1
|
Simpson TJ. Synthetic biology routes to new and extinct natural products. RSC Chem Biol 2025; 6:721-730. [PMID: 40171247 PMCID: PMC11956838 DOI: 10.1039/d5cb00047e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Accepted: 03/19/2025] [Indexed: 04/03/2025] Open
Abstract
Recent developments in genome sequencing and genetic engineering have revolutionised elucidation of biosynthetic pathways in bacteria and fungi and allowed production of new natural products and engineered strains with optimised production of new and/or preferred metabolites. The clinically important antibiotic mupirocin is a mixture of closely related pseudomonic acids produced by Pseudomonas fluorescens via a trans-AT modular PKS. Extensive gene knock-out experiments have led to the isolation of a plethora of new metabolites: both biosynthetic intermediates and shunt products. Parallel experiments, along with swapping of biosynthetic genes, with a Pseudoalteromonas sp. which produces the closely related thiomarinols give similar results and many new products. A genetically engineered strain of P. fluorescens produces high titres of a single pseudomonic acid with improved stability and antibiotic properties. Tenellin and bassianin are insecticidal fungal metabolites produced by Beauvaria species via multi-domain PKS-NRPSs. Heterologous expression in Aspergillus oryzae of hybrid systems produced by domain swapping between the two biosynthetic gene clusters produce many new metabolites in high yields and reveal the key elements in control of polyketide chain length and methylation, showing the potential for combinatorial biosynthesis of these and related metabolites. Cryptosporiopsis sp. 8999 produces three related dimeric xanthones. Gene knock-outs allow elucidation of the full biosynthetic pathway, isolation of the monomeric precursor and engineering of a strain producing only the major component of the wild-type mixture.
Collapse
|
2
|
Winter AJ, de Courcy-Ireland F, Phillips AP, Barker JM, Bakar NA, Akter N, Wang L, Song Z, Crosby J, Williams C, Willis CL, Crump MP. An Integrated Module Performs Selective 'Online' Epoxidation in the Biosynthesis of the Antibiotic Mupirocin. Angew Chem Int Ed Engl 2024; 63:e202410502. [PMID: 39105412 DOI: 10.1002/anie.202410502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/31/2024] [Accepted: 08/05/2024] [Indexed: 08/07/2024]
Abstract
The delineation of the complex biosynthesis of the potent antibiotic mupirocin, which consists of a mixture of pseudomonic acids (PAs) isolated from Pseudomonas fluorescens NCIMB 10586, presents significant challenges, and the timing and mechanisms of several key transformations remain elusive. Particularly intriguing are the steps that process the linear backbone from the initial polyketide assembly phase to generate the first cyclic intermediate PA-B. These include epoxidation as well as incorporation of the tetrahydropyran (THP) ring and fatty acid side chain required for biological activity. Herein, we show that the mini-module MmpE performs a rare online (ACP-substrate) epoxidation and is integrated ('in-cis') into the polyketide synthase via a docking domain. A linear polyketide fragment with six asymmetric centres was synthesised using a convergent approach and used to demonstrate substrate flux via an atypical KS0 and a previously unannotated ACP (MmpE_ACP). MmpE_ACP-bound synthetic substrates were critical in demonstrating successful epoxidation in vitro by the purified MmpE oxidoreductase domain. Alongside feeding studies, these results confirm the timing as well as chain length dependence of this selective epoxidation. These mechanistic studies pinpoint the location and nature of the polyketide substrate prior to the key formation of the THP ring and esterification that generate PA-B.
