1
|
Snajdarova K, Marques SM, Damborsky J, Bednar D, Marek M. Atypical homodimerization revealed by the structure of the (S)-enantioselective haloalkane dehalogenase DmmarA from Mycobacterium marinum. Acta Crystallogr D Struct Biol 2023; 79:956-970. [PMID: 37860958 PMCID: PMC10619424 DOI: 10.1107/s2059798323006642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 07/31/2023] [Indexed: 10/21/2023] Open
Abstract
Haloalkane dehalogenases (HLDs) are a family of α/β-hydrolase fold enzymes that employ SN2 nucleophilic substitution to cleave the carbon-halogen bond in diverse chemical structures, the biological role of which is still poorly understood. Atomic-level knowledge of both the inner organization and supramolecular complexation of HLDs is thus crucial to understand their catalytic and noncatalytic functions. Here, crystallographic structures of the (S)-enantioselective haloalkane dehalogenase DmmarA from the waterborne pathogenic microbe Mycobacterium marinum were determined at 1.6 and 1.85 Å resolution. The structures show a canonical αβα-sandwich HLD fold with several unusual structural features. Mechanistically, the atypical composition of the proton-relay catalytic triad (aspartate-histidine-aspartate) and uncommon active-site pocket reveal the molecular specificities of a catalytic apparatus that exhibits a rare (S)-enantiopreference. Additionally, the structures reveal a previously unobserved mode of symmetric homodimerization, which is predominantly mediated through unusual L5-to-L5 loop interactions. This homodimeric association in solution is confirmed experimentally by data obtained from small-angle X-ray scattering. Utilizing the newly determined structures of DmmarA, molecular modelling techniques were employed to elucidate the underlying mechanism behind its uncommon enantioselectivity. The (S)-preference can be attributed to the presence of a distinct binding pocket and variance in the activation barrier for nucleophilic substitution.
Collapse
Affiliation(s)
- Karolina Snajdarova
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, Kamenice 5, Building A13, 625 00 Brno, Czech Republic
| | - Sérgio M. Marques
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, Kamenice 5, Building A13, 625 00 Brno, Czech Republic
- International Clinical Research Center, St Anne’s University Hospital Brno, Pekarska 53, 656 91 Brno, Czech Republic
| | - Jiri Damborsky
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, Kamenice 5, Building A13, 625 00 Brno, Czech Republic
- International Clinical Research Center, St Anne’s University Hospital Brno, Pekarska 53, 656 91 Brno, Czech Republic
| | - David Bednar
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, Kamenice 5, Building A13, 625 00 Brno, Czech Republic
- International Clinical Research Center, St Anne’s University Hospital Brno, Pekarska 53, 656 91 Brno, Czech Republic
| | - Martin Marek
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, Kamenice 5, Building A13, 625 00 Brno, Czech Republic
- International Clinical Research Center, St Anne’s University Hospital Brno, Pekarska 53, 656 91 Brno, Czech Republic
| |
Collapse
|
2
|
Hot spots-making directed evolution easier. Biotechnol Adv 2022; 56:107926. [DOI: 10.1016/j.biotechadv.2022.107926] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 01/04/2022] [Accepted: 02/07/2022] [Indexed: 01/20/2023]
|
3
|
Ao YF, Hu HJ, Zhao CX, Chen P, Huang T, Chen H, Wang QQ, Wang DX, Wang MX. Reversal and Amplification of the Enantioselectivity of Biocatalytic Desymmetrization toward Meso Heterocyclic Dicarboxamides Enabled by Rational Engineering of Amidase. ACS Catal 2021. [DOI: 10.1021/acscatal.1c01220] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Yu-Fei Ao
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hui-Juan Hu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China
| | - Cheng-Xin Zhao
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Peng Chen
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Tingting Huang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory on Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hui Chen
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Qi-Qiang Wang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - De-Xian Wang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mei-Xiang Wang
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China
| |
Collapse
|
4
|
A Haloalkane Dehalogenase from Saccharomonospora viridis Strain DSM 43017, a Compost Bacterium with Unusual Catalytic Residues, Unique ( S)-Enantiopreference, and High Thermostability. Appl Environ Microbiol 2020; 86:AEM.02820-19. [PMID: 32561584 DOI: 10.1128/aem.02820-19] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 06/08/2020] [Indexed: 11/20/2022] Open
