1
|
Trejo M, Clifford A, Alfonso EG, Halberstadt N, Xue L, Kong W. Electron diffraction of foam-like clusters between xenon and helium in superfluid helium droplets. J Chem Phys 2024; 161:054306. [PMID: 39092938 PMCID: PMC11663488 DOI: 10.1063/5.0221682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Accepted: 07/17/2024] [Indexed: 08/04/2024] Open
Abstract
We report electron diffraction results of xenon clusters formed in superfluid helium droplets, with droplet sizes in the range of 105-106 atoms/droplet and xenon clusters from a few to a few hundred atoms. Under four different experimental conditions, the diffraction profiles can be fitted using four atom pairs of Xe. For the two experiments performed with higher helium contributions, the fittings with one pair of Xe-He and three pairs of Xe-Xe distances are statistically preferred compared with four pairs of Xe-Xe distances, while the other two experiments exhibit the opposite preference. In addition to the shortest pair distances corresponding to the van der Waals distances of Xe-He and Xe-Xe, the longer distances are in the range of the different arrangements of Xe-He-Xe and Xe-He-He-Xe. The number of independent atom pairs is too many for the small xenon clusters and too few for the large clusters. We consider these results evidence of xenon foam structures, with helium atoms stuck between Xe atoms. This possibility is confirmed by helium time-dependent density functional calculations. When the impact parameter of the second xenon atom is a few Angstroms or longer, the second xenon atom fails to penetrate the solvation shell of the first atom, resulting in a dimer with a few He atoms in between the two Xe atoms. In addition, our results for larger droplets point toward a multi-center growth process of dopant atoms or molecules, which is in agreement with previous proposals from theoretical calculations and experimental results.
Collapse
Affiliation(s)
- Marisol Trejo
- Department of Chemistry, Oregon State University, Corvallis, Oregon 97331, USA
| | - Andrew Clifford
- Department of Chemistry, Oregon State University, Corvallis, Oregon 97331, USA
| | - Ernesto Garcia Alfonso
- Labo Collisions, Agrégats, Réactivité (LCAR) Université de Toulouse and CNRS, 118 route de Narbonne, 31062 CEDEX 09 Toulouse, France
| | - Nadine Halberstadt
- Labo Collisions, Agrégats, Réactivité (LCAR) Université de Toulouse and CNRS, 118 route de Narbonne, 31062 CEDEX 09 Toulouse, France
| | - Lan Xue
- Department of Statistics, Oregon State University, Corvallis, Oregon 97331, USA
| | - Wei Kong
- Department of Chemistry, Oregon State University, Corvallis, Oregon 97331, USA
| |
Collapse
|
2
|
Chakraborty R, Rajput PK, Anilkumar GM, Maqbool S, Das R, Rahman A, Mandal P, Nag A. Rational Design of Non-Centrosymmetric Hybrid Halide Perovskites. J Am Chem Soc 2023; 145:1378-1388. [PMID: 36594717 DOI: 10.1021/jacs.2c12034] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Structural non-centrosymmetry in semiconducting organic-inorganic hybrid halide perovskites can introduce functionalities like anomalous photovoltaics and nonlinear optical properties. Here we introduce a design principle to prepare Pb- and Bi-based two- and one-dimensional hybrid perovskites with polar non-centrosymmetric space groups. The design principle relies on creating dissimilar hydrogen and halogen bonding non-covalent interactions at the organic-inorganic interface. For example, in organic cations like I-(CH2)3-NH2(CH3)+ (MIPA), -CH3 is substituted by -CH2I at one end, and -NH3+ is substituted by -NH2(CH3)+ at the other end. These substitutions of two -H atoms by -I and -CH3 reduce the rotational symmetry of MIPA at both ends, compared to an unsubstituted cation, for example, H3C-(CH2)3-NH3+. Consequently, the dissimilar hydrogen-iodine and iodine-iodine interactions at the organic-inorganic interface of (MIPA)2PbI4 2D perovskites break the local inversion symmetries of Pb-I octahedra. Owing to this non-centrosymmetry, (MIPA)2PbI4 displays visible to infrared tunable nonlinear optical properties with second and third harmonic generation susceptibility values of 5.73 pm V-1 and 3.45 × 10-18 m2 V-2, respectively. Also, the single crystal shows photocurrent on shining visible light at no external bias, exhibiting anomalous photovoltaic effect arising from the structural asymmetry. The design strategy was extended to synthesize four new non-centrosymmetric hybrid perovskite compounds. Among them, one-dimensional (H3N-(CH2)3-NH(CH3)2)BiI5 shows a second harmonic generation susceptibility of 7.3 pm V-1 and a high anomalous photovoltaic open-circuit voltage of 22.6 V.
