water films, which formed below ∼50% relative humidity (RH). From molecular simulations, we infer that reactions may have been facilitated near surface defects where sub-monolayer films preferentially accumulated. In contrast, the 3D-like hydration environment of multilayered water films promoted brucite nanoparticle formation by enhancing Mg(OH)2 nanosheet growth and stacking rates and yields. From the structural similarity of periclase and brucite to other metal (hydr)oxide minerals, this concept of contrasting nanosheet growth should even be applicable for explaining water film-driven mineralogical transformations on other related nanominerals.
Collapse
Affiliation(s)
- N. Tan Luong
- Department of Chemistry, Umeå
University, Umeå SE 901 87, Sweden
| | | |
Collapse
|
2
|
Razouq H, Berger T, Hüsing N, Diwald O. Vapor phase-grown TiO 2 and ZnO nanoparticles inside electrospun polymer fibers and their calcination-induced organization. MONATSHEFTE FUR CHEMIE 2023; 154:849-856. [PMID: 37521146 PMCID: PMC10382359 DOI: 10.1007/s00706-023-03093-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 06/14/2023] [Indexed: 08/01/2023]
Abstract
The spatial organization of metal oxide nanoparticles represents an important factor in the chemical utilization of resulting structures. For the production of networks that are composed of metal oxide nanoparticle chains, we dispersed vapor phase-grown TiO2 and ZnO nanoparticles homogeneously in an aqueous polyvinyl alcohol solution. After electrospinning, we analyzed the sizes and diameters of the compositionally homogeneous electrospun fibers and discussed the size distribution and morphology of the nanoparticles inside. Calcination-induced polymer removal gives rise to self-supported nanoparticle-based nanofibers. Particle coarsening by a factor of ~ 2 for TiO2 and ~ 3 for ZnO nanoparticles is observed. Graphical abstract
Collapse
Affiliation(s)
- Hasan Razouq
- Department of Chemistry and Physics of Materials, Paris Lodron Universität Salzburg, Jakob-Haringer Str. 2a, 5020 Salzburg, Austria
| | - Thomas Berger
- Department of Chemistry and Physics of Materials, Paris Lodron Universität Salzburg, Jakob-Haringer Str. 2a, 5020 Salzburg, Austria
| | - Nicola Hüsing
- Department of Chemistry and Physics of Materials, Paris Lodron Universität Salzburg, Jakob-Haringer Str. 2a, 5020 Salzburg, Austria
| | - Oliver Diwald
- Department of Chemistry and Physics of Materials, Paris Lodron Universität Salzburg, Jakob-Haringer Str. 2a, 5020 Salzburg, Austria
| |
Collapse
|
3
|
Tse JS, Grant J, Skelton JM, Gillie LJ, Zhu R, Pesce GL, Ball RJ, Parker SC, Molinari M. Location of Artinite (Mg 2CO 3(OH) 2·3H 2O) within the MgO-CO 2-H 2O system using ab initio thermodynamics. Phys Chem Chem Phys 2023. [PMID: 37377444 DOI: 10.1039/d3cp00518f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
The MgO-CO2-H2O system have a variety of important industrial applications including in catalysis, immobilisation of radionuclides and heavy metals, construction, and mineralisation and permanent storage of anthropogenic CO2. Here, we develop a computational approach to generate phase stability plots for the MgO-CO2-H2O system that do not rely on traditional experimental corrections for the solid phases. We compare the predictions made by several dispersion-corrected density-functional theory schemes, and we include the temperature-dependent Gibbs free energy through the quasi-harmonic approximation. We locate the Artinite phase (Mg2CO3(OH)2·3H2O) within the MgO-CO2-H2O phase stability plot, and we demonstrate that this widely-overlooked hydrated and carbonated phase is metastable and can be stabilised by inhibiting the formation of fully-carbonated stable phases. Similar considerations may apply more broadly to other lesser known phases. These findings provide new insight to explain conflicting results from experimental studies, and demonstrate how this phase can potentially be stabilised by optimising the synthesis conditions.