Collapse
Affiliation(s)
- Ashley J Winter
- School of Chemistry, University of Bristol, BS8 1TS, Bristol, UK
| | | | | | - Joseph M Barker
- School of Chemistry, University of Bristol, BS8 1TS, Bristol, UK
| | - Nurfarhanim A Bakar
- School of Chemistry, University of Bristol, BS8 1TS, Bristol, UK
- Department of Engineering and Sciences, School of Liberal Arts and Sciences, Taylor's University, 47500, Subang Jaya, Selangor, Malaysia
| | - Nahida Akter
- School of Chemistry, University of Bristol, BS8 1TS, Bristol, UK
- Department of Chemistry, University of Barisal, 8200, Barisal, Bangladesh
| | - Luoyi Wang
- Institute of Microbiology, Chinese Academy of Sciences, 100101, Beijing, China
| | - Zhongshu Song
- School of Chemistry, University of Bristol, BS8 1TS, Bristol, UK
| | - John Crosby
- School of Chemistry, University of Bristol, BS8 1TS, Bristol, UK
| | | | | | - Matthew P Crump
- School of Chemistry, University of Bristol, BS8 1TS, Bristol, UK
| |
Collapse
|
3
|
Winter AJ, Khanizeman RN, Barker‐Mountford AMC, Devine AJ, Wang L, Song Z, Davies JA, Race PR, Williams C, Simpson TJ, Willis CL, Crump MP. Structure and Function of the α-Hydroxylation Bimodule of the Mupirocin Polyketide Synthase. Angew Chem Int Ed Engl 2023; 62:e202312514. [PMID: 37768840 PMCID: PMC10953402 DOI: 10.1002/anie.202312514] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 09/27/2023] [Accepted: 09/28/2023] [Indexed: 09/30/2023]
Abstract
Mupirocin is a clinically important antibiotic produced by a trans-AT Type I polyketide synthase (PKS) in Pseudomonas fluorescens. The major bioactive metabolite, pseudomonic acid A (PA-A), is assembled on a tetrasubstituted tetrahydropyran (THP) core incorporating a 6-hydroxy group proposed to be introduced by α-hydroxylation of the thioester of the acyl carrier protein (ACP) bound polyketide chain. Herein, we describe an in vitro approach combining purified enzyme components, chemical synthesis, isotopic labelling, mass spectrometry and NMR in conjunction with in vivo studies leading to the first characterisation of the α-hydroxylation bimodule of the mupirocin biosynthetic pathway. These studies reveal the precise timing of hydroxylation by MupA, substrate specificity and the ACP dependency of the enzyme components that comprise this α-hydroxylation bimodule. Furthermore, using purified enzyme, it is shown that the MmpA KS0 shows relaxed substrate specificity, suggesting precise spatiotemporal control of in trans MupA recruitment in the context of the PKS. Finally, the detection of multiple intermodular MupA/ACP interactions suggests these bimodules may integrate MupA into their assembly.
Collapse
Affiliation(s)
| | | | | | | | - Luoyi Wang
- Institute of MicrobiologyChinese Academy of SciencesBeijing100101China
| | - Zhongshu Song
- School of ChemistryUniversity of BristolBristolBS8 1TSUK
| | | | - Paul R. Race
- School of BiochemistryUniversity of BristolBristolBS8 1TDUK
- current addressSchool of Natural and Environmental SciencesNewcastle UniversityNewcastle upon TyneNE1 7RUUK
| | | | | | | | | |
Collapse
|
4
|
Winter AJ, Khanizeman RN, Barker‐Mountford AMC, Devine AJ, Wang L, Song Z, Davies JA, Race PR, Williams C, Simpson TJ, Willis CL, Crump MP. Structure and Function of the α-Hydroxylation Bimodule of the Mupirocin Polyketide Synthase. ANGEWANDTE CHEMIE (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 135:e202312514. [PMID: 38515435 PMCID: PMC10952193 DOI: 10.1002/ange.202312514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Indexed: 03/23/2024]
Abstract
Mupirocin is a clinically important antibiotic produced by a trans-AT Type I polyketide synthase (PKS) in Pseudomonas fluorescens. The major bioactive metabolite, pseudomonic acid A (PA-A), is assembled on a tetrasubstituted tetrahydropyran (THP) core incorporating a 6-hydroxy group proposed to be introduced by α-hydroxylation of the thioester of the acyl carrier protein (ACP) bound polyketide chain. Herein, we describe an in vitro approach combining purified enzyme components, chemical synthesis, isotopic labelling, mass spectrometry and NMR in conjunction with in vivo studies leading to the first characterisation of the α-hydroxylation bimodule of the mupirocin biosynthetic pathway. These studies reveal the precise timing of hydroxylation by MupA, substrate specificity and the ACP dependency of the enzyme components that comprise this α-hydroxylation bimodule. Furthermore, using purified enzyme, it is shown that the MmpA KS0 shows relaxed substrate specificity, suggesting precise spatiotemporal control of in trans MupA recruitment in the context of the PKS. Finally, the detection of multiple intermodular MupA/ACP interactions suggests these bimodules may integrate MupA into their assembly.