Abstract
Haloalkane dehalogenases can cleave a carbon-halogen bond in a broad range of halogenated aliphatic compounds. However, a highly conserved catalytic pentad composed of a nucleophile, a catalytic base, a catalytic acid, and two halide-stabilizing residues is required for their catalytic activity. Only a few family members, e.g., DsaA, DmxA, or DmrB, remain catalytically active while employing a single halide-stabilizing residue. Here, we describe a novel haloalkane dehalogenase, DsvA, from a mildly thermophilic bacterium, Saccharomonospora viridis strain DSM 43017, possessing one canonical halide-stabilizing tryptophan (W125). At the position of the second halide-stabilizing residue, DsvA contains the phenylalanine F165, which cannot stabilize the halogen anion released during the enzymatic reaction by a hydrogen bond. Based on the sequence and structural alignments, we identified a putative second halide-stabilizing tryptophan (W162) located on the same α-helix as F165, but on the opposite side of the active site. The potential involvement of this residue in DsvA catalysis was investigated by the construction and biochemical characterization of the three variants, DsvA01 (F165W), DsvA02 (W162F), and DsvA03 (W162F and F165W). Interestingly, DsvA exhibits a preference for the (S)- over the (R)-enantiomers of β-bromoalkanes, which has not been reported before for any characterized haloalkane dehalogenase. Moreover, DsvA shows remarkable operational stability at elevated temperatures. The present study illustrates that protein sequences possessing an unconventional composition of catalytic residues represent a valuable source of novel biocatalysts.IMPORTANCE The present study describes a novel haloalkane dehalogenase, DsvA, originating from a mildly thermophilic bacterium, Saccharomonospora viridis strain DSM 43017. We report its high thermostability, remarkable operational stability at high temperatures, and an (S)-enantiopreference, which makes this enzyme an attractive biocatalyst for practical applications. Sequence analysis revealed that DsvA possesses an unusual composition of halide-stabilizing tryptophan residues in its active site. We constructed and biochemically characterized two single point mutants and one double point mutant and identified the noncanonical halide-stabilizing residue. Our study underlines the importance of searching for noncanonical catalytic residues in protein sequences.
Collapse
|
5
|
Song W, Xu X, Gao C, Zhang Y, Wu J, Liu J, Chen X, Luo Q, Liu L. Open Gate of Corynebacterium glutamicum Threonine Deaminase for Efficient Synthesis of Bulky α-Keto Acids. ACS Catal 2020. [DOI: 10.1021/acscatal.0c01672] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Wei Song
- School of Pharmaceutical Science, Jiangnan University, Wuxi 214122, P. R. China
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, P. R. China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, P. R. China
| | - Xin Xu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, P. R. China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, P. R. China
| | - Cong Gao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, P. R. China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, P. R. China
| | - Yuxuan Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, P. R. China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, P. R. China
| | - Jing Wu
- School of Pharmaceutical Science, Jiangnan University, Wuxi 214122, P. R. China
| | - Jia Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, P. R. China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, P. R. China
| | - Xiulai Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, P. R. China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, P. R. China
| | - Qiuling Luo
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, P. R. China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, P. R. China
| | - Liming Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, P. R. China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, P. R. China
| |
Collapse
|
6
|
Vavra O, Filipovic J, Plhak J, Bednar D, Marques SM, Brezovsky J, Stourac J, Matyska L, Damborsky J. CaverDock: a molecular docking-based tool to analyse ligand transport through protein tunnels and channels. Bioinformatics 2020; 35:4986-4993. [PMID: 31077297 DOI: 10.1093/bioinformatics/btz386] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 04/11/2019] [Accepted: 05/05/2019] [Indexed: 12/20/2022] Open
Abstract
