1
|
Choi J, Liu C, Sung YE, Park HS, Yu T. Au-Added CuS Hollow Spheres to Regulate the Strength and Active Area of N 2 Adsorption Sites for Electrochemical NH 3 Production. ACS APPLIED MATERIALS & INTERFACES 2025; 17:3116-3126. [PMID: 39448063 DOI: 10.1021/acsami.4c10517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2024]
Abstract
Ammonia is a chemical compound in considerable global demand and plays a crucial role as an environmentally friendly energy carrier for hydrogen energy storage. The electrochemical nitrogen reduction reaction (eNRR) using copper sulfide catalysts is being extensively studied as an environmentally sustainable approach to the energy-intensive Haber-Bosch process for ammonia production. In this study, we aimed to prepare CuS hollow spheres modified with Au nanoparticles using an antisolvent crystallization-based method to be used as the catalysts for eNRR. During the addition of Au to the CuS catalysts, the nitrogen adsorption strength and surface area of the CuS catalysts are significantly regulated and expanded, leading to a noticeable enhancement in electrocatalytic performance for eNRR. Specifically, the ammonia production rate of 2.4 μmol cm-2 h or jNH3 = 0.2 mA cm-2 is achieved at a selectivity of 52% in neutral aqueous electrolyte, which is more than a 2-fold increase compared to the unmodified CuS catalyst. The findings of this study can contribute to the development of sustainable and environmentally friendly ammonia production in the future.
Collapse
Affiliation(s)
- Jihyun Choi
- Center for Hydrogen-Fuel Cell Research, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
- School of Chemical and Biological Engineering, Seoul National University (SNU), 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Cun Liu
- Department of Chemical Engineering, Kyung Hee University (KHU), Yongin 17104, Republic of Korea
- College of Chemistry and Chemical Engineering, Xinjiang Agricultural University, 311 East Nongda Road, Urumqi 830052, China
| | - Yung-Eun Sung
- School of Chemical and Biological Engineering, Seoul National University (SNU), 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
- Center for Nanoparticle Research, Institute for Basic Science (IBS), 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Hyun S Park
- Center for Hydrogen-Fuel Cell Research, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Taekyung Yu
- Department of Chemical Engineering, Kyung Hee University (KHU), Yongin 17104, Republic of Korea
| |
Collapse
|
2
|
Yang H, Zhang Y, Ma P, Liu X, Liu N, Chang S, Gao Y. Controllable Construction of a Mo 2C/MoO 2 Interface with an Ideal Mo 2C/MoO 2 Ratio for Efficient Electrocatalytic Nitrogen Reduction to Ammonia. ACS APPLIED MATERIALS & INTERFACES 2024; 16:32160-32168. [PMID: 38870105 DOI: 10.1021/acsami.4c01096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
Electrocatalytic nitrogen reduction reaction (NRR) is considered to be a viable contender for the production of NH3. However, due to the sluggish adsorption and activation of the electrocatalyst toward inert N2 molecules, there is an urgent need for developing effective catalysts to facilitate the reaction. Inspired by natural nitrogenase, in which Mo atoms are the active centers, Mo-based electrocatalysts have received considerable attention, but further exploration is still necessary. Interface-engineered electrocatalysts can effectively optimize the absorption and activation of the catalytic active center for N2 and thus improve the electrocatalytic activity of NRR. However, the lack of studies for controllably constructing an optimal ratio of two phases at the interface hinders the development of NRR electrocatalysts. Herein, a series of Mo2C/MoO2 interface-engineered electrocatalysts with various Mo2C/MoO2 ratios were constructed by controlling the Y dosages. The controlled experimental results verified that the catalytic activity of NRR, the dosage of Y, and the ratio of Mo2C/MoO2 were strongly correlated. Density functional theory calculations show that the C-Mo-O coordination at the Mo2C/MoO2 interface can optimize the reaction path and reduce the energy barrier of the reaction intermediates, thereby enhancing the reaction kinetics of NRR.
