1
|
Vyas VK, Bacanu GR, Soundararajan M, Marsden ES, Jafari T, Shugai A, Light ME, Nagel U, Rõõm T, Levitt MH, Whitby RJ. Squeezing formaldehyde into C 60 fullerene. Nat Commun 2024; 15:2515. [PMID: 38514674 PMCID: PMC10957948 DOI: 10.1038/s41467-024-46886-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 03/13/2024] [Indexed: 03/23/2024] Open
Abstract
The cavity inside fullerene C60 provides a highly symmetric and inert environment for housing atoms and small molecules. Here we report the encapsulation of formaldehyde inside C60 by molecular surgery, yielding the supermolecular complex CH2O@C60, despite the 4.4 Å van der Waals length of CH2O exceeding the 3.7 Å internal diameter of C60. The presence of CH2O significantly reduces the cage HOMO-LUMO gap. Nuclear spin-spin couplings are observed between the fullerene host and the formaldehyde guest. The rapid spin-lattice relaxation of the formaldehyde 13C nuclei is attributed to a dominant spin-rotation mechanism. Despite being squeezed so tightly, the encapsulated formaldehyde molecules rotate freely about their long axes even at cryogenic temperatures, allowing observation of the ortho-to-para spin isomer conversion by infrared spectroscopy. The particle in a box nature of the system is demonstrated by the observation of two quantised translational modes in the cryogenic THz spectra.
Collapse
Affiliation(s)
- Vijyesh K Vyas
- School of Chemistry, University of Southampton, SO17 1BJ, Southampton, UK
| | - George R Bacanu
- School of Chemistry, University of Southampton, SO17 1BJ, Southampton, UK
| | | | | | - Tanzeeha Jafari
- National Institute of Chemical Physics and Biophysics, Akademia tee 23, 12618, Tallinn, Estonia
- Department of Cybernetics, Tallinn University of Technology, Ehitajate tee 5, 19086, Tallinn, Estonia
| | - Anna Shugai
- National Institute of Chemical Physics and Biophysics, Akademia tee 23, 12618, Tallinn, Estonia
| | - Mark E Light
- School of Chemistry, University of Southampton, SO17 1BJ, Southampton, UK
| | - Urmas Nagel
- National Institute of Chemical Physics and Biophysics, Akademia tee 23, 12618, Tallinn, Estonia
| | - Toomas Rõõm
- National Institute of Chemical Physics and Biophysics, Akademia tee 23, 12618, Tallinn, Estonia.
| | - Malcolm H Levitt
- School of Chemistry, University of Southampton, SO17 1BJ, Southampton, UK.
| | - Richard J Whitby
- School of Chemistry, University of Southampton, SO17 1BJ, Southampton, UK.
| |
Collapse
|
2
|
Hashikawa Y, Sadai S, Murata Y. Construction of a 21-Membered-Ring Orifice on [60]Fullerene. Chempluschem 2023; 88:e202300225. [PMID: 37226717 DOI: 10.1002/cplu.202300225] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 05/24/2023] [Accepted: 05/25/2023] [Indexed: 05/26/2023]
Abstract
Open-[60]fullerenes possessing a huge orifice with a ring-atom count exceeding 19 have been confined to only a few examples. Herein, we report a 20-membered-ring orifice which enables for a guest molecule such as H2 , N2 , and CH3 OH to be encapsulated inside the [60]fullerene cavity. In addition, a 21-membered-ring orifice was prepared via a reductive decarbonylation, in which one of the carbon atoms was moved out of the [60]fullerene skeleton as an N,N-dimethylamide group. At a low temperature of -30 °C, an Ar atom was encapsulated with an occupation level up to 52 %. At around room temperature, the amide group on the orifice rotates along with the C(amide)-C(fullerene) bond axis, realizing a self-inclusion of the methyl substituent on the amide group as confirmed NMR spectroscopically and computationally.