Collapse
Affiliation(s)
| | | | | | | | - Luoyi Wang
- Institute of MicrobiologyChinese Academy of SciencesBeijing100101China
| | - Zhongshu Song
- School of ChemistryUniversity of BristolBristolBS8 1TSUK
| | | | - Paul R. Race
- School of BiochemistryUniversity of BristolBristolBS8 1TDUK
- current addressSchool of Natural and Environmental SciencesNewcastle UniversityNewcastle upon TyneNE1 7RUUK
| | | | | | | | | |
Collapse
|
5
|
Winter AJ, Rowe MT, Weir ANM, Akter N, Mbatha SZ, Walker PD, Williams C, Song Z, Race PR, Willis CL, Crump MP. Programmed Iteration Controls the Assembly of the Nonanoic Acid Side Chain of the Antibiotic Mupirocin. Angew Chem Int Ed Engl 2022; 61:e202212393. [PMID: 36227272 PMCID: PMC10098928 DOI: 10.1002/anie.202212393] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Indexed: 11/12/2022]
Abstract
Mupirocin is a clinically important antibiotic produced by Pseudomonas fluorescens NCIMB 10586 that is assembled by a complex trans-AT polyketide synthase. The polyketide fragment, monic acid, is esterified by a 9-hydroxynonanoic acid (9HN) side chain which is essential for biological activity. The ester side chain assembly is initialised from a 3-hydroxypropionate (3HP) starter unit attached to the acyl carrier protein (ACP) MacpD, but the fate of this species is unknown. Herein we report the application of NMR spectroscopy, mass spectrometry, chemical probes and in vitro assays to establish the remaining steps of 9HN biosynthesis. These investigations reveal a complex interplay between a novel iterative or "stuttering" KS-AT didomain (MmpF), the multidomain module MmpB and multiple ACPs. This work has important implications for understanding the late-stage biosynthetic steps of mupirocin and will be important for future engineering of related trans-AT biosynthetic pathways (e.g. thiomarinol).
Collapse
Affiliation(s)
- Ashley J Winter
- School of Chemistry, University of Bristol, Bristol, BS8 1TS, UK
| | - Matthew T Rowe
- School of Chemistry, University of Bristol, Bristol, BS8 1TS, UK
| | - Angus N M Weir
- School of Chemistry, University of Bristol, Bristol, BS8 1TS, UK
| | - Nahida Akter
- School of Chemistry, University of Bristol, Bristol, BS8 1TS, UK
| | | | - Paul D Walker
- School of Chemistry, University of Bristol, Bristol, BS8 1TS, UK
| | | | - Zhongshu Song
- School of Chemistry, University of Bristol, Bristol, BS8 1TS, UK
| | - Paul R Race
- School of Biochemistry, University of Bristol, Bristol, BS8 1TD, UK
| | | | - Matthew P Crump
- School of Chemistry, University of Bristol, Bristol, BS8 1TS, UK
| |
Collapse
|
6
|
Winter AJ, Rowe MT, Weir ANM, Akter N, Mbatha SZ, Walker PD, Williams C, Song Z, Race PR, Willis CL, Crump MP. Programmed Iteration Controls the Assembly of the Nonanoic Acid Side Chain of the Antibiotic Mupirocin. ANGEWANDTE CHEMIE (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 134:e202212393. [PMID: 38505625 PMCID: PMC10947060 DOI: 10.1002/ange.202212393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Indexed: 11/11/2022]
Abstract
Mupirocin is a clinically important antibiotic produced by Pseudomonas fluorescens NCIMB 10586 that is assembled by a complex trans-AT polyketide synthase. The polyketide fragment, monic acid, is esterified by a 9-hydroxynonanoic acid (9HN) side chain which is essential for biological activity. The ester side chain assembly is initialised from a 3-hydroxypropionate (3HP) starter unit attached to the acyl carrier protein (ACP) MacpD, but the fate of this species is unknown. Herein we report the application of NMR spectroscopy, mass spectrometry, chemical probes and in vitro assays to establish the remaining steps of 9HN biosynthesis. These investigations reveal a complex interplay between a novel iterative or "stuttering" KS-AT didomain (MmpF), the multidomain module MmpB and multiple ACPs. This work has important implications for understanding the late-stage biosynthetic steps of mupirocin and will be important for future engineering of related trans-AT biosynthetic pathways (e.g. thiomarinol).