Collapse
Affiliation(s)
- Haidong Yang
- College of Chemistry and Chemical Engineering, Northwest Normal University, No. 967 Anning East Road, Lanzhou 730070, P. R. China
| | - Yongfeng Zhang
- College of Chemistry and Chemical Engineering, Northwest Normal University, No. 967 Anning East Road, Lanzhou 730070, P. R. China
| | - Ping Ma
- Lanzhou Petrochemical Research Center, Petrochemical Research Institute, Lanzhou 730060, P. R. China
| | - Xiaoqian Liu
- College of Chemistry and Chemical Engineering, Northwest Normal University, No. 967 Anning East Road, Lanzhou 730070, P. R. China
| | - Nuo Liu
- College of Chemistry and Chemical Engineering, Northwest Normal University, No. 967 Anning East Road, Lanzhou 730070, P. R. China
| | - Shan Chang
- College of Chemistry and Chemical Engineering, Northwest Normal University, No. 967 Anning East Road, Lanzhou 730070, P. R. China
| | - Yijing Gao
- Advanced Fluorine-Containing Materials, Zhejiang Normal University, Jinhua 321004, P. R. China
| |
Collapse
|
3
|
De la Vega-Camarillo E, Sotelo-Aguilar J, Rios-Galicia B, Mercado-Flores Y, Arteaga-Garibay R, Villa-Tanaca L, Hernández-Rodríguez C. Promotion of the growth and yield of Zea mays by synthetic microbial communities from Jala maize. Front Microbiol 2023; 14:1167839. [PMID: 37275168 PMCID: PMC10235630 DOI: 10.3389/fmicb.2023.1167839] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 05/02/2023] [Indexed: 06/07/2023] Open
Abstract
Plant growth-promoting bacteria (PGPB) are a source of nutrient supply, stimulate plant growth, and even act in the biocontrol of phytopathogens. However, these phenotypic traits have rarely been explored in culturable bacteria from native maize landraces. In this study, synthetic microbial communities (SynCom) were assembled with a set of PGPB isolated from the Jala maize landrace, some of them with additional abilities for the biocontrol of phytopathogenic fungi and the stimulation of plant-induced systemic resistance (ISR). Three SynCom were designed considering the phenotypic traits of bacterial strains, including Achromobacter xylosoxidans Z2K8, Burkholderia sp. Z1AL11, Klebsiella variicola R3J3HD7, Kosakonia pseudosacchari Z2WD1, Pantoea ananatis E2HD8, Pantoea sp. E2AD2, Phytobacter diazotrophicus Z2WL1, Pseudomonas protegens E1BL2, and P. protegens E2HL9. Plant growth promotion in gnotobiotic and greenhouse seedlings assays was performed with Conejo landrace; meanwhile, open field tests were carried out on hybrid CPL9105W maize. In all experimental models, a significant promotion of plant growth was observed. In gnotobiotic assays, the roots and shoot length of the maize seedlings increased 4.2 and 3.0 times, respectively, compared to the untreated control. Similarly, the sizes and weights of the roots and shoots of the plants increased significantly in the greenhouse assays. In the open field assay performed with hybrid CPL9105W maize, the yield increased from 11 tons/ha for the control to 16 tons/ha inoculated with SynCom 3. In addition, the incidence of rust fungal infections decreased significantly from 12.5% in the control to 8% in the treatment with SynCom 3. All SynCom designs promoted the growth of maize in all assays. However, SynCom 3 formulated with A. xylosoxidans Z2K8, Burkholderia sp. Z1AL11, K. variicola R3J3HD7, P. ananatis E2HD8, P. diazotrophicus Z2WL1, and P. protegens E1BL2 displayed the best results for promoting plant growth, their yield, and the inhibition of fungal rust. This study demonstrated the biotechnological eco-friendly plant growth-promoting potential of SynCom assemblies with culturable bacteria from native maize landraces for more sustainable and economic agriculture.