Collapse
Affiliation(s)
- Yoshifumi Hashikawa
- Institute for Chemical Research, Kyoto University, Uji, Kyoto, 611-0011, Japan
| | - Shumpei Sadai
- Institute for Chemical Research, Kyoto University, Uji, Kyoto, 611-0011, Japan
| | - Yasujiro Murata
- Institute for Chemical Research, Kyoto University, Uji, Kyoto, 611-0011, Japan
| |
Collapse
|
3
|
Huang G, Ide Y, Hashikawa Y, Hirose T, Murata Y. CH 3 CN@open-C 60 : An Effective Inner-Space Modification and Isotope Effect Inside a Nano-Sized Flask. Chemistry 2023; 29:e202301161. [PMID: 37264730 DOI: 10.1002/chem.202301161] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 06/01/2023] [Accepted: 06/01/2023] [Indexed: 06/03/2023]
Abstract
Despite several small molecules being encapsulated inside cage-opened fullerene derivatives, such species have not considerably affected the structures and properties of the outer carbon cages. Herein, we achieved an effective inner-space modification for an open-cage C60 derivative by insertion of a neutral CH3 CN molecule into the cavity. The CH3 CN@open-C60 thus obtained showed an enhanced polarity, thus affording an easy separation from a mixture containing the empty cage by column chromatography on silica gel, without the preparative HPLC that was needed for previous cases. The less negative reduction potentials with respect to those of empty cage reflect the decreased energy level of the LUMO, which is supported by the DFT calculations. NMR spectroscopy, single-crystal X-ray analysis, and theoretical calculations revealed that both the presence of the encapsulated CH3 CN and cage deformation caused by the CH3 CN play an essential role in the change of the electronic properties. Furthermore, the favored binding affinity of deuterated acetonitrile CD3 CN with internal C60 surface is discussed.
Collapse
Affiliation(s)
- Guanglin Huang
- Institute for Chemical Research, Kyoto University Uji, Kyoto, 611-0011, Japan
| | - Yuki Ide
- Institute for Chemical Research, Kyoto University Uji, Kyoto, 611-0011, Japan
| | - Yoshifumi Hashikawa
- Institute for Chemical Research, Kyoto University Uji, Kyoto, 611-0011, Japan
| | - Takashi Hirose
- Institute for Chemical Research, Kyoto University Uji, Kyoto, 611-0011, Japan
| | - Yasujiro Murata
- Institute for Chemical Research, Kyoto University Uji, Kyoto, 611-0011, Japan
| |
Collapse
|
4
|
Gao R, Liu Z, Liu Z, Liang T, Su J, Gan L. Open-Cage Fullerene as a Selective Molecular Trap for LiF/[BeF] . Angew Chem Int Ed Engl 2023; 62:e202300151. [PMID: 36718977 DOI: 10.1002/anie.202300151] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 01/30/2023] [Accepted: 01/30/2023] [Indexed: 02/01/2023]
Abstract
The insertion of ionic compounds into open-cage fullerenes is a challenging task due to the electropositive nature of the cavity. The present work reports the preparation of an open-cage C60 derivative with a hydroxy group pointing towards the centre of the cavity, which can coordinate to a metal cation, thus acting as a bait/hook to trap the metal cation such as the lithium cation in neutral LiF and the beryllium cation in the cationic [BeF]+ species. Other metal salts could not be inserted under similar conditions. The structure of MF in the cage was unambiguously determined by single-crystal X-ray diffraction. Owing to its tendency to undergo polycoordination, Li+ monomer salts have not been isolated before, despite extensive research on Li bonds. The present results provide a unique example of a Li bond.