Collapse
Affiliation(s)
- Rayan Chakraborty
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Pune 411008, India
| | - Parikshit Kumar Rajput
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Pune 411008, India
| | - Gokul M Anilkumar
- Department of Physics, Indian Institute of Science Education and Research (IISER), Pune 411008, India
| | - Shabnum Maqbool
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Pune 411008, India
| | - Ranjan Das
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bengaluru 560012, India
| | - Atikur Rahman
- Department of Physics, Indian Institute of Science Education and Research (IISER), Pune 411008, India
| | - Pankaj Mandal
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Pune 411008, India
| | - Angshuman Nag
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Pune 411008, India
| |
Collapse
|
3
|
Bradford SD, Ge Y, Zhang J, Trejo M, Tronrud D, Kong W. Electron diffraction of 1,4-dichlorobenzene embedded in superfluid helium droplets. Phys Chem Chem Phys 2022; 24:27722-27730. [PMID: 36377553 PMCID: PMC9731815 DOI: 10.1039/d2cp04492g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2023]
Abstract
We perform electron diffraction of 1,4-dichlorobenzene (C6H4Cl2, referred to as 2ClB) embedded in superfluid helium droplets to investigate the structure evolution of cluster growth. Multivariable linear regression fittings are used to determine the concentration and the best model structures of the clusters. At a droplet source temperature of 22 K with droplets containing on average 5000 He atoms, the fitting results agree with the doping statistics modeled using the Poisson distribution: the largest molecular clusters are tetramers, while the abundances of monomers and dimers are the highest and are similar. Molecular dimers of 2ClB are determined to have a parallel structure with a 60° rotation for the Cl-Cl molecular axes. However, a better agreement between experiment and fitting is obtained by reducing the interlayer distance that had been calculated using the density functional theory for dimers. Further calculations using the highest level quantum mechanical calculations prove that the reduction in interlayer distance does not significantly increase the energy of the dimer. Cluster trimers adopt a dimer structure with the additional monomer slanted against the dimer, and tetramers take on a stacked structure. The structure evolution with cluster size is extraordinary, because from trimer to tetramer, one monomer needs to be rearranged, and neither the trimer nor the tetramer adopts the corresponding global minimum structure obtained using high level coupled-cluster theory calculations. This phenomenon may be related to the fast cooling process in superfluid helium droplets during cluster formation.
Collapse
Affiliation(s)
- Stephen D Bradford
- Department of Chemistry, Oregon State University, Corvallis, OR 97331, USA.
| | - Yingbin Ge
- Department of Chemistry, Central Washington University, Ellensburg, WA 98926, USA
| | - Jie Zhang
- Department of Chemistry, Oregon State University, Corvallis, OR 97331, USA.
| | - Marisol Trejo
- Department of Chemistry, Oregon State University, Corvallis, OR 97331, USA.
| | - Dale Tronrud
- Department of Chemistry, Oregon State University, Corvallis, OR 97331, USA.
| | - Wei Kong
- Department of Chemistry, Oregon State University, Corvallis, OR 97331, USA.