Collapse
Affiliation(s)
- Esaú De la Vega-Camarillo
- Laboratorio de Biología Molecular de Bacterias y Levaduras, Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - Josimar Sotelo-Aguilar
- Laboratorio de Biología Molecular de Bacterias y Levaduras, Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - Bibiana Rios-Galicia
- Laboratorio de Biología Molecular de Bacterias y Levaduras, Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - Yuridia Mercado-Flores
- Laboratorio de Aprovechamiento Integral de Recursos Bióticos, Universidad Politécnica de Pachuca, Hidalgo, Mexico
| | - Ramón Arteaga-Garibay
- Laboratorio de Recursos Genéticos Microbianos, Centro Nacional de Recursos Genéticos, INIFAP, Jalisco, Mexico
| | - Lourdes Villa-Tanaca
- Laboratorio de Biología Molecular de Bacterias y Levaduras, Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - César Hernández-Rodríguez
- Laboratorio de Biología Molecular de Bacterias y Levaduras, Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, Mexico
| |
Collapse
|
4
|
Barrio J, Pedersen A, Favero S, Luo H, Wang M, Sarma SC, Feng J, Ngoc LTT, Kellner S, Li AY, Jorge Sobrido AB, Titirici MM. Bioinspired and Bioderived Aqueous Electrocatalysis. Chem Rev 2023; 123:2311-2348. [PMID: 36354420 PMCID: PMC9999430 DOI: 10.1021/acs.chemrev.2c00429] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Indexed: 11/12/2022]
Abstract
The development of efficient and sustainable electrochemical systems able to provide clean-energy fuels and chemicals is one of the main current challenges of materials science and engineering. Over the last decades, significant advances have been made in the development of robust electrocatalysts for different reactions, with fundamental insights from both computational and experimental work. Some of the most promising systems in the literature are based on expensive and scarce platinum-group metals; however, natural enzymes show the highest per-site catalytic activities, while their active sites are based exclusively on earth-abundant metals. Additionally, natural biomass provides a valuable feedstock for producing advanced carbonaceous materials with porous hierarchical structures. Utilizing resources and design inspiration from nature can help create more sustainable and cost-effective strategies for manufacturing cost-effective, sustainable, and robust electrochemical materials and devices. This review spans from materials to device engineering; we initially discuss the design of carbon-based materials with bioinspired features (such as enzyme active sites), the utilization of biomass resources to construct tailored carbon materials, and their activity in aqueous electrocatalysis for water splitting, oxygen reduction, and CO2 reduction. We then delve in the applicability of bioinspired features in electrochemical devices, such as the engineering of bioinspired mass transport and electrode interfaces. Finally, we address remaining challenges, such as the stability of bioinspired active sites or the activity of metal-free carbon materials, and discuss new potential research directions that can open the gates to the implementation of bioinspired sustainable materials in electrochemical devices.
Collapse
Affiliation(s)
- Jesús Barrio
- Department
of Materials, Royal School of Mines, Imperial
College London, LondonSW7 2AZ, England, U.K.
- Department
of Chemical Engineering, Imperial College
London, LondonSW7 2AZ, England, U.K.
| | - Angus Pedersen
- Department
of Materials, Royal School of Mines, Imperial
College London, LondonSW7 2AZ, England, U.K.
- Department
of Chemical Engineering, Imperial College
London, LondonSW7 2AZ, England, U.K.
| | - Silvia Favero
- Department
of Chemical Engineering, Imperial College
London, LondonSW7 2AZ, England, U.K.
| | - Hui Luo
- Department
of Chemical Engineering, Imperial College
London, LondonSW7 2AZ, England, U.K.
| | - Mengnan Wang
- Department
of Materials, Royal School of Mines, Imperial
College London, LondonSW7 2AZ, England, U.K.
- Department
of Chemical Engineering, Imperial College
London, LondonSW7 2AZ, England, U.K.
| | - Saurav Ch. Sarma
- Department
of Chemical Engineering, Imperial College
London, LondonSW7 2AZ, England, U.K.
| | - Jingyu Feng
- Department
of Chemical Engineering, Imperial College
London, LondonSW7 2AZ, England, U.K.
- School
of Engineering and Materials Science, Queen
Mary University of London, LondonE1 4NS, England, U.K.
| | - Linh Tran Thi Ngoc
- Department
of Chemical Engineering, Imperial College
London, LondonSW7 2AZ, England, U.K.
- School
of Engineering and Materials Science, Queen
Mary University of London, LondonE1 4NS, England, U.K.
| | - Simon Kellner
- Department
of Chemical Engineering, Imperial College
London, LondonSW7 2AZ, England, U.K.
| | - Alain You Li
- Department
of Chemical Engineering, Imperial College
London, LondonSW7 2AZ, England, U.K.
| | - Ana Belén Jorge Sobrido
- School
of Engineering and Materials Science, Queen
Mary University of London, LondonE1 4NS, England, U.K.
| | - Maria-Magdalena Titirici
- Department
of Chemical Engineering, Imperial College
London, LondonSW7 2AZ, England, U.K.