Collapse
Affiliation(s)
- Rui Gao
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of the Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
| | - Zhen Liu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of the Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
| | - Zeyu Liu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of the Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
| | - Tongling Liang
- Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Jie Su
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of the Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
| | - Liangbing Gan
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of the Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
| |
Collapse
|
5
|
Bloodworth S, Whitby RJ. Synthesis of endohedral fullerenes by molecular surgery. Commun Chem 2022; 5:121. [PMID: 36697689 PMCID: PMC9814919 DOI: 10.1038/s42004-022-00738-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 09/21/2022] [Indexed: 01/28/2023] Open
Abstract
Encapsulation of atoms or small molecules inside fullerenes provides a unique opportunity for study of the confined species in the isolated cavity, and the synthesis of closed C60 or C70 fullerenes with enclosed atoms or molecules has recently developed using the method of 'molecular surgery'; in which an open-cage intermediate fullerene is the host for encapsulation of a guest species, before repair of the cage opening. In this work we review the main methods for cage-opening and closure, and the achievements of molecular surgery to date.
Collapse
Affiliation(s)
- Sally Bloodworth
- grid.5491.90000 0004 1936 9297Chemistry, Faculty of Engineering and Physical Sciences, University of Southampton, Southampton, SO17 1BJ UK
| | - Richard J. Whitby
- grid.5491.90000 0004 1936 9297Chemistry, Faculty of Engineering and Physical Sciences, University of Southampton, Southampton, SO17 1BJ UK
| |
Collapse
|
6
|
Synthesis of open‐cage fullerenes containing a H‐bond between the encapsulated water molecule and the amide moiety on the rim of the orifice. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
7
|
He J, Liu J, Liu Y, Liyin Z, Wu X, Song G, Hou Y, Wang R, Zhao W, Sun H. Trace carbonyl analysis in water samples by integrating magnetic molecular imprinting and capillary electrophoresis. RSC Adv 2021; 11:32841-32851. [PMID: 35493566 PMCID: PMC9042219 DOI: 10.1039/d1ra05084b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 09/21/2021] [Indexed: 12/28/2022] Open
Abstract
In order to obtain high derivatization efficiency, the overuse of derivative agent 2,4-dinitrophenylhydrazine (2,4-DNPH) is necessary for carbonyl detection. But, the 2,4-DNPH residue will cause background interferences and limit the pre-concentration factor of the target analytes. In order to overcome the bottleneck problems, the magnetic molecularly imprinted polymer based solid-phase extraction (MMIPs-SPE) method was developed with 2,4-dinitroaniline (2,4-DNAN) as the dummy template. The characteristics and selectivity of the MMIPs were investigated. Under the optimized conditions, the enrichment of carbonyls-DNPH derivatives with simultaneous removal of the surplus 2,4-DNPH was achieved. By coupling with capillary electrophoresis (CE), a satisfactory analytical performance was obtained with the detection limit ranging from 1.2 to 8.7 μg L−1 for 8 carbonyls. The MMIPs-SPE-CE method was applied successfully for the carbonyl assessment in stream water, tap water and bottled water. In addition, the migration of carbonyls in bottled drinking water was investigated under UV irradiation and heating. By integrating MMIPs-SPE method and CE, the enrichment of carbonyls-DNPH derivatives with simultaneous removal of the surplus derivative agent 2,4-DNPH can be achieved.![]()
Collapse
Affiliation(s)
- Jiahua He
- College of Environmental Science and Engineering, Guangzhou University Guangzhou 510006 Guangdong China
| | - Jiawei Liu
- College of Environmental Science and Engineering, Guangzhou University Guangzhou 510006 Guangdong China
| | - Yangyang Liu
- College of Environmental Science and Engineering, Guangzhou University Guangzhou 510006 Guangdong China
| | - Zhengxi Liyin
- College of Environmental Science and Engineering, Guangzhou University Guangzhou 510006 Guangdong China
| | - Xiaoyi Wu
- College of Environmental Science and Engineering, Guangzhou University Guangzhou 510006 Guangdong China
| | - Gang Song
- College of Environmental Science and Engineering, Guangzhou University Guangzhou 510006 Guangdong China
| | - Yeyang Hou
- College of Environmental Science and Engineering, Guangzhou University Guangzhou 510006 Guangdong China
| | - Ruixi Wang
- College of Environmental Science and Engineering, Guangzhou University Guangzhou 510006 Guangdong China
| | - Wenfeng Zhao
- School of Chemistry and Materials Science, Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University Xuzhou 221116 P. R. China
| | - Hui Sun
- College of Environmental Science and Engineering, Guangzhou University Guangzhou 510006 Guangdong China .,Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources Guangzhou 510006 Guangdong China
| |
Collapse
|
8
|
Horii Y, Suzuki H, Miyazaki Y, Nakano M, Hasegawa S, Hashikawa Y, Murata Y. Dynamics and magnetic properties of NO molecules encapsulated in open-cage fullerene derivatives evidenced by low temperature heat capacity. Phys Chem Chem Phys 2021; 23:10251-10256. [PMID: 33899869 DOI: 10.1039/d1cp00482d] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Low-temperature heat capacity analyses for an NO-encapsulated fullerene derivative revealed (i) low-energy motion and (ii) strong magnetic anisotropy of the NO molecule due to its orbital angular momentum. The low-energy motion was attributed to reorientational motions of the NO molecules, in which only a small number (n ∼ 0.04) of NO molecules were found to participate. The NO molecules were confirmed to be paramagnetic even at 1 K. Ab-initio calculation indicated that the magnetic properties of the NO unit strongly depended on its surroundings, allowing the conformation of the fullerene cage to be estimated.