Collapse
Affiliation(s)
- Joshua S Tse
- Department of Chemistry, University of Huddersfield, Queensgate, Huddersfield, HD1 3DH, UK.
| | - James Grant
- Department of Chemistry, University of Bath, Claverton Down, Bath, BA2 7AY, UK.
| | - Jonathan M Skelton
- Department of Chemistry, University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Lisa J Gillie
- Department of Chemistry, University of Huddersfield, Queensgate, Huddersfield, HD1 3DH, UK.
| | - Runliang Zhu
- CAS Key Laboratory of Mineralogy and Metallogeny, and Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, P. R. China
| | - Giovanni L Pesce
- Department of Mechanical and Construction Engineering, Northumbria University, Newcastle upon Tyne, NE1 8ST, UK
| | - Richard J Ball
- Department of Architecture and Civil Engineering, University of Bath, Bath, BA2 7AY, UK
| | - Stephen C Parker
- Department of Chemistry, University of Bath, Claverton Down, Bath, BA2 7AY, UK.
| | - Marco Molinari
- Department of Chemistry, University of Huddersfield, Queensgate, Huddersfield, HD1 3DH, UK.
| |
Collapse
|
4
|
Luong NT, Holmboe M, Boily JF. MgO nanocube hydroxylation by nanometric water films. NANOSCALE 2023. [PMID: 37194306 DOI: 10.1039/d2nr07140a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Hydrophilic nanosized minerals exposed to air moisture host thin water films that are key drivers of reactions of interest in nature and technology. Water films can trigger irreversible mineralogical transformations, and control chemical fluxes across networks of aggregated nanomaterials. Using X-ray diffraction, vibrational spectroscopy, electron microscopy, and (micro)gravimetry, we tracked water film-driven transformations of periclase (MgO) nanocubes to brucite (Mg(OH)2) nanosheets. We show that three monolayer-thick water films first triggered the nucleation-limited growth of brucite, and that water film loadings continuously increased as newly-formed brucite nanosheets captured air moisture. Small (8 nm-wide) nanocubes were completely converted to brucite under this regime while growth on larger (32 nm-wide) nanocubes transitioned to a diffusion-limited regime when (∼0.9 nm-thick) brucite nanocoatings began hampering the flux of reactive species. We also show that intra- and inter-particle microporosity hosted a hydration network that sustained GPa-level crystallization pressures, compressing interlayer brucite spacing during growth. This was prevalent in aggregated 8 nm wide nanocubes, which formed a maze-like network of slit-shaped pores. By resolving the impact of nanocube size and microporosity on reaction yields and crystallization pressures, this work provides new insight into the study of mineralogical transformations induced by nanometric water films. Our findings can be applied to structurally related minerals important to nature and technology, as well as to advance ideas on crystal growth under nanoconfinement.
Collapse
Affiliation(s)
- N Tan Luong
- Department of Chemistry, Umeå University, SE 901 87 Umeå, Sweden.
| | - Michael Holmboe
- Department of Chemistry, Umeå University, SE 901 87 Umeå, Sweden.
| | | |
Collapse
|
5
|
Zhao Y, Zhang Q, Ma J, Yi R, Gou L, Nie D, Han X, Zhang L, Wang Y, Xu X, Wang Z, Chen L, Lu Y, Zhang S, Zhang L. Directional growth of quasi-2D Cu2O monocrystals on rGO membranes in aqueous environments. iScience 2022; 25:105472. [DOI: 10.1016/j.isci.2022.105472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/19/2022] [Accepted: 10/28/2022] [Indexed: 11/16/2022] Open
|
6
|
Schwab T, Thomele D, Aicher K, Dunlop JWC, McKenna K, Diwald O. Rubbing Powders: Direct Spectroscopic Observation of Triboinduced Oxygen Radical Formation in MgO Nanocube Ensembles. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2021; 125:22239-22248. [PMID: 34676020 PMCID: PMC8521521 DOI: 10.1021/acs.jpcc.1c05898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 09/14/2021] [Indexed: 06/13/2023]
Abstract
Powder compaction-induced surface chemistry in metal oxide nanocrystal ensembles is important for very diverse fields such as triboelectrics, tribocatalysts, surface abrasion, and cold sintering of ceramics. Using a range of spectroscopic techniques, we show that MgO nanocube powder compaction with uniaxial pressures that can be achieved by gentle manual rubbing or pressing (p ≥ 5 MPa) excites energetic electron-hole pairs and generates oxygen radicals at interfacial defect structures. While the identification of paramagnetic O- radicals and their adsorption complexes with O2 point to the emergence of hole centers, triboemitted electrons become scavenged by molecular oxygen to convert into adsorbed superoxide anions O2 - as measured by electron paramagnetic resonance (EPR). By means of complementary UV-photoexcitation experiments, we found that photon energies in the range between 3 and 6 eV produce essentially the same EPR spectroscopic fingerprints and optical absorption features. To provide insights into this effect, we performed density functional theory calculations to explore the energetics of charge separation involving the ionization of low-coordinated anions and surface-adsorbed O2 - radicals at points of contact. For all selected configurations, charge transfer is not spontaneous but requires an additional driving force. We propose that a plausible mechanism for oxygen radical formation is the generation of significant surface potential differences at points of contact under loading as a result of the highly inhomogeneous elastic deformations coupled with the flexoelectric effect.