Collapse
Affiliation(s)
| | | | | | - Nahida Akter
- School of ChemistryUniversity of BristolBristolBS8 1TSUK
| | | | - Paul D. Walker
- School of ChemistryUniversity of BristolBristolBS8 1TSUK
| | | | - Zhongshu Song
- School of ChemistryUniversity of BristolBristolBS8 1TSUK
| | - Paul R. Race
- School of BiochemistryUniversity of BristolBristolBS8 1TDUK
| | | | | |
Collapse
|
7
|
Arndt S, Kohlpaintner PJ, Donsbach K, Waldvogel SR. Synthesis and Applications of Periodate for Fine Chemicals and Important Pharmaceuticals. Org Process Res Dev 2022. [DOI: 10.1021/acs.oprd.2c00161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Sebastian Arndt
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Philipp J. Kohlpaintner
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Kai Donsbach
- Virginia Commonwealth University, College of Engineering, Medicines for All Institute, 601 West Main Street, Richmond, Virginia 23284-3068, United States
| | - Siegfried R. Waldvogel
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| |
Collapse
|
8
|
Hai Y, Wei MY, Wang CY, Gu YC, Shao CL. The intriguing chemistry and biology of sulfur-containing natural products from marine microorganisms (1987-2020). MARINE LIFE SCIENCE & TECHNOLOGY 2021; 3:488-518. [PMID: 37073258 PMCID: PMC10077240 DOI: 10.1007/s42995-021-00101-2] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 03/18/2021] [Indexed: 05/03/2023]
Abstract
Natural products derived from marine microorganisms have received great attention as a potential resource of new compound entities for drug discovery. The unique marine environment brings us a large group of sulfur-containing natural products with abundant biological functionality including antitumor, antibiotic, anti-inflammatory and antiviral activities. We reviewed all the 484 sulfur-containing natural products (non-sulfated) isolated from marine microorganisms, of which 59.9% are thioethers, 29.8% are thiazole/thiazoline-containing compounds and 10.3% are sulfoxides, sulfones, thioesters and many others. A selection of 133 compounds was further discussed on their structure-activity relationships, mechanisms of action, biosynthesis, and druggability. This is the first systematic review on sulfur-containing natural products from marine microorganisms conducted from January 1987, when the first one was reported, to December 2020. Supplementary Information The online version contains supplementary material available at 10.1007/s42995-021-00101-2.
Collapse
Affiliation(s)
- Yang Hai
- Key Laboratory of Marine Drugs, School of Medicine and Pharmacy, The Ministry of Education of China, Ocean University of China, Qingdao, 266003 China
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266237 China
| | - Mei-Yan Wei
- Key Laboratory of Marine Drugs, School of Medicine and Pharmacy, The Ministry of Education of China, Ocean University of China, Qingdao, 266003 China
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003 China
| | - Chang-Yun Wang
- Key Laboratory of Marine Drugs, School of Medicine and Pharmacy, The Ministry of Education of China, Ocean University of China, Qingdao, 266003 China
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266237 China
| | - Yu-Cheng Gu
- Syngenta Jealott’s Hill International Research Centre, Bracknell, Berkshire RG42 6EY UK
| | - Chang-Lun Shao
- Key Laboratory of Marine Drugs, School of Medicine and Pharmacy, The Ministry of Education of China, Ocean University of China, Qingdao, 266003 China
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266237 China
| |
Collapse
|
9
|
Wang L, Song Z, Race PR, Spencer J, Simpson TJ, Crump MP, Willis CL. Mixing and matching genes of marine and terrestrial origin in the biosynthesis of the mupirocin antibiotics. Chem Sci 2020; 11:5221-5226. [PMID: 34122978 PMCID: PMC8159325 DOI: 10.1039/c9sc06192d] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 04/29/2020] [Indexed: 12/02/2022] Open
Abstract
With growing understanding of the underlying pathways of polyketide biosynthesis, along with the continual expansion of the synthetic biology toolkit, it is becoming possible to rationally engineer and fine-tune the polyketide biosynthetic machinery for production of new compounds with improved properties such as stability and/or bioactivity. However, engineering the pathway to the thiomarinol antibiotics has proved challenging. Here we report that genes from a marine Pseudoalternomonas sp. producing thiomarinol can be expressed in functional form in the biosynthesis of the clinically important antibiotic mupirocin from the soil bacterium Pseudomonas fluorescens. It is revealed that both pathways employ the same unusual mechanism of tetrahydropyran (THP) ring formation and the enzymes are cross compatible. Furthermore, the efficiency of downstream processing of 10,11-epoxy versus 10,11-alkenic metabolites are comparable. Optimisation of the fermentation conditions in an engineered strain in which production of pseudomonic acid A (with the 10,11-epoxide) is replaced by substantial titres of the more stable pseudomonic acid C (with a 10,11-alkene) pave the way for its development as a more stable antibiotic with wider applications than mupirocin.