Collapse
Affiliation(s)
- Yoji Horii
- Department of Chemistry, Faculty of Science, Nara Women's University, Nara 630-8506, Japan
| | - Hal Suzuki
- Department of Chemistry, Kindai University, 3-4-1 Kowakae, Higashiosaka, Osaka 577-8502, Japan
| | - Yuji Miyazaki
- Research Center for Thermal and Entropic Science, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan
| | - Motohiro Nakano
- Research Center for Thermal and Entropic Science, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan
| | - Shota Hasegawa
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Yoshifumi Hashikawa
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Yasujiro Murata
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| |
Collapse
|
9
|
Hashikawa Y, Hasegawa S, Murata Y. Precise Fixation of an NO Molecule inside Carbon Nanopores: A Long‐Range Electron–Nuclear Interaction. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202012538] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
| | - Shota Hasegawa
- Institute for Chemical Research Kyoto University Uji Kyoto 611-0011 Japan
| | - Yasujiro Murata
- Institute for Chemical Research Kyoto University Uji Kyoto 611-0011 Japan
| |
Collapse
|
10
|
Hashikawa Y, Kizaki K, Murata Y. Pressure-induced annulative orifice closure of a cage-opened C 60 derivative. Chem Commun (Camb) 2021; 57:5322-5325. [PMID: 33928322 DOI: 10.1039/d1cc01662h] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A cage-opened C60 derivative was found to undergo an unusual annulative orifice-closure reaction under high-pressure conditions, in which the orifice size changed from a 16- to a 13-membered ring. The structure was different from that obtained by the reaction at 1 atm. The theoretical calculations suggested that the formation of the former one is thermodynamically favored.
Collapse
Affiliation(s)
- Yoshifumi Hashikawa
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Kazuro Kizaki
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Yasujiro Murata
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| |
Collapse
|
11
|
Hashikawa Y, Hasegawa S, Murata Y. Precise Fixation of an NO Molecule inside Carbon Nanopores: A Long‐Range Electron–Nuclear Interaction. Angew Chem Int Ed Engl 2020; 60:2866-2870. [DOI: 10.1002/anie.202012538] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Indexed: 11/09/2022]
Affiliation(s)
| | - Shota Hasegawa
- Institute for Chemical Research Kyoto University Uji Kyoto 611-0011 Japan
| | - Yasujiro Murata
- Institute for Chemical Research Kyoto University Uji Kyoto 611-0011 Japan
| |
Collapse
|
12
|
Xu D, Yang D, Su J, Gan L. Synthesis of Open-Cage [60]Fullerenes with Five Carbonyl Groups on the Rim of the 15-Membered Orifice. Chempluschem 2020; 84:608-612. [PMID: 31944004 DOI: 10.1002/cplu.201900017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 01/25/2019] [Indexed: 11/11/2022]
Abstract
A new type of open-cage [60]fullerene was prepared starting from our previously reported open-cage [60]fullerenes containing hydroxy and tert-butylperoxo groups, and an iminofuranone moiety on the rim of the orifice. The key reactions are alcoholysis with MeOH/PCl5 and reductive aromatization with SnCl2 or HI (aq). The resulting open-cage compound contains two ketone carbonyls, two amide carbonyls, and one ester carbonyl group. The X-ray crystal structure of the precursor compound shows that the 18-membered orifice is almost completely blocked because of the presence of the amide group directly above the orifice.