- Advanced
Institute for Materials Research (WPI-AIMR), Tohoku University, 2-1-1
Katahira, Aobaku, Sendai, Miyagi980-8577, Japan
| |
Collapse
|
5
|
Huang Z, Rafiq M, Woldu AR, Tong QX, Astruc D, Hu L. Recent progress in electrocatalytic nitrogen reduction to ammonia (NRR). Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
6
|
Zhang W, Lin W, Ren J, Zheng N, Wu B. Electrochemical Reduction of Nitrogen to Ammonia by Pd−S−Mo Nanosheets on a Hydrophobic Hierarchical Graphene Support. ChemElectroChem 2022. [DOI: 10.1002/celc.202100052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Wuyong Zhang
- Pen-Tung Sah Institute of Micro-Nano Science and Technology State Key Laboratory for Physical Chemistry of Solid Surfaces Collaborative Innovation Center of Chemistry for Energy Materials National & Local Joint Engineering Research Center of Preparation Technology of Nanomaterials College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| | - Weijin Lin
- Pen-Tung Sah Institute of Micro-Nano Science and Technology State Key Laboratory for Physical Chemistry of Solid Surfaces Collaborative Innovation Center of Chemistry for Energy Materials National & Local Joint Engineering Research Center of Preparation Technology of Nanomaterials College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| | - Juan Ren
- Pen-Tung Sah Institute of Micro-Nano Science and Technology State Key Laboratory for Physical Chemistry of Solid Surfaces Collaborative Innovation Center of Chemistry for Energy Materials National & Local Joint Engineering Research Center of Preparation Technology of Nanomaterials College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| | - Nanfeng Zheng
- Pen-Tung Sah Institute of Micro-Nano Science and Technology State Key Laboratory for Physical Chemistry of Solid Surfaces Collaborative Innovation Center of Chemistry for Energy Materials National & Local Joint Engineering Research Center of Preparation Technology of Nanomaterials College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| | - Binghui Wu
- Pen-Tung Sah Institute of Micro-Nano Science and Technology State Key Laboratory for Physical Chemistry of Solid Surfaces Collaborative Innovation Center of Chemistry for Energy Materials National & Local Joint Engineering Research Center of Preparation Technology of Nanomaterials College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| |
Collapse
|
7
|
Zhao Y, Yan L, Zhao X. Development of Carbon‐Based Electrocatalysts for Ambient Nitrogen Reduction Reaction: Challenges and Perspectives. ChemElectroChem 2022. [DOI: 10.1002/celc.202101126] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Yanchao Zhao
- School of Materials Science and Engineering Qilu University of Technology (Shandong Academy of Sciences) Jinan 250353 People's Republic of China
- State Key Laboratory of Heavy Oil Processing College of Chemical Engineering China University of Petroleum (East China) Qingdao 266580 People's Republic of China
| | - Liting Yan
- School of Materials Science and Engineering Qilu University of Technology (Shandong Academy of Sciences) Jinan 250353 People's Republic of China
| | - Xuebo Zhao
- School of Materials Science and Engineering Qilu University of Technology (Shandong Academy of Sciences) Jinan 250353 People's Republic of China
- State Key Laboratory of Heavy Oil Processing College of Chemical Engineering China University of Petroleum (East China) Qingdao 266580 People's Republic of China
| |
Collapse
|
8
|
Liu Y, Ye X, Li R, Tao Y, Zhang C, Lian Z, Zhang D, Li G. Boosting the photocatalytic nitrogen reduction to ammonia through adsorption-plasmonic synergistic effects. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.01.076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
9
|
Fang Z, Zhou J, Zhou X, Koffas MAG. Abiotic-biotic hybrid for CO 2 biomethanation: From electrochemical to photochemical process. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 791:148288. [PMID: 34118677 DOI: 10.1016/j.scitotenv.2021.148288] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 06/01/2021] [Accepted: 06/01/2021] [Indexed: 06/12/2023]
Abstract
Converting CO2 into sustainable fuels (e.g., CH4) has great significance to solve carbon emission and energy crisis. Generally, CO2 methanation needs abundant of energy input to overcome the eight-electron-transfer barrier. Abiotic-biotic hybrid system represents one of the cutting-edge technologies that use renewable electric/solar energy to realize eight-electron-transfer CO2 biomethanation. However, the incompatible abiotic-biotic hybrid can result in low efficiency of electron transfer and CO2 biomethanation. Herein, we present the comprehensive review to highlight how to design abiotic-biotic hybrid for electric/solar-driven CO2 biomethanation. We primarily introduce the CO2 biomethanation mechanism, and further summarize state-of-the-art electrochemical and photochemical CO2 biomethanation in hybrid systems. We also propose excellent synthetic biology strategies, which are useful to design tunable methanogenic microorganisms or enzymes when cooperating with electrode/semiconductor in hybrid systems. This review provides theoretical guidance of abiotic-biotic hybrid and also shows the bright future of sustainable fuel production in the form of CO2 biomethanation.