MOTIVATION Protein tunnels and channels are key transport pathways that allow ligands to pass between proteins' external and internal environments. These functionally important structural features warrant detailed attention. It is difficult to study the ligand binding and unbinding processes experimentally, while molecular dynamics simulations can be time-consuming and computationally demanding. RESULTS CaverDock is a new software tool for analysing the ligand passage through the biomolecules. The method uses the optimized docking algorithm of AutoDock Vina for ligand placement docking and implements a parallel heuristic algorithm to search the space of possible trajectories. The duration of the simulations takes from minutes to a few hours. Here we describe the implementation of the method and demonstrate CaverDock's usability by: (i) comparison of the results with other available tools, (ii) determination of the robustness with large ensembles of ligands and (iii) the analysis and comparison of the ligand trajectories in engineered tunnels. Thorough testing confirms that CaverDock is applicable for the fast analysis of ligand binding and unbinding in fundamental enzymology and protein engineering. AVAILABILITY AND IMPLEMENTATION User guide and binaries for Ubuntu are freely available for non-commercial use at https://loschmidt.chemi.muni.cz/caverdock/. The web implementation is available at https://loschmidt.chemi.muni.cz/caverweb/. The source code is available upon request. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Ondrej Vavra
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Masaryk University, Brno, Czech Republic.,International Centre for Clinical Research, St. Anne's University Hospital Brno, Brno, Czech Republic
| | - Jiri Filipovic
- Institute of Computer Science, Masaryk University, Brno, Czech Republic
| | - Jan Plhak
- Institute of Computer Science, Masaryk University, Brno, Czech Republic
| | - David Bednar
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Masaryk University, Brno, Czech Republic.,International Centre for Clinical Research, St. Anne's University Hospital Brno, Brno, Czech Republic
| | - Sergio M Marques
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Masaryk University, Brno, Czech Republic.,International Centre for Clinical Research, St. Anne's University Hospital Brno, Brno, Czech Republic
| | - Jan Brezovsky
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Masaryk University, Brno, Czech Republic
| | - Jan Stourac
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Masaryk University, Brno, Czech Republic.,International Centre for Clinical Research, St. Anne's University Hospital Brno, Brno, Czech Republic
| | - Ludek Matyska
- Institute of Computer Science, Masaryk University, Brno, Czech Republic
| | - Jiri Damborsky
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Masaryk University, Brno, Czech Republic.,International Centre for Clinical Research, St. Anne's University Hospital Brno, Brno, Czech Republic
| |
Collapse
|
7
|
Marek M, Chaloupkova R, Prudnikova T, Sato Y, Rezacova P, Nagata Y, Kuta Smatanova I, Damborsky J. Structural and catalytic effects of surface loop-helix transplantation within haloalkane dehalogenase family. Comput Struct Biotechnol J 2020; 18:1352-1362. [PMID: 32612758 PMCID: PMC7306515 DOI: 10.1016/j.csbj.2020.05.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 05/19/2020] [Accepted: 05/23/2020] [Indexed: 11/24/2022] Open
Abstract
Engineering enzyme catalytic properties is important for basic research as well as for biotechnological applications. We have previously shown that the reshaping of enzyme access tunnels via the deletion of a short surface loop element may yield a haloalkane dehalogenase variant with markedly modified substrate specificity and enantioselectivity. Here, we conversely probed the effects of surface loop-helix transplantation from one enzyme to another within the enzyme family of haloalkane dehalogenases. Precisely, we transplanted a nine-residue long extension of L9 loop and α4 helix from DbjA into the corresponding site of DbeA. Biophysical characterization showed that this fragment transplantation did not affect the overall protein fold or oligomeric state, but lowered protein stability (ΔT m = -5 to 6 °C). Interestingly, the crystal structure of DbeA mutant revealed the unique structural features of enzyme access tunnels, which are known determinants of catalytic properties for this enzyme family. Biochemical data confirmed that insertion increased activity of DbeA with various halogenated substrates and altered its enantioselectivity with several linear β-bromoalkanes. Our findings support a protein engineering strategy employing surface loop-helix transplantation for construction of novel protein catalysts with modified catalytic properties.