Collapse
Affiliation(s)
- Dan Xu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry, and Molecular Engineering of the Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
| | - Dazhi Yang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry, and Molecular Engineering of the Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
| | - Jie Su
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry, and Molecular Engineering of the Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
| | - Liangbing Gan
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry, and Molecular Engineering of the Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China.,State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Shanghai, 200032, P. R. China
| |
Collapse
|
13
|
Remya PR, Mishra BK, Ramachandran C, Sathyamurthy N. Effect of confinement on structure, energy and vibrational spectra of (HF) , n = 1–4. Chem Phys Lett 2019. [DOI: 10.1016/j.cplett.2019.136670] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
14
|
Bloodworth S, Sitinova G, Alom S, Vidal S, Bacanu GR, Elliott SJ, Light ME, Herniman JM, Langley GJ, Levitt MH, Whitby RJ. First Synthesis and Characterization of CH 4 @C 60. Angew Chem Int Ed Engl 2019; 58:5038-5043. [PMID: 30773760 PMCID: PMC6492075 DOI: 10.1002/anie.201900983] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Indexed: 11/30/2022]
Abstract
The endohedral fullerene CH4 @C60 , in which each C60 fullerene cage encapsulates a single methane molecule, has been synthesized for the first time. Methane is the first organic molecule, as well as the largest, to have been encapsulated in C60 to date. The key orifice contraction step, a photochemical desulfinylation of an open fullerene, was completed, even though it is inhibited by the endohedral molecule. The crystal structure of the nickel(II) octaethylporphyrin/ benzene solvate shows no significant distortion of the carbon cage, relative to the C60 analogue, and shows the methane hydrogens as a shell of electron density around the central carbon, indicative of the quantum nature of the methane. The 1 H spin-lattice relaxation times (T1 ) for endohedral methane are similar to those observed in the gas phase, indicating that methane is freely rotating inside the C60 cage. The synthesis of CH4 @C60 opens a route to endofullerenes incorporating large guest molecules and atoms.
Collapse
Affiliation(s)
- Sally Bloodworth
- Chemistry, Faculty of Engineering and Physical SciencesUniversity of SouthamptonSouthamptonSO17 1BJUK
| | - Gabriela Sitinova
- Chemistry, Faculty of Engineering and Physical SciencesUniversity of SouthamptonSouthamptonSO17 1BJUK
| | - Shamim Alom
- Chemistry, Faculty of Engineering and Physical SciencesUniversity of SouthamptonSouthamptonSO17 1BJUK
| | - Sara Vidal
- Chemistry, Faculty of Engineering and Physical SciencesUniversity of SouthamptonSouthamptonSO17 1BJUK
| | - George R. Bacanu
- Chemistry, Faculty of Engineering and Physical SciencesUniversity of SouthamptonSouthamptonSO17 1BJUK
| | - Stuart J. Elliott
- Chemistry, Faculty of Engineering and Physical SciencesUniversity of SouthamptonSouthamptonSO17 1BJUK
- Current address: Centre de Résonance Magnétique Nucléaire à Très Hauts ChampsFRE 2034 Université de LyonCNRSUniversité Claude Bernard Lyon 1ENS de Lyon5 Rue de la Doua69100VilleurbanneFrance
| | - Mark E. Light
- Chemistry, Faculty of Engineering and Physical SciencesUniversity of SouthamptonSouthamptonSO17 1BJUK
| | - Julie M. Herniman