Collapse
Affiliation(s)
- Luoyi Wang
- School of Chemistry, University of Bristol Cantock's Close BS8 1TS Bristol UK
| | - Zhongshu Song
- School of Chemistry, University of Bristol Cantock's Close BS8 1TS Bristol UK
| | - Paul R Race
- School of Biochemistry, University of Bristol University Walk BS8 1TD Bristol UK
| | - James Spencer
- School of Cellular and Molecular Medicine, University of Bristol BS8 1TD Bristol UK
| | - Thomas J Simpson
- School of Chemistry, University of Bristol Cantock's Close BS8 1TS Bristol UK
| | - Matthew P Crump
- School of Chemistry, University of Bristol Cantock's Close BS8 1TS Bristol UK
| | - Christine L Willis
- School of Chemistry, University of Bristol Cantock's Close BS8 1TS Bristol UK
| |
Collapse
|
10
|
Wencewicz TA. Crossroads of Antibiotic Resistance and Biosynthesis. J Mol Biol 2019; 431:3370-3399. [PMID: 31288031 DOI: 10.1016/j.jmb.2019.06.033] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 06/20/2019] [Accepted: 06/27/2019] [Indexed: 12/14/2022]
Abstract
The biosynthesis of antibiotics and self-protection mechanisms employed by antibiotic producers are an integral part of the growing antibiotic resistance threat. The origins of clinically relevant antibiotic resistance genes found in human pathogens have been traced to ancient microbial producers of antibiotics in natural environments. Widespread and frequent antibiotic use amplifies environmental pools of antibiotic resistance genes and increases the likelihood for the selection of a resistance event in human pathogens. This perspective will provide an overview of the origins of antibiotic resistance to highlight the crossroads of antibiotic biosynthesis and producer self-protection that result in clinically relevant resistance mechanisms. Some case studies of synergistic antibiotic combinations, adjuvants, and hybrid antibiotics will also be presented to show how native antibiotic producers manage the emergence of antibiotic resistance.
Collapse
Affiliation(s)
- Timothy A Wencewicz
- Department of Chemistry, Washington University in St. Louis, One Brookings Drive, St. Louis, MO 63130, USA.
| |
Collapse
|
11
|
Connolly JA, Wilson A, Macioszek M, Song Z, Wang L, Mohammad HH, Yadav M, di Martino M, Miller CE, Hothersall J, Haines AS, Stephens ER, Crump MP, Willis CL, Simpson TJ, Winn PJ, Thomas CM. Defining the genes for the final steps in biosynthesis of the complex polyketide antibiotic mupirocin by Pseudomonas fluorescens NCIMB10586. Sci Rep 2019; 9:1542. [PMID: 30733464 PMCID: PMC6367315 DOI: 10.1038/s41598-018-38038-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 12/17/2018] [Indexed: 11/09/2022] Open
Abstract
The mupirocin trans-AT polyketide synthase pathway, provides a model system for manipulation of antibiotic biosynthesis. Its final phase involves removal of the tertiary hydroxyl group from pseudomonic acid B, PA-B, producing the fully active PA-A in a complex series of steps. To further clarify requirements for this conversion, we fed extracts containing PA-B to mutants of the producer strain singly deficient in each mup gene. This additionally identified mupM and mupN as required plus the sequence but not enzymic activity of mupL and ruled out need for other mup genes. A plasmid expressing mupLMNOPVCFU + macpE together with a derivative of the producer P. fluorescens strain NCIMB10586 lacking the mup cluster allowed conversion of PA-B to PA-A. MupN converts apo-mAcpE to holo-form while MupM is a mupirocin-resistant isoleucyl tRNA synthase, preventing self-poisoning. Surprisingly, the expression plasmid failed to allow the closely related P. fluorescens strain SBW25 to convert PA-B to PA-A.