Collapse
Affiliation(s)
- Thomas Schwab
- Department
of Chemistry and Physics of Materials, Paris-Lodron
University Salzburg, Jakob-Haringer-Straße 2a, A-5020 Salzburg, Austria
| | - Daniel Thomele
- Department
of Chemistry and Physics of Materials, Paris-Lodron
University Salzburg, Jakob-Haringer-Straße 2a, A-5020 Salzburg, Austria
| | - Korbinian Aicher
- Department
of Chemistry and Physics of Materials, Paris-Lodron
University Salzburg, Jakob-Haringer-Straße 2a, A-5020 Salzburg, Austria
| | - John W. C. Dunlop
- Department
of Chemistry and Physics of Materials, Paris-Lodron
University Salzburg, Jakob-Haringer-Straße 2a, A-5020 Salzburg, Austria
| | - Keith McKenna
- Department
of Physics, University of York, Heslington, YO10 5DD York, U.K.
| | - Oliver Diwald
- Department
of Chemistry and Physics of Materials, Paris-Lodron
University Salzburg, Jakob-Haringer-Straße 2a, A-5020 Salzburg, Austria
| |
Collapse
|
7
|
Thomele D, Baumann SO, Schneider J, Sternig AK, Shulda S, Richards RM, Schwab T, Zickler GA, Bourret GR, Diwald O. Cubes to Cubes: Organization of MgO Particles into One-Dimensional and Two-Dimensional Nanostructures. CRYSTAL GROWTH & DESIGN 2021; 21:4674-4682. [PMID: 34381312 PMCID: PMC8343528 DOI: 10.1021/acs.cgd.1c00535] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/22/2021] [Indexed: 05/29/2023]
Abstract
Developing simple, inexpensive, and environmentally benign approaches to integrate morphologically well-defined nanoscale building blocks into larger high surface area materials is a key challenge in materials design and processing. In this work, we investigate the fundamental surface phenomena between MgO and water (both adsorption and desorption) with particles prepared via a vapor-phase process (MgO nanocubes) and a modified aerogel process (MgO(111) nanosheets). Through these studies, we unravel a strategy to assemble individual MgO nanoparticles into extended faceted single-crystalline MgO nanosheets and nanorods with well-defined exposed surfaces and edges. This reorganization can be triggered by the presence of H2O vapor or bulk liquid water. Water adsorption and the progressive conversion of vapor-phase grown oxide particles into hydroxides give rise to either one-dimensional or two-dimensional (1D or 2D) structures of high dispersion and surface area. The resulting Mg(OH)2 lamella with a predominant (001) surface termination are well-suited precursor structures for their topotactic conversion into laterally extended and uniform MgO(111) grain surface configurations. To understand the potential of polar (111) surfaces for faceting and surface reconstruction effects associated with water desorption, we investigated the stability of MgO(111) nanosheets during vacuum annealing and electron beam exposure. The significant surface reconstruction of the MgO(111) surfaces observed shows that adsorbate-free (111)-terminated surfaces of unsupported MgO nanostructures reconstruct rather than remain as charged planes of either three-fold coordinated O2- ion or Mg2+ ions. Thus, here we demonstrate the role water can play in surface formation and reconstruction by bridging wet chemical and surface science inspired approaches.