Collapse
Affiliation(s)
- Zhen Fang
- Biofuels Institute, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Jun Zhou
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Xiangtong Zhou
- Institute of Environmental Health and Ecological Safety, Jiangsu University, Zhenjiang 212013, China
| | - Mattheos A G Koffas
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| |
Collapse
|
10
|
Abstract
Enhanced titanocene (Cp2TiCl2) based electrocatalytic system for nitrogen reduction was shown, comprising glassy carbon electrode, high level of the catechol redox mediator, optimized binary THF/MeOH solvent and unique design of the reactor having ammonia permeable membrane at the outlet, which allowed constant nitrogen flow through the working solution during entire electrolysis without risk of evaporation of the solvent. Catalytic activity was observed in the potential range of (−1.5)–(−2.3) V, reaching TON of 2.83%, corresponding to the production of 0.566 μmol NH3 (9.64 μg) in 24 h hydrolysis at −2.3 V using 0.02 mmol TiCp2Cl2 (5 mg).
Collapse
|
11
|
Harris AW, Roy S, Ganguly S, Parameswar AV, Lucas FWS, Holewinski A, Goodwin AP, Cha JN. Investigating the use of conducting oligomers and redox molecules in CdS-MoFeP biohybrids. NANOSCALE ADVANCES 2021; 3:1392-1396. [PMID: 36132854 PMCID: PMC9418983 DOI: 10.1039/d0na00678e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 12/18/2020] [Indexed: 05/11/2023]
Abstract
In this work we report the effect of incorporating conducting oligophenylenes and a cobaltocene-based redox mediator on photodriven electron transfer between thioglycolic acid (TGA) capped CdS nanorods (NR) and the native nitrogenase MoFe protein (MoFeP) by following the reduction of H+ to H2. First, we demonstrate that the addition of benzidine-a conductive diphenylene- to TGA-CdS and MoFeP increased catalytic activity by up to 3-fold as compared to CdS-MoFeP alone. In addition, in comparing the use of oligophenylenes composed of one (p-phenylenediamine), two (benzidine) or three (4,4''-diamino-p-terphenyl)phenylene groups, the largest gain in H2 was observed with the addition of benzidine and the lowest with phenylenediamine. As a comparison to the conductive oligophenylenes, a cobaltocene-based redox mediator was also tested with the TGA-CdS NRs and MoFeP. However, adding either cobaltocene diacid or diamine caused negligible gains in H2 production and at higher concentrations, caused a significant decrease. Agarose gel electrophoresis revealed little to no detectable interaction between benzidine and TGA-CdS but strong binding between cobaltocene and TGA-CdS. These results suggest that the tight binding of the cobaltocene mediator to CdS may hinder electron transfer between CdS and MoFe and cause the mediator to undergo continuous reduction/oxidation events at the surface of CdS.