Collapse
Affiliation(s)
- Martin Marek
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, Kamenice 5, Bld. A13, 625 00 Brno, Czech Republic
| | - Radka Chaloupkova
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, Kamenice 5, Bld. A13, 625 00 Brno, Czech Republic
| | - Tatyana Prudnikova
- Faculty of Science, University of South Bohemia in Ceske Budejovice, Branisovska 1760, 37005 Ceske Budejovice, Czech Republic
| | - Yukari Sato
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, 980-8577 Sendai, Japan
| | - Pavlina Rezacova
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, 142 20 Prague, Czech Republic
| | - Yuji Nagata
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, 980-8577 Sendai, Japan
| | - Ivana Kuta Smatanova
- Faculty of Science, University of South Bohemia in Ceske Budejovice, Branisovska 1760, 37005 Ceske Budejovice, Czech Republic
| | - Jiri Damborsky
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, Kamenice 5, Bld. A13, 625 00 Brno, Czech Republic
| |
Collapse
|
8
|
Sheng X, Kazemi M, Planas F, Himo F. Modeling Enzymatic Enantioselectivity using Quantum Chemical Methodology. ACS Catal 2020. [DOI: 10.1021/acscatal.0c00983] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Xiang Sheng
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, Stockholm SE-106 91, Sweden
| | - Masoud Kazemi
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, Stockholm SE-106 91, Sweden
| | - Ferran Planas
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, Stockholm SE-106 91, Sweden
| | - Fahmi Himo
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, Stockholm SE-106 91, Sweden
| |
Collapse
|
9
|
Kokkonen P, Bednar D, Pinto G, Prokop Z, Damborsky J. Engineering enzyme access tunnels. Biotechnol Adv 2019; 37:107386. [PMID: 31026496 DOI: 10.1016/j.biotechadv.2019.04.008] [Citation(s) in RCA: 135] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Revised: 04/16/2019] [Accepted: 04/18/2019] [Indexed: 12/14/2022]
Abstract
Enzymes are efficient and specific catalysts for many essential reactions in biotechnological and pharmaceutical industries. Many times, the natural enzymes do not display the catalytic efficiency, stability or specificity required for these industrial processes. The current enzyme engineering methods offer solutions to this problem, but they mainly target the buried active site where the chemical reaction takes place. Despite being many times ignored, the tunnels and channels connecting the environment with the active site are equally important for the catalytic properties of enzymes. Changes in the enzymatic tunnels and channels affect enzyme activity, specificity, promiscuity, enantioselectivity and stability. This review provides an overview of the emerging field of enzyme access tunnel engineering with case studies describing design of all the aforementioned properties. The software tools for the analysis of geometry and function of the enzymatic tunnels and channels and for the rational design of tunnel modifications will also be discussed. The combination of new software tools and enzyme engineering strategies will provide enzymes with access tunnels and channels specifically tailored for individual industrial processes.
Collapse
Affiliation(s)
- Piia Kokkonen
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - David Bednar
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic; International Clinical Research Center, St. Anne's University Hospital Brno, Pekarska 53, 656 91 Brno, Czech Republic
| | - Gaspar Pinto
- International Clinical Research Center, St. Anne's University Hospital Brno, Pekarska 53, 656 91 Brno, Czech Republic
| | - Zbynek Prokop
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic; International Clinical Research Center, St. Anne's University Hospital Brno, Pekarska 53, 656 91 Brno, Czech Republic
| | - Jiri Damborsky
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic; International Clinical Research Center, St. Anne's University Hospital Brno, Pekarska 53, 656 91 Brno, Czech Republic.