Collapse
Affiliation(s)
- Daniel Thomele
- Department
of Chemistry and Physics of Materials, Paris-Lodron
University Salzburg, Jakob Haringerstrasse 2a, Salzburg, 5020, Austria
- Institute
of Particle Technology (LFG), Friedrich-Alexander-Universität
Erlangen-Nürnberg, Cauerstraße 4, Erlangen, 91058, Germany
| | - Stefan O. Baumann
- Institute
of Particle Technology (LFG), Friedrich-Alexander-Universität
Erlangen-Nürnberg, Cauerstraße 4, Erlangen, 91058, Germany
| | - Johannes Schneider
- Department
of Chemistry and Physics of Materials, Paris-Lodron
University Salzburg, Jakob Haringerstrasse 2a, Salzburg, 5020, Austria
- Institute
of Particle Technology (LFG), Friedrich-Alexander-Universität
Erlangen-Nürnberg, Cauerstraße 4, Erlangen, 91058, Germany
| | - Andreas K. Sternig
- Institute
of Particle Technology (LFG), Friedrich-Alexander-Universität
Erlangen-Nürnberg, Cauerstraße 4, Erlangen, 91058, Germany
| | - Sarah Shulda
- Department
of Chemistry, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Ryan M. Richards
- Department
of Chemistry, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Thomas Schwab
- Department
of Chemistry and Physics of Materials, Paris-Lodron
University Salzburg, Jakob Haringerstrasse 2a, Salzburg, 5020, Austria
| | - Gregor A. Zickler
- Department
of Chemistry and Physics of Materials, Paris-Lodron
University Salzburg, Jakob Haringerstrasse 2a, Salzburg, 5020, Austria
| | - Gilles R. Bourret
- Department
of Chemistry and Physics of Materials, Paris-Lodron
University Salzburg, Jakob Haringerstrasse 2a, Salzburg, 5020, Austria
| | - Oliver Diwald
- Department
of Chemistry and Physics of Materials, Paris-Lodron
University Salzburg, Jakob Haringerstrasse 2a, Salzburg, 5020, Austria
| |
Collapse
|
8
|
Ninova S, Malcıoğlu OB, Auburger P, Franke M, Lytken O, Steinrück HP, Bockstedte M. Morphology dependent interaction between Co(II)-tetraphenylporphyrin and the MgO(100) surface. Phys Chem Chem Phys 2021; 23:2105-2116. [PMID: 33437981 PMCID: PMC8431532 DOI: 10.1039/d0cp04859c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Porphyrins are key elements in organic–inorganic hybrid systems for a wide range of applications. Understanding their interaction with the substrate gives a handle on structural and electronic device properties. Here we investigate a single transition-metal porphyrin, namely Co(ii)-tetraphenylporphyrin (CoTPP), on the MgO(100) surface and the effect of multilayer film formation within hybrid density-functional theory and many-body perturbation theory. We focus on the relevant adsorption sites, simulate their photoemission spectra as a key fingerprint and compare with experiments on MgO(100) films on Ag(100). While we find only weak interaction between the cobalt centre and terrace sites on the MgO(100) surface, a strong interaction manifests itself with the low-coordinated sites. This leads to distinct features in both the valence and core-level regions of the electronic structure, as observed in the ultraviolet and X-ray photoemission spectra, corroborated by simulated spectra and calculated cobalt core-level shifts. Our work thus demonstrates the relevance of morphology-related low-coordinated sites and their properties in the adsorption of CoTPP on the MgO(100) surface. The adsorption of Co-tetraphenylporphyrin at relevant low-coordinated sites on MgO(100) shows distinct features from terrace-site and multilayer films in the near-valence and corelevel regions of the electronic structure.![]()
Collapse
Affiliation(s)
- Silviya Ninova
- Chemistry and Physics of Materials, Paris-Lodron University Salzburg, Jakob-Haringer-Str. 2a, A-5020 Salzburg, Austria.
| | - Osman Barış Malcıoğlu
- Chemistry and Physics of Materials, Paris-Lodron University Salzburg, Jakob-Haringer-Str. 2a, A-5020 Salzburg, Austria.