Collapse
Affiliation(s)
- Alexander W Harris
- Department of Chemical and Biological Engineering, University of Colorado Boulder 3415 Colorado Avenue Boulder CO 80303 USA
| | - Shambojit Roy
- Department of Chemical and Biological Engineering, University of Colorado Boulder 3415 Colorado Avenue Boulder CO 80303 USA
| | - Saheli Ganguly
- Department of Chemical and Biological Engineering, University of Colorado Boulder 3415 Colorado Avenue Boulder CO 80303 USA
| | - Ashray V Parameswar
- Materials Science and Engineering Program, University of Colorado Boulder 3415 Colorado Avenue Boulder CO 80303 USA
| | - Francisco W S Lucas
- Department of Chemical and Biological Engineering, University of Colorado Boulder 3415 Colorado Avenue Boulder CO 80303 USA
| | - Adam Holewinski
- Department of Chemical and Biological Engineering, University of Colorado Boulder 3415 Colorado Avenue Boulder CO 80303 USA
- Renewable and Sustainable Energy Institute, University of Colorado Boulder CO 80303 USA
| | - Andrew P Goodwin
- Department of Chemical and Biological Engineering, University of Colorado Boulder 3415 Colorado Avenue Boulder CO 80303 USA
- Materials Science and Engineering Program, University of Colorado Boulder 3415 Colorado Avenue Boulder CO 80303 USA
| | - Jennifer N Cha
- Department of Chemical and Biological Engineering, University of Colorado Boulder 3415 Colorado Avenue Boulder CO 80303 USA
- Materials Science and Engineering Program, University of Colorado Boulder 3415 Colorado Avenue Boulder CO 80303 USA
| |
Collapse
|
12
|
Liu A, Liang X, Yang Q, Ren X, Gao M, Yang Y, Ma T. Electrocatalytic Synthesis of Ammonia Using a 2D Ti 3 C 2 MXene Loaded with Copper Nanoparticles. Chempluschem 2020; 86:166-170. [PMID: 33215874 DOI: 10.1002/cplu.202000702] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 11/05/2020] [Indexed: 11/07/2022]
Abstract
As an energy-saving and environmentally friendly ammonia synthesis method, electrocatalytic nitrogen reduction reaction (NRR) has received a great deal of attention. There is thus an urgent need to find high-efficiency electrocatalysts for the NRR. In this work, a Cu/Ti3 C2 composite catalyst was prepared and demonstrated excellent selectivity under environmental conditions, which could efficiently convert N2 into NH3 electrochemically. In 0.1 M KOH, Cu/Ti3 C2 can achieve a high Faradaic efficiency of 7.31 % and a high NH3 production rate of 3.04 μmol h-1 cm-2 at -0.5 V vs. RHE. Moreover, the material also exhibits superior electrochemical stability and durability. At the same time, density functional theory (DFT) shows that, compared with Ti3 C2 , Cu/Ti3 C2 exhibits a wider conduction and valence band and a larger Fermi level, thus indicating that Cu plays a vital role in the enhancement of the catalytic activity and conductivity of Ti3 C2 -based materials. This work provides a feasible strategy for designing high-efficiency MXene-based NRR electrocatalysts.
Collapse
Affiliation(s)
- Anmin Liu
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology (P. R. China)
| | - Xingyou Liang
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology (P. R. China)
| | - Qiyue Yang
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology (P. R. China)
| | - Xuefeng Ren
- School of Ocean Science and Technology, Dalian University of Technology, Panjin, 124221, P. R. China
| | - Mengfan Gao
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology (P. R. China)
| | - Yanan Yang
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology (P. R. China)
| | - Tingli Ma
- Department of Materials Science and Engineering, China Jiliang University, Hangzhou, 310018, P. R. China.,Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, 2-4 Hibikino, Wakamatsu, Kitakyushu, Fukuoka, 808-0196, Japan
| |
Collapse
|
13
|
Zhao W, Liu B, Qin J, Ke J, Yu L, Hu X. Defect and Interface Engineering on Two‐Dimensional Nanosheets for the Photocatalytic Nitrogen Reduction Reaction. CHEMPHOTOCHEM 2020. [DOI: 10.1002/cptc.202000114] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Wenjun Zhao
- College of Resource and Environmental Engineering Guizhou University Guiyang 550025 P. R. China
| | - Baojun Liu
- College of Resource and Environmental Engineering Guizhou University Guiyang 550025 P. R. China
- Key Laboratory of Karst Georesources and Environment Ministry of Education Guiyang 550025 P. R. China
| | - Jiangzhou Qin
- College of Resource and Environmental Engineering Guizhou University Guiyang 550025 P. R. China
| | - Jun Ke
- School of Chemistry and Environmental Engineering Wuhan Institute of Technology Wuhan 430205 P. R. China
| | - Lanlan Yu
- College of Resource and Environmental Engineering Guizhou University Guiyang 550025 P. R. China
| | - Xia Hu
- College of Resource and Environmental Engineering Guizhou University Guiyang 550025 P. R. China
- Key Laboratory of Karst Georesources and Environment Ministry of Education Guiyang 550025 P. R. China
| |
Collapse
|
14
|