| |
Collapse
|
10
|
Musil M, Konegger H, Hon J, Bednar D, Damborsky J. Computational Design of Stable and Soluble Biocatalysts. ACS Catal 2018. [DOI: 10.1021/acscatal.8b03613] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Milos Musil
- Loschmidt Laboratories, Centre for Toxic Compounds in the Environment (RECETOX), and Department of Experimental Biology, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic
- IT4Innovations Centre of Excellence, Faculty of Information Technology, Brno University of Technology, 612 66 Brno, Czech Republic
- International Clinical Research Center, St. Anne’s University Hospital, Pekarska 53, 656 91 Brno, Czech Republic
| | - Hannes Konegger
- Loschmidt Laboratories, Centre for Toxic Compounds in the Environment (RECETOX), and Department of Experimental Biology, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic
- International Clinical Research Center, St. Anne’s University Hospital, Pekarska 53, 656 91 Brno, Czech Republic
| | - Jiri Hon
- Loschmidt Laboratories, Centre for Toxic Compounds in the Environment (RECETOX), and Department of Experimental Biology, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic
- IT4Innovations Centre of Excellence, Faculty of Information Technology, Brno University of Technology, 612 66 Brno, Czech Republic
- International Clinical Research Center, St. Anne’s University Hospital, Pekarska 53, 656 91 Brno, Czech Republic
| | - David Bednar
- Loschmidt Laboratories, Centre for Toxic Compounds in the Environment (RECETOX), and Department of Experimental Biology, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic
- International Clinical Research Center, St. Anne’s University Hospital, Pekarska 53, 656 91 Brno, Czech Republic
| | - Jiri Damborsky
- Loschmidt Laboratories, Centre for Toxic Compounds in the Environment (RECETOX), and Department of Experimental Biology, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic
- International Clinical Research Center, St. Anne’s University Hospital, Pekarska 53, 656 91 Brno, Czech Republic
| |
Collapse
|
11
|
Payer SE, Pollak H, Glueck SM, Faber K. A Rational Active-Site Redesign Converts a Decarboxylase into a C=C Hydratase: "Tethered Acetate" Supports Enantioselective Hydration of 4-Hydroxystyrenes. ACS Catal 2018. [PMID: 29527405 PMCID: PMC5838639 DOI: 10.1021/acscatal.7b04293] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The promiscuous regio- and stereoselective hydration of 4-hydroxystyrenes catalyzed by ferulic acid decarboxylase from Enterobacter sp. (FDC_Es) depends on bicarbonate bound in the active site, which serves as a proton relay activating a water molecule for nucleophilic attack on a quinone methide electrophile. This "cofactor" is crucial for achieving improved conversions and high stereoselectivities for (S)-configured benzylic alcohol products. Similar effects were observed with simple aliphatic carboxylic acids as additives. A rational redesign of the active site by replacing the bicarbonate or acetate "cofactor" with a newly introduced side-chain carboxylate from an adjacent amino acid yielded mutants that efficiently acted as C=C hydratases. A single-point mutation of valine 46 to glutamate or aspartate improved the hydration activity by 40% and boosted the stereoselectivity 39-fold in the absence of bicarbonate or acetate.