| | - Philipp Auburger
- Theoretische Festkörperphysik, Friedrich-Alexander-Universität Erlangen-Nürnberg, Staudtstr. 7B2, D-91058 Erlangen, Germany
| | - Matthias Franke
- Physikalische Chemie II, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstr. 3, D-91058 Erlangen, Germany
| | - Ole Lytken
- Physikalische Chemie II, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstr. 3, D-91058 Erlangen, Germany
| | - Hans-Peter Steinrück
- Physikalische Chemie II, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstr. 3, D-91058 Erlangen, Germany
| | - Michel Bockstedte
- Chemistry and Physics of Materials, Paris-Lodron University Salzburg, Jakob-Haringer-Str. 2a, A-5020 Salzburg, Austria. .,Theoretische Festkörperphysik, Friedrich-Alexander-Universität Erlangen-Nürnberg, Staudtstr. 7B2, D-91058 Erlangen, Germany.,Institut für Theoretische Physik, Johannes-Kepler-Universität Linz, Altenberger Str. 68, A-4040 Linz, Austria
| |
Collapse
|
9
|
Singh JP, Singh V, Sharma A, Pandey G, Chae KH, Lee S. Approaches to synthesize MgO nanostructures for diverse applications. Heliyon 2020; 6:e04882. [PMID: 33024853 PMCID: PMC7527648 DOI: 10.1016/j.heliyon.2020.e04882] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 02/26/2020] [Accepted: 09/07/2020] [Indexed: 10/27/2022] Open
Abstract
Magnesium oxide remained interesting from long time for several important phenomena like; defect induced magnetism, spin electron reflectivity, broad laser emission etc. Moreover, nanostructures of this material exhibited suitability for different kinds of applications ranging from wastewater treatment to spintronics depending upon their shape and size. In this way, researchers had grown nanostructures in the form of nanoparticles, thin films, nanotubes, nanowalls, nanobelts. Though nanoparticles and thin films are well known form of nanostructures and wide variety of synthesis approaches are available, however, limited methodology for other nanostructures are available. In order to grow these nanostructures in an optimized way an understanding of these methods is essential. Thus, this review article depicts an overview of various approaches for design of different kinds of nanostructures.
Collapse
Affiliation(s)
- Jitendra Pal Singh
- Pohang Accelerator Laboratory, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea
| | - Varsha Singh
- Advanced Analysis Center, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
| | - Aditya Sharma
- Department of Physics, Manav Rachna University, Faridabad, Haryana, 121004, India
| | - Ganesh Pandey
- University of Petroleum & Energy Studies (UPES), Dehradun, Uttarakhand, 248007, India
- Gus Global Services ( India) Private Limited, Gurugram, Haryana, 122011, India
| | - Keun Hwa Chae
- Advanced Analysis Center, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
| | - Sangsul Lee
- Pohang Accelerator Laboratory, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea
- Xavisoptics Ltd., Pohang 37673, Republic of Korea
| |
Collapse
|
10
|
Meng J, Hou C, Wang H, Chi Q, Gao Y, Zhu B. Oriented attachment growth of monocrystalline cuprous oxide nanowires in pure water. NANOSCALE ADVANCES 2019; 1:2174-2179. [PMID: 36131967 PMCID: PMC9417747 DOI: 10.1039/c8na00374b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 03/24/2019] [Indexed: 06/15/2023]
Abstract
As a crucial mechanism of non-classical crystallization, the oriented attachment (OA) growth of nanocrystals is of great interest in nanoscience and materials science. The OA process occurring in aqueous solution with chemical reagents has been reported many times, but there are limited studies reporting the OA growth in pure water. In this work, we report the temperature-dependent OA growth of cuprous oxide (Cu2O) nanowires in pure water through a reagent-free electrophoretic method. Our experiments demonstrate that Cu2O quantum dots randomly coalesced to form polycrystalline nanowires at room temperature, while they form monocrystalline nanowires at higher temperatures by the OA mechanism. DFT modeling and computations indicate that the water coverage on the Cu2O nanoparticles could affect the particle attachment mechanisms. This study sheds light on the understanding of the effects of water molecules on the OA mechanism and shows new approaches for better controllable non-classical crystallization in pure water.