Collapse
Affiliation(s)
- Jack A Connolly
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.,School of Chemistry, University of St Andrews, BMS Building, North Haugh, St Andrews, KY16 9ST, UK
| | - Amber Wilson
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Malgorzata Macioszek
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.,Dr M. Macioszek, DOCS International Poland, ul. Grojecka 5, 02-019, Warszawa, Poland
| | - Zhongshu Song
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, UK
| | - Luoyi Wang
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, UK
| | - Hadi H Mohammad
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.,College of Medicine, Kirkuk University, Kirkuk, Iraq
| | - Mukul Yadav
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Maura di Martino
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.,Ms M. di Martino, Dept Biology, University of York, Wentworth Way, York, YO10 5DD, UK
| | - Claire E Miller
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.,Dr C. E. Miller, The BioHub Birmingham, Birmingham Research Park, 97 Vincent Drive, Edgbaston, Birmingham, B15 2SQ, UK
| | - Joanne Hothersall
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Anthony S Haines
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Elton R Stephens
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Matthew P Crump
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, UK
| | - Christine L Willis
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, UK
| | - Thomas J Simpson
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, UK
| | - Peter J Winn
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Christopher M Thomas
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
| |
Collapse
|
12
|
Abstract
Covering: January to December 2017This review covers the literature published in 2017 for marine natural products (MNPs), with 740 citations (723 for the period January to December 2017) referring to compounds isolated from marine microorganisms and phytoplankton, green, brown and red algae, sponges, cnidarians, bryozoans, molluscs, tunicates, echinoderms, mangroves and other intertidal plants and microorganisms. The emphasis is on new compounds (1490 in 477 papers for 2017), together with the relevant biological activities, source organisms and country of origin. Reviews, biosynthetic studies, first syntheses, and syntheses that led to the revision of structures or stereochemistries, have been included. Geographic distributions of MNPs at a phylogenetic level are reported.
Collapse
Affiliation(s)
- Anthony R Carroll
- School of Environment and Science, Griffith University, Gold Coast, Australia. and Griffith Institute for Drug Discovery, Griffith University, Brisbane, Australia
| | - Brent R Copp
- School of Chemical Sciences, University of Auckland, Auckland, New Zealand
| | - Rohan A Davis
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, Australia
| | - Robert A Keyzers
- Centre for Biodiscovery, School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington, New Zealand
| | | |
Collapse
|
13
|
Wang L, Parnell A, Williams C, Bakar NA, Challand MR, van der Kamp MW, Simpson TJ, Race PR, Crump MP, Willis CL. A Rieske oxygenase/epoxide hydrolase-catalysed reaction cascade creates oxygen heterocycles in mupirocin biosynthesis. Nat Catal 2018. [DOI: 10.1038/s41929-018-0183-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
14
|
Shahid I, Malik KA, Mehnaz S. A decade of understanding secondary metabolism in Pseudomonas spp. for sustainable agriculture and pharmaceutical applications. ACTA ACUST UNITED AC 2018. [DOI: 10.1007/s42398-018-0006-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
15
|
Mohammad HH, Connolly JA, Song Z, Hothersall J, Race PR, Willis CL, Simpson TJ, Winn PJ, Thomas CM. Fine Tuning of Antibiotic Activity by a Tailoring Hydroxylase in a Trans-AT Polyketide Synthase Pathway. Chembiochem 2018; 19:836-841. [PMID: 29363252 DOI: 10.1002/cbic.201800036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Indexed: 11/06/2022]
Abstract
The addition or removal of hydroxy groups modulates the activity of many pharmacologically active biomolecules. It can be integral to the basic biosynthetic factory or result from associated tailoring steps. For the anti-MRSA antibiotic mupirocin, removal of a C8-hydroxy group late in the biosynthetic pathway gives the active pseudomonic acid A. An extra hydroxylation, at C4, occurs in the related but more potent antibiotic thiomarinol A. We report here in vivo and in vitro studies that show that the putative non-haem-iron(II)/α-ketoglutaratedependent dioxygenase TmuB, from the thiomarinol cluster, 4-hydroxylates various pseudomonic acids whereas C8-OH, and other substituents around the tetrahydropyran ring, block enzyme action but not substrate binding. Molecular modelling suggested a basis for selectivity, but mutation studies had a limited ability to rationally modify TmuB substrate specificity. 4-Hydroxylation had opposite effects on the potency of mupirocin and thiomarinol. Thus, TmuB can be added to the toolbox of polyketide tailoring technologies for the in vivo generation of new antibiotics in the future.
Collapse
Affiliation(s)
- Hadi H Mohammad
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.,College of Medicine, Kirkuk University, Kirkuk, Iraq
| | - Jack A Connolly
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Zhongshu Song
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, UK
| | - Joanne Hothersall
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Paul R Race
- School of Biochemistry, University of Bristol, University Walk, Bristol, BS8 1TD, UK
| | - Christine L Willis
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, UK
| | - Thomas J Simpson
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, UK
| | - Peter J Winn
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Christopher M Thomas
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| |
Collapse
|