Collapse
Affiliation(s)
- Stefan E. Payer
- Austrian Centre of
Industrial Biotechnology and ‡Department of Chemistry, University of Graz, Heinrichstrasse 28/2, 8010 Graz, Austria
| | - Hannah Pollak
- Austrian Centre of
Industrial Biotechnology and ‡Department of Chemistry, University of Graz, Heinrichstrasse 28/2, 8010 Graz, Austria
| | - Silvia M. Glueck
- Austrian Centre of
Industrial Biotechnology and ‡Department of Chemistry, University of Graz, Heinrichstrasse 28/2, 8010 Graz, Austria
| | - Kurt Faber
- Austrian Centre of
Industrial Biotechnology and ‡Department of Chemistry, University of Graz, Heinrichstrasse 28/2, 8010 Graz, Austria
| |
Collapse
|
12
|
|
13
|
Marques SM, Dunajova Z, Prokop Z, Chaloupkova R, Brezovsky J, Damborsky J. Catalytic Cycle of Haloalkane Dehalogenases Toward Unnatural Substrates Explored by Computational Modeling. J Chem Inf Model 2017; 57:1970-1989. [PMID: 28696117 DOI: 10.1021/acs.jcim.7b00070] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The anthropogenic toxic compound 1,2,3-trichloropropane is poorly degradable by natural enzymes. We have previously constructed the haloalkane dehalogenase DhaA31 by focused directed evolution ( Pavlova, M. et al. Nat. Chem. Biol. 2009 , 5 , 727 - 733 ), which is 32 times more active than the wild-type enzyme and is currently the most active variant known against that substrate. Recent evidence has shown that the structural basis responsible for the higher activity of DhaA31 was poorly understood. Here we have undertaken a comprehensive computational study of the main steps involved in the biocatalytic hydrolysis of 1,2,3-trichloropropane to decipher the structural basis for such enhancements. Using molecular dynamics and quantum mechanics approaches we have surveyed (i) the substrate binding, (ii) the formation of the reactive complex, (iii) the chemical step, and (iv) the release of the products. We showed that the binding of the substrate and its transport through the molecular tunnel to the active site is a relatively fast process. The cleavage of the carbon-halogen bond was previously identified as the rate-limiting step in the wild-type. Here we demonstrate that this step was enhanced in DhaA31 due to a significantly higher number of reactive configurations of the substrate and a decrease of the energy barrier to the SN2 reaction. C176Y and V245F were identified as the key mutations responsible for most of those improvements. The release of the alcohol product was found to be the rate-limiting step in DhaA31 primarily due to the C176Y mutation. Mutational dissection of DhaA31 and kinetic analysis of the intermediate mutants confirmed the theoretical observations. Overall, our comprehensive computational approach has unveiled mechanistic details of the catalytic cycle which will enable a balanced design of more efficient enzymes. This approach is applicable to deepen the biochemical knowledge of a large number of other systems and may contribute to robust strategies in the development of new biocatalysts.
Collapse
Affiliation(s)
- Sérgio M Marques
- Loschmidt Laboratories, Department of Experimental Biology and Research Centre for Toxic Compounds in the Environment RECETOX, Faculty of Science, Masaryk University , Kamenice 5/A13, 625 00 Brno, Czech Republic.,International Clinical Research Center, St. Anne's University Hospital Brno , Pekarska 53, 656 91 Brno, Czech Republic
| | - Zuzana Dunajova
- Loschmidt Laboratories, Department of Experimental Biology and Research Centre for Toxic Compounds in the Environment RECETOX, Faculty of Science, Masaryk University , Kamenice 5/A13, 625 00 Brno, Czech Republic
| | - Zbynek Prokop
- Loschmidt Laboratories, Department of Experimental Biology and Research Centre for Toxic Compounds in the Environment RECETOX, Faculty of Science, Masaryk University , Kamenice 5/A13, 625 00 Brno, Czech Republic.,International Clinical Research Center, St. Anne's University Hospital Brno , Pekarska 53, 656 91 Brno, Czech Republic
| | - Radka Chaloupkova
- Loschmidt Laboratories, Department of Experimental Biology and Research Centre for Toxic Compounds in the Environment RECETOX, Faculty of Science, Masaryk University , Kamenice 5/A13, 625 00 Brno, Czech Republic.,International Clinical Research Center, St. Anne's University Hospital Brno , Pekarska 53, 656 91 Brno, Czech Republic
| | - Jan Brezovsky
- Loschmidt Laboratories, Department of Experimental Biology and Research Centre for Toxic Compounds in the Environment RECETOX, Faculty of Science, Masaryk University , Kamenice 5/A13, 625 00 Brno, Czech Republic.,International Clinical Research Center, St. Anne's University Hospital Brno , Pekarska 53, 656 91 Brno, Czech Republic
| | - Jiri Damborsky
- Loschmidt Laboratories, Department of Experimental Biology and Research Centre for Toxic Compounds in the Environment RECETOX, Faculty of Science, Masaryk University , Kamenice 5/A13, 625 00 Brno, Czech Republic.,International Clinical Research Center, St. Anne's University Hospital Brno , Pekarska 53, 656 91 Brno, Czech Republic
| |
Collapse
|