| |
Collapse
|
4
|
Zhang J, Kong W. Electron diffraction as a structure tool for charged and neutral nanoclusters formed in superfluid helium droplets. Phys Chem Chem Phys 2022; 24:6349-6362. [PMID: 35257134 PMCID: PMC10508180 DOI: 10.1039/d2cp00048b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This perspective presents the current status and future directions in using electron diffraction to determine the structures of clusters formed in superfluid helium droplets. The details of the experimental setup and data treatment procedures are explained, and several examples are illustrated. The ease of forming atomic and molecular clusters has been recognized since the invention of superfluid helium droplet beams. To resolve atomic structures from clusters formed in droplets, substantial efforts have been devoted to minimizing the contribution of helium to diffraction signals. With active background subtraction, we have obtained structures from clusters containing a few to more than 10 monomers, with and without heavy atoms to assist with the diffraction intensity, for both neutral and ionic species. From fittings of the diffraction profiles using model structures, we have observed that some small clusters adopt the structures of the corresponding solid sample, even for dimers such as iodine and pyrene, while others require trimers or tetramers to reach the structural motif of bulk solids, and smaller clusters such as CS2 dimers adopt gas phase structures. Cationic clusters of argon clusters contain an Ar3+ core, while pyrene dimers demonstrate a change in the intermolecular distance, from 3.5 Å for neutral dimers to 3.0 Å for cations. Future improvements in reducing the background of helium, and in expanding the information content of electron diffraction such as detection of charge distributions, are also discussed.
Collapse
Affiliation(s)
- Jie Zhang
- Department of Chemistry, Oregon State University, Corvallis, OR 97331, USA.
| | - Wei Kong
- Department of Chemistry, Oregon State University, Corvallis, OR 97331, USA.
| |
Collapse
|
5
|
Ishigaki Y, Shimomura K, Asai K, Shimajiri T, Akutagawa T, Fukushima T, Suzuki T. Chalcogen Bond versus Halogen Bond: Changing Contributions in Determining the Crystal Packing of Dihalobenzochalcogenadiazoles. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2022. [DOI: 10.1246/bcsj.20220008] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Yusuke Ishigaki
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Kai Shimomura
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Kota Asai
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Takuya Shimajiri
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Tomoyuki Akutagawa
- Institute of Multidisiplinary Research for Advanced Materials, Tohoku University, Sendai, 980-8577 Japan
| | - Takanori Fukushima
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama 226-8503, Japan
| | - Takanori Suzuki
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan
| |
Collapse
|
6
|
Lei L, Zhang J, Trejo M, Bradford SD, Kong W. Resolving the interlayer distance of cationic pyrene clusters embedded in superfluid helium droplets using electron diffraction. J Chem Phys 2022; 156:051101. [DOI: 10.1063/5.0080365] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Lei Lei
- Department of Chemistry, Oregon State University, Corvallis, Oregon 97331, USA
| | - Jie Zhang
- Department of Chemistry, Oregon State University, Corvallis, Oregon 97331, USA
| | - Marisol Trejo
- Department of Chemistry, Oregon State University, Corvallis, Oregon 97331, USA
| | - Stephen D. Bradford
- Department of Chemistry, Oregon State University, Corvallis, Oregon 97331, USA
| | - Wei Kong
- Department of Chemistry, Oregon State University, Corvallis, Oregon 97331, USA
| |
Collapse
|
7
|
Zhang J, Trejo M, Bradford SD, Lei L, Kong W. Electron Diffraction of Ionic Argon Nanoclusters Embedded in Superfluid Helium Droplets. J Phys Chem Lett 2021; 12:9644-9650. [PMID: 34586826 PMCID: PMC8550877 DOI: 10.1021/acs.jpclett.1c02712] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
We report electron diffraction of cationic argon nanoclusters embedded in superfluid helium droplets. Superfluid helium droplets are first doped with neutral argon atoms to form nanoclusters, and then the doped droplets are ionized by electrons. The much lower ionization energy of argon ensures that the positive charge resides on the Ar nanocluster. Using different stagnation temperatures and therefore droplets with different sizes, we have been able to preferentially form a small ionic cluster containing 2-4 Ar atoms and a larger cluster containing 7-11 atoms. The fitting results of the diffraction profiles agree with structures reported from theoretical calculations, containing a cationic trimer core with the remaining atoms largely neutral. This work testifies to the feasibility of performing electron diffraction from ionic species embedded in superfluid helium droplets, dispelling the concern over the particle density in the diffraction region. However, the large number of neutral helium atoms surrounding the cationic nanoclusters poses a challenge for the detection of the helium solvation layer, and the detection of which awaits further technological improvements.