- Chemistry, Faculty of Engineering and Physical SciencesUniversity of SouthamptonSouthamptonSO17 1BJUK
| | - G. John Langley
- Chemistry, Faculty of Engineering and Physical SciencesUniversity of SouthamptonSouthamptonSO17 1BJUK
| | - Malcolm H. Levitt
- Chemistry, Faculty of Engineering and Physical SciencesUniversity of SouthamptonSouthamptonSO17 1BJUK
| | - Richard J. Whitby
- Chemistry, Faculty of Engineering and Physical SciencesUniversity of SouthamptonSouthamptonSO17 1BJUK
| |
Collapse
|
15
|
Bloodworth S, Sitinova G, Alom S, Vidal S, Bacanu GR, Elliott SJ, Light ME, Herniman JM, Langley GJ, Levitt MH, Whitby RJ. First Synthesis and Characterization of CH
4
@C
60. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201900983] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Sally Bloodworth
- Chemistry, Faculty of Engineering and Physical SciencesUniversity of Southampton Southampton SO17 1BJ UK
| | - Gabriela Sitinova
- Chemistry, Faculty of Engineering and Physical SciencesUniversity of Southampton Southampton SO17 1BJ UK
| | - Shamim Alom
- Chemistry, Faculty of Engineering and Physical SciencesUniversity of Southampton Southampton SO17 1BJ UK
| | - Sara Vidal
- Chemistry, Faculty of Engineering and Physical SciencesUniversity of Southampton Southampton SO17 1BJ UK
| | - George R. Bacanu
- Chemistry, Faculty of Engineering and Physical SciencesUniversity of Southampton Southampton SO17 1BJ UK
| | - Stuart J. Elliott
- Chemistry, Faculty of Engineering and Physical SciencesUniversity of Southampton Southampton SO17 1BJ UK
- Current address: Centre de Résonance Magnétique Nucléaire à Très Hauts ChampsFRE 2034 Université de LyonCNRSUniversité Claude Bernard Lyon 1ENS de Lyon 5 Rue de la Doua 69100 Villeurbanne France
| | - Mark E. Light
- Chemistry, Faculty of Engineering and Physical SciencesUniversity of Southampton Southampton SO17 1BJ UK
| | - Julie M. Herniman
- Chemistry, Faculty of Engineering and Physical SciencesUniversity of Southampton Southampton SO17 1BJ UK
| | - G. John Langley
- Chemistry, Faculty of Engineering and Physical SciencesUniversity of Southampton Southampton SO17 1BJ UK
| | - Malcolm H. Levitt
- Chemistry, Faculty of Engineering and Physical SciencesUniversity of Southampton Southampton SO17 1BJ UK
| | - Richard J. Whitby
- Chemistry, Faculty of Engineering and Physical SciencesUniversity of Southampton Southampton SO17 1BJ UK
| |
Collapse
|
16
|
Construction of a Metal-Free Electron Spin System by Encapsulation of an NO Molecule Inside an Open-Cage Fullerene C60
Derivative. Angew Chem Int Ed Engl 2018; 57:12804-12808. [DOI: 10.1002/anie.201807823] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Indexed: 01/20/2023]
|
17
|
Hasegawa S, Hashikawa Y, Kato T, Murata Y. Construction of a Metal-Free Electron Spin System by Encapsulation of an NO Molecule Inside an Open-Cage Fullerene C60
Derivative. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201807823] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Shota Hasegawa
- Institute for Chemical Research; Kyoto University; Uji Kyoto 611-0011 Japan
| | | | - Tatsuhisa Kato
- Institute for Liberal Arts and Sciences; Kyoto University; Kyoto Kyoto 605-8501 Japan
| | - Yasujiro Murata
- Institute for Chemical Research; Kyoto University; Uji Kyoto 611-0011 Japan
| |
Collapse
|
18
|
Bloodworth S, Gräsvik J, Alom S, Kouřil K, Elliott SJ, Wells NJ, Horsewill AJ, Mamone S, Jiménez-Ruiz M, Rols S, Nagel U, Rõõm T, Levitt MH, Whitby RJ. Synthesis and Properties of Open Fullerenes Encapsulating Ammonia and Methane. Chemphyschem 2018; 19:266-276. [PMID: 29131544 PMCID: PMC5838534 DOI: 10.1002/cphc.201701212] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Indexed: 12/03/2022]