Artificial, Photoinduced Activation of Nitrogenase Using Directed and Mediated Electron Transfer Processes. Catalysts 2020. [DOI: 10.3390/catal10090979] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Nitrogenase, a bacteria-based enzyme, is the sole enzyme that is able to generate ammonia by atmospheric nitrogen fixation. Thus, improved understanding of its utilization and developing methods to artificially activate it may contribute to basic research, as well as to the design of future artificial systems. Here, we present methods to artificially activate nitrogenase using photoinduced reactions. Two nitrogenase variants originating from Azotobacter vinelandii were examined using photoactivated CdS nanoparticles (NPs) capped with thioglycolic acid (TGA) or 2-mercaptoethanol (ME) ligands. The effect of methyl viologen (MV) as a redox mediator of hydrogen and ammonia generation was tested and analyzed. We further determined the NPs conductive band edges and their effect on the nitrogenase photoactivation. The nano-biohybrid systems comprising CdS NPs and nitrogenase were further imaged by transmission electron microscopy, visualizing their formation for the first time. Our results show that the ME-capped CdS NPs–nitrogenase enzyme biohybrid system with added MV as a redox mediator leads to a five-fold increase in the production of ammonia compared with the non-mediated biohybrid system; nevertheless, it stills lag behind the natural process rate. On the contrary, a maximal hydrogen generation amount was achieved by the αL158C MoFe-P and the ME-capped CdS NPs.
Collapse
|
15
|
Liu H, Wei L, Liu F, Pei Z, Shi J, Wang ZJ, He D, Chen Y. Homogeneous, Heterogeneous, and Biological Catalysts for Electrochemical N2 Reduction toward NH3 under Ambient Conditions. ACS Catal 2019. [DOI: 10.1021/acscatal.9b00994] [Citation(s) in RCA: 111] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Huimin Liu
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, New South Wales 2006, Australia
- TJU-NIMS
International
Collaboration Laboratory, School of Material Science and Engineering, Tianjin University, Tianjin 300072, People’s Republic of China
| | - Li Wei
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Fei Liu
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, New South Wales 2006, Australia
- State Key Laboratory
of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory
of Microbial Culture Collection and Application, Guangdong Institute of Microbiology, Guangzhou, Guangdong 510070, People’s Republic of China
| | - Zengxia Pei
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Jeffrey Shi
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Zhou-jun Wang
- State Key Laboratory
of Chemical Resource Engineering, Beijing Key Laboratory of Energy
Environmental Catalysis, Beijing University of Chemical Technology, 15 Beisanhuan East Road, Beijing 100029, People’s Republic of China
| | - Dehua He
- Innovative Catalysis
Program, Key Laboratory of Organic Optoelectronics and Molecular Engineering
of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, People’s Republic of China
| | - Yuan Chen
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, New South Wales 2006, Australia
| |
Collapse
|
16
|
Dalle K, Warnan J, Leung JJ, Reuillard B, Karmel IS, Reisner E. Electro- and Solar-Driven Fuel Synthesis with First Row Transition Metal Complexes. Chem Rev 2019; 119:2752-2875. [PMID: 30767519 PMCID: PMC6396143 DOI: 10.1021/acs.chemrev.8b00392] [Citation(s) in RCA: 467] [Impact Index Per Article: 77.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Indexed: 12/31/2022]
Abstract
The synthesis of renewable fuels from abundant water or the greenhouse gas CO2 is a major step toward creating sustainable and scalable energy storage technologies. In the last few decades, much attention has focused on the development of nonprecious metal-based catalysts and, in more recent years, their integration in solid-state support materials and devices that operate in water. This review surveys the literature on 3d metal-based molecular catalysts and focuses on their immobilization on heterogeneous solid-state supports for electro-, photo-, and photoelectrocatalytic synthesis of fuels in aqueous media. The first sections highlight benchmark homogeneous systems using proton and CO2 reducing 3d transition metal catalysts as well as commonly employed methods for catalyst immobilization, including a discussion of supporting materials and anchoring groups. The subsequent sections elaborate on productive associations between molecular catalysts and a wide range of substrates based on carbon, quantum dots, metal oxide surfaces, and semiconductors. The molecule-material hybrid systems are organized as "dark" cathodes, colloidal photocatalysts, and photocathodes, and their figures of merit are discussed alongside system stability and catalyst integrity. The final section extends the scope of this review to prospects and challenges in targeting catalysis beyond "classical" H2 evolution and CO2 reduction to C1 products, by summarizing cases for higher-value products from N2 reduction, C x>1 products from CO2 utilization, and other reductive organic transformations.