Collapse
Affiliation(s)
| | | | | | | | - Wei Kong
- Corresponding author, , 541-737-6714
| |
Collapse
|
8
|
Pandey R, Tran S, Zhang J, Yao Y, Kong W. Bimodal velocity and size distributions of pulsed superfluid helium droplet beams. J Chem Phys 2021; 154:134303. [PMID: 33832230 PMCID: PMC8018796 DOI: 10.1063/5.0047158] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 03/15/2021] [Indexed: 11/14/2022] Open
Abstract
We report detailed measurements of velocities and sizes of superfluid helium droplets produced from an Even-Lavie pulse valve at stagnation pressures of 20-60 atm and temperatures between 5.7 and 18.0 K. By doping neutral droplets with Rhodamine 6G cations produced from an electrospray ionization source and detecting the positively charged droplets at two different locations along the beam path, we determine the velocities of the different groups of droplets. By subjecting the doped droplet beam to a retardation field, size distributions can then be analyzed. We discover that at stagnation temperatures above 8.0 K, a single group of droplets is observed at both locations, but at 8.0 K and below, two different groups of droplets with different velocities are detectable. The slower group, considered from fragmentation of liquid helium, cannot be deterred by the retardation voltage at 9 kV, implying an exceedingly large size. The faster group, considered from condensation of gaseous helium, has a bimodal distribution when the stagnation temperatures are below 12.3 K at 20 and 40 atm, or 16.1 K at 60 atm. We also report similar size measurements using low energy electrons for impact ionization, and this latter method can be used for facile in situ characterization of pulsed droplet beams. The mechanism of the bimodal size distribution of the condensation group and the reason for the coexistence of both the condensation and fragmentation groups remain elusive.
Collapse
Affiliation(s)
- Rahul Pandey
- Department of Chemistry, Oregon State University, Corvallis, Oregon 97331-4003, USA
| | - Steven Tran
- Department of Chemistry, Oregon State University, Corvallis, Oregon 97331-4003, USA
| | - Jie Zhang
- Department of Chemistry, Oregon State University, Corvallis, Oregon 97331-4003, USA
| | - Yuzhong Yao
- Department of Chemistry, Oregon State University, Corvallis, Oregon 97331-4003, USA
| | - Wei Kong
- Department of Chemistry, Oregon State University, Corvallis, Oregon 97331-4003, USA
| |
Collapse
|
9
|
Zhang J, Bradford SD, Kong W, Zhang C, Xue L. Electron diffraction of CS 2 nanoclusters embedded in superfluid helium droplets. J Chem Phys 2020; 152:224306. [PMID: 32534524 PMCID: PMC7292678 DOI: 10.1063/5.0011340] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 05/25/2020] [Indexed: 11/14/2022] Open
Abstract
We report experimental results from electron diffraction of CS2 nanoclusters embedded in superfluid helium droplets. From detailed measurements of the sizes of doped droplets, we can model the doping statistics under different experimental conditions, thereby obtaining the range of cluster sizes of CS2. Using a least squares fitting procedure, we can then determine the structures and contributions of dimers, trimers, and tetramers embedded in small droplets. While dimers prefer a stable gas phase structure, trimers and tetramers seem to forgo the highly symmetric gas phase structures and prefer compact cuts from the crystalline structure of CS2. In larger droplets containing more than 12 CS2 monomers, the diffraction profile is consistent with a three-dimensional nanostructure of bulk CS2. This work demonstrates the feasibility of electron diffraction for in situ monitoring of nanocluster formation in superfluid helium droplets.