Collapse
Affiliation(s)
- Jun Meng
- Division of Interfacial Water and Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences Shanghai 201800 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Chengyi Hou
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University Shanghai 201620 People's Republic of China
- Department of Chemistry, Technical University of Denmark DK-2800 Kongens Lyngby Denmark
| | - Hongzhi Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University Shanghai 201620 People's Republic of China
| | - Qijin Chi
- Department of Chemistry, Technical University of Denmark DK-2800 Kongens Lyngby Denmark
| | - Yi Gao
- Division of Interfacial Water and Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences Shanghai 201800 China
- Shanghai Advanced Research Institute, Chinese Academy of Sciences 201210 Shanghai China
| | - Beien Zhu
- Division of Interfacial Water and Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences Shanghai 201800 China
- Shanghai Advanced Research Institute, Chinese Academy of Sciences 201210 Shanghai China
| |
Collapse
|
11
|
Thomele D, Gheisi AR, Niedermaier M, Elsässer MS, Bernardi J, Grönbeck H, Diwald O. Thin water films and particle morphology evolution in nanocrystalline MgO. JOURNAL OF THE AMERICAN CERAMIC SOCIETY. AMERICAN CERAMIC SOCIETY 2018; 101:4994-5003. [PMID: 30333631 PMCID: PMC6175089 DOI: 10.1111/jace.15775] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 05/05/2018] [Indexed: 05/29/2023]
Abstract
A key question in the field of ceramics and catalysis is how and to what extent residual water in the reactive environment of a metal oxide particle powder affects particle coarsening and morphology. With X-ray Diffraction (XRD) and Transmission Electron Microscopy (TEM), we investigated annealing-induced morphology changes on powders of MgO nanocubes in different gaseous H2O environments. The use of such a model system for particle powders enabled us to describe how adsorbed water that originates from short exposure to air determines the evolution of MgO grain size, morphology, and microstructure. While cubic nanoparticles with a predominant abundance of (100) surface planes retain their shape after annealing to T = 1173 K under continuous pumping with a base pressure of water p(H2O) = 10-5 mbar, higher water partial pressures promote mass transport on the surfaces and across interfaces of such particle systems. This leads to substantial growth and intergrowth of particles and simultaneously favors the formation of step edges and shallow protrusions on terraces. The mass transfer is promoted by thin films of water providing a two-dimensional solvent for Mg2+ ion hydration. In addition, we obtained direct evidence for hydroxylation-induced stabilization of (110) faces and step edges of the grain surfaces.
Collapse
Affiliation(s)
- Daniel Thomele
- Department of Chemistry and Physics of MaterialsParis‐Lodron University SalzburgSalzburgAustria
| | - Amir R. Gheisi
- Institute of Particle TechnologyFriedrich‐Alexander Universität Erlangen‐NürnbergErlangenGermany
| | - Matthias Niedermaier
- Department of Chemistry and Physics of MaterialsParis‐Lodron University SalzburgSalzburgAustria
| | - Michael S. Elsässer
- Department of Chemistry and Physics of MaterialsParis‐Lodron University SalzburgSalzburgAustria
| | - Johannes Bernardi
- University Service Center for Transmission Electron MicroscopyTechnische Universität WienViennaAustria
| | - Henrik Grönbeck
- Department of Physics and Competence Centre for CatalysisChalmers University of TechnologyGothenburgSweden
| | - Oliver Diwald
- Department of Chemistry and Physics of MaterialsParis‐Lodron University SalzburgSalzburgAustria
| |
Collapse
|
12
|
Schneider J, Berger T, Diwald O. Reactive Porphyrin Adsorption on TiO 2 Anatase Particles: Solvent Assistance and the Effect of Water Addition. ACS APPLIED MATERIALS & INTERFACES 2018; 10:16836-16842. [PMID: 29663802 DOI: 10.1021/acsami.8b00894] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The surface functionalization of metal oxide nanoparticles with complex organic molecules can lead to optoelectronically very different material properties, depending on whether adsorption occurs at the solid-gas or solid-liquid interface. Here, we report on two different approaches to decorate anatase TiO2 nanoparticle powders with 2 H-tetraphenylporphyrin (2HTPP) molecules: (i) porphyrin adsorption in dispersions of organic liquids and (ii) gas-phase functionalization where evaporated porphyrin molecules attach to dehydrated particle surfaces in the absence of solvent molecules. In the latter case, a bottom-up approach is pursued to explore both the impact of organic solvent molecules and the impact of spurious water on the surface chemistry of porphyrin-sensitized TiO2 nanoparticles. Vis diffuse reflectance and photoluminescence emission spectroscopy provide clear evidence for the promotion of interfacial reorganization processes of the adsorbate species by coadsorbed solvent molecules in liquids. Moreover, traces of spurious water were found to induce protonation-deprotonation reactions on the adsorbed porphyrins with a strong impact on the optical properties of the resulting hybrid materials.
Collapse
Affiliation(s)
- Johannes Schneider
- Department of Chemistry and Physics of Materials , Paris Lodron University of Salzburg , Jakob-Haringer-Straße 2a , A-5020 Salzburg , Austria
| | - Thomas Berger
- Department of Chemistry and Physics of Materials , Paris Lodron University of Salzburg , Jakob-Haringer-Straße 2a , A-5020 Salzburg , Austria
| | - Oliver Diwald
- Department of Chemistry and Physics of Materials , Paris Lodron University of Salzburg , Jakob-Haringer-Straße 2a , A-5020 Salzburg , Austria
| |
Collapse
|