Abstract
We describe the synthesis and characterisation of open fullerene (1) and its reduced form (2) in which CH4 and NH3 are encapsulated, respectively. The 1H NMR resonance of endohedral NH3 is broadened by scalar coupling to the quadrupolar 14n nucleus, which relaxes rapidly. This broadening is absent for small satellite peaks, which are attributed to natural abundance 15N. The influence of the scalar relaxation mechanism on the linewidth of the 1H ammonia resonance is probed by variable temperature NMR. A rotational correlation time of τc=1.5 ps. is determined for endohedral NH3, and of τc=57±5 ps. for the open fullerene, indicating free rotation of the encapsulated molecule. IR spectroscopy of NH3@2 at 5 K identifies three vibrations of NH3 (ν1, ν3 and ν4) redshifted in comparison with free NH3, and temperature dependence of the IR peak intensity indicates the presence of a large number of excited translational/ rotational states. Variable temperature 1H NMR spectra indicate that endohedral CH4 is also able to rotate freely at 223 K, on the NMR timescale. Inelastic neutron scattering (INS) spectra of CH4@1 show both rotational and translational modes of CH4. Energy of the first excited rotational state (J=1) of CH4@1 is significantly lower than that of free CH4.
Collapse
Affiliation(s)
| | - John Gräsvik
- Chemistry, University of Southampton, Southampton, SO17 1BJ, UK
| | - Shamim Alom
- Chemistry, University of Southampton, Southampton, SO17 1BJ, UK
| | - Karel Kouřil
- Chemistry, University of Southampton, Southampton, SO17 1BJ, UK
| | | | - Neil J Wells
- Chemistry, University of Southampton, Southampton, SO17 1BJ, UK
| | - Anthony J Horsewill
- School of Physics and Astronomy, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Salvatore Mamone
- School of Physics and Astronomy, University of Nottingham, Nottingham, NG7 2RD, UK
| | | | - Stéphane Rols
- Institut Laue-Langevin, CS 20156, 38042, Grenoble, France
| | - Urmas Nagel
- National Institute of Chemical Physics and Biophysics, Akadeemia Tee 23, Tallinn, 12618, Estonia
| | - Toomas Rõõm
- National Institute of Chemical Physics and Biophysics, Akadeemia Tee 23, Tallinn, 12618, Estonia
| | | | | |
Collapse
|
19
|
Hashikawa Y, Hasegawa S, Murata Y. A single but hydrogen-bonded water molecule confined in an anisotropic subnanospace. Chem Commun (Camb) 2018; 54:13686-13689. [DOI: 10.1039/c8cc07339b] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A single but H-bonded H2O was realized within an anisotropic subnanospace using an open-cage C60 derivative having hydroxy groups on the opening.
Collapse
Affiliation(s)
| | - Shota Hasegawa
- Institute for Chemical Research, Kyoto University
- Uji
- Japan
| | | |
Collapse
|
20
|
Affiliation(s)
- Yanbang Li
- Beijing National Laboratory for Molecular Sciences; Key Laboratory of Bioorganic Chemistry and Molecular Engineering of the Ministry of Education; College of Chemistry and Molecular Engineering; Peking University; Beijing 100871 P. R. China
| | - Liangbing Gan
- Beijing National Laboratory for Molecular Sciences; Key Laboratory of Bioorganic Chemistry and Molecular Engineering of the Ministry of Education; College of Chemistry and Molecular Engineering; Peking University; Beijing 100871 P. R. China
- State Key Laboratory of Organometallic Chemistry; Shanghai Institute of Organic Chemistry; Shanghai 200032 P. R. China
| |
Collapse
|