Collapse
Affiliation(s)
- Jie Zhang
- Department of Chemistry, Oregon State University, Corvallis, Oregon 97331, USA
| | - Stephen D. Bradford
- Department of Chemistry, Oregon State University, Corvallis, Oregon 97331, USA
| | - Wei Kong
- Department of Chemistry, Oregon State University, Corvallis, Oregon 97331, USA
| | - Chengzhu Zhang
- Department of Statistics, Oregon State University, Corvallis, Oregon 97331, USA
| | - Lan Xue
- Department of Statistics, Oregon State University, Corvallis, Oregon 97331, USA
| |
Collapse
|
10
|
Lei L, Yao Y, Zhang J, Tronrud D, Kong W, Zhang C, Xue L, Dontot L, Rapacioli M. Electron Diffraction of Pyrene Nanoclusters Embedded in Superfluid Helium Droplets. J Phys Chem Lett 2020; 11:724-729. [PMID: 31884792 PMCID: PMC7104692 DOI: 10.1021/acs.jpclett.9b03603] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
We report electron diffraction of pyrene nanoclusters embedded in superfluid helium droplets. Using a least-squares fitting procedure, we have been able to separate the contribution of helium from those of the pyrene nanoclusters and determine the most likely structures for dimers and trimers. We confirm that pyrene dimers form a parallel double-layer structure with an interlayer distance of 3.5 Å and suggest that pyrene trimers form a sandwich structure but that the molecular planes are not completely parallel. The relative contributions of the dimers and trimers are ∼6:1. This work is an extension of our effort of solving structures of biological molecules using serial single-molecule electron diffraction imaging. The success of electron diffraction from an all-light-atom sample embedded in helium droplets offers reassuring evidence of the feasibility of this approach.
Collapse
Affiliation(s)
- Lei Lei
- Department of Chemistry, Oregon State University, Corvallis, Oregon 97331, United States
| | - Yuzhong Yao
- Department of Chemistry, Oregon State University, Corvallis, Oregon 97331, United States
| | - Jie Zhang
- Department of Chemistry, Oregon State University, Corvallis, Oregon 97331, United States
| | - Dale Tronrud
- Department of Chemistry, Oregon State University, Corvallis, Oregon 97331, United States
| | - Wei Kong
- Department of Chemistry, Oregon State University, Corvallis, Oregon 97331, United States
| | - Chengzhu Zhang
- Department of Statistics, Oregon State University, Corvallis, Oregon 97331, United States
| | - Lan Xue
- Department of Statistics, Oregon State University, Corvallis, Oregon 97331, United States
| | - Léo Dontot
- Laboratoire de Chimie et Physique Quantiques, LCPQ/IRSAMC, UMR5626, Université de Toulouse (UPS) and CNRS, 118 Route de Narbonne, F-31062 Toulouse, France
| | - Mathias Rapacioli
- Laboratoire de Chimie et Physique Quantiques, LCPQ/IRSAMC, UMR5626, Université de Toulouse (UPS) and CNRS, 118 Route de Narbonne, F-31062 Toulouse, France
| |
Collapse
|
11
|
Abstract
We report suppression of multiphoton ionization (MPI) of aniline doped large superfluid helium droplets containing over 5 × 106 atoms. In contrast, surface-bound sodium atoms and dimers are readily desorbed and ionized. Adequacy of the experimental conditions is also confirmed from ejection of embedded aniline cations from smaller droplets containing multiple cations, and MPI of gaseous aniline. The photoelectrons have a mean-free-path of less than 1 nm and a thermalization distance of 10 nm. In a droplet with a diameter of over 70 nm, effective charge recombination within the droplet is expected.
Collapse
|
12
|
Abstract
Empty spaces are abhorred by nature, which immediately rushes in to fill the void. Humans have learnt pretty well how to make ordered empty nanocontainers, and to get useful products out of them. When such an order is imparted to molecules, new properties may appear, often yielding advanced applications. This review illustrates how the organized void space inherently present in various materials: zeolites, clathrates, mesoporous silica/organosilica, and metal organic frameworks (MOF), for example, can be exploited to create confined, organized, and self-assembled supramolecular structures of low dimensionality. Features of the confining matrices relevant to organization are presented with special focus on molecular-level aspects. Selected examples of confined supramolecular assemblies - from small molecules to quantum dots or luminescent species - are aimed to show the complexity and potential of this approach. Natural confinement (minerals) and hyperconfinement (high pressure) provide further opportunities to understand and master the atomistic-level interactions governing supramolecular organization under nanospace restrictions.
Collapse
Affiliation(s)
- Gloria Tabacchi
- Department of Science and High Technology, University of Insubria, Via Valleggio, 9 I-22100, Como, Italy
| |
Collapse
|
13
|
Halogen Bonds Formed between Substituted Imidazoliums and N Bases of Varying N-Hybridization. Molecules 2017; 22:molecules22101634. [PMID: 28961202 PMCID: PMC6151534 DOI: 10.3390/molecules22101634] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 09/26/2017] [Accepted: 09/27/2017] [Indexed: 12/16/2022] Open
Abstract
Heterodimers are constructed containing imidazolium and its halogen-substituted derivatives as Lewis acid. N in its sp³, sp² and sp hybridizations is taken as the electron-donating base. The halogen bond is strengthened in the Cl < Br < I order, with the H-bond generally similar in magnitude to the Br-bond. Methyl substitution on the N electron donor enhances the binding energy. Very little perturbation arises if the imidazolium is attached to a phenyl ring. The energetics are not sensitive to the hybridization of the N atom. More regular patterns appear in the individual phenomena. Charge transfer diminishes uniformly on going from amine to imine to nitrile, a pattern that is echoed by the elongation of the C-Z (Z=H, Cl, Br, I) bond in the Lewis acid. These trends are also evident in the Atoms in Molecules topography of the electron density. Molecular electrostatic potentials are not entirely consistent with energetics. Although I of the Lewis acid engages in a stronger bond than does H, it is the potential of the latter which is much more positive. The minimum on the potential of the base is most negative for the nitrile even though acetonitrile does not form the strongest bonds. Placing the systems in dichloromethane solvent reduces the binding energies but leaves intact most of the trends observed in vacuo; the same can be said of ∆G in solution.
Collapse
|
14
|
Alghamdi M, Zhang J, Oswalt A, Porter JJ, Mehl RA, Kong W. Doping of Green Fluorescent Protein into Superfluid Helium Droplets: Size and Velocity of Doped Droplets. J Phys Chem A 2017; 121:6671-6678. [PMID: 28825305 PMCID: PMC5713884 DOI: 10.1021/acs.jpca.7b05718] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
We report doping of green fluorescent protein from an electrospray ionization (ESI) source into superfluid helium droplets. From analyses of the time profiles of the doped droplets, we identify two distinct groups of droplets. The faster group has a smaller average size, on the order of 106 helium atoms/droplet, and the slower group is much larger, by at least an order of magnitude. The relative populations of these two groups depend on the temperature of the droplet source: from 11 to 5 K, the signal intensity of the slower droplet group gradually increases, from near the detection limit to comparable to that of the faster group. We postulate that the smaller droplets are formed via condensation of gaseous helium upon expansion from the pulsed valve, while the larger droplets develop from fragmentation of ejected liquid helium. Our results on the size and velocity of the condensation peak at higher source temperatures (>7 K) agree with previous reports, but those at lower temperatures (<7 K) seem to be off. We attribute this discrepancy to the masking effect of the exceedingly large droplets from the fragmentation peak in previous measurements of droplet sizes. Within the temperature range of our investigation, although the expansion condition changes from subcritical to supercritical, there is no abrupt change in either the velocity distribution or the size distribution of the condensation peak, and the most salient effect is in the increasing intensity of the fragmentation peak. The absolute doping efficiency, as expressed by the ratio of ion-doped droplets over the total number of ions from the ESI source, is on the order of 10-4, while only hundreds of doped ions have been detected. Further improvements in the ESI source are key to extending the technology for future experiments. On the other hand, the separation of the two groups of droplets in velocity is beneficial for size selection of only the smaller droplets for future experiments of electron diffraction.
Collapse
Affiliation(s)
- Maha Alghamdi
- Department of Chemistry, Oregon State University, Corvallis, Oregon 97331, USA
| | - Jie Zhang
- Department of Chemistry, Oregon State University, Corvallis, Oregon 97331, USA
| | - Andrew Oswalt
- Department of Chemistry, Oregon State University, Corvallis, Oregon 97331, USA
| | - Joseph J. Porter
- Department of Biochemistry and Biophysics, Oregon State University, 2011 Agricultural and Life Science building, Corvallis, Oregon 97331, USA
| | - Ryan A. Mehl
- Department of Biochemistry and Biophysics, Oregon State University, 2011 Agricultural and Life Science building, Corvallis, Oregon 97331, USA
| | - Wei Kong
- Department of Chemistry, Oregon State University, Corvallis, Oregon 97331, USA
| |
Collapse
|