Collapse
Affiliation(s)
| | | | - Jane J. Leung
- Christian Doppler Laboratory
for Sustainable SynGas Chemistry, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Bertrand Reuillard
- Christian Doppler Laboratory
for Sustainable SynGas Chemistry, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Isabell S. Karmel
- Christian Doppler Laboratory
for Sustainable SynGas Chemistry, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Erwin Reisner
- Christian Doppler Laboratory
for Sustainable SynGas Chemistry, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| |
Collapse
|
17
|
Li L, Tang C, Xia B, Jin H, Zheng Y, Qiao SZ. Two-Dimensional Mosaic Bismuth Nanosheets for Highly Selective Ambient Electrocatalytic Nitrogen Reduction. ACS Catal 2019. [DOI: 10.1021/acscatal.9b00366] [Citation(s) in RCA: 359] [Impact Index Per Article: 59.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Laiquan Li
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Cheng Tang
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Bingquan Xia
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Huanyu Jin
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Yao Zheng
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Shi-Zhang Qiao
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA 5005, Australia
| |
Collapse
|
18
|
Zhang NN, Wang MS, Guo GC. Photoresponsive sulfone-based molecules: photoinduced electron transfer and heat/air-stable radicals in the solid state. NEW J CHEM 2019. [DOI: 10.1039/c9nj00140a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Photoinduced electron transfer (PET) of two sulfone-based molecules with the formation of stable radicals was observed for the first time in the solid state.
Collapse
Affiliation(s)
- Ning-Ning Zhang
- State Key Laboratory of Structural Chemistry
- Fujian Institute of Research on the Structure of Matter
- Chinese Academy of Sciences
- Fuzhou
- Fujian 350002
| | - Ming-Sheng Wang
- State Key Laboratory of Structural Chemistry
- Fujian Institute of Research on the Structure of Matter
- Chinese Academy of Sciences
- Fuzhou
- Fujian 350002
| | - Guo-Cong Guo
- State Key Laboratory of Structural Chemistry
- Fujian Institute of Research on the Structure of Matter
- Chinese Academy of Sciences
- Fuzhou
- Fujian 350002
| |
Collapse
|
19
|
Wu F, Yu P, Yang X, Han Z, Wang M, Mao L. Exploring Ferredoxin-Dependent Glutamate Synthase as an Enzymatic Bioelectrocatalyst. J Am Chem Soc 2018; 140:12700-12704. [DOI: 10.1021/jacs.8b08020] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Fei Wu
- Beijing National Laboratory for Molecular Science, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, the Chinese Academy of Sciences (CAS), Beijing 100190, China
- University of CAS, Beijing 100049, China
- CAS Research/Education Center for Excellence in Molecule Science, Beijing 100190, China
| | - Ping Yu
- Beijing National Laboratory for Molecular Science, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, the Chinese Academy of Sciences (CAS), Beijing 100190, China
- University of CAS, Beijing 100049, China
- CAS Research/Education Center for Excellence in Molecule Science, Beijing 100190, China
| | - Xiaoti Yang
- Beijing National Laboratory for Molecular Science, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, the Chinese Academy of Sciences (CAS), Beijing 100190, China
- University of CAS, Beijing 100049, China
- CAS Research/Education Center for Excellence in Molecule Science, Beijing 100190, China
| | - Zhongjie Han
- Beijing National Laboratory for Molecular Science, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, the Chinese Academy of Sciences (CAS), Beijing 100190, China
| | - Ming Wang
- Beijing National Laboratory for Molecular Science, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, the Chinese Academy of Sciences (CAS), Beijing 100190, China
- University of CAS, Beijing 100049, China
- CAS Research/Education Center for Excellence in Molecule Science, Beijing 100190, China
| | - Lanqun Mao
- Beijing National Laboratory for Molecular Science, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, the Chinese Academy of Sciences (CAS), Beijing 100190, China
- University of CAS, Beijing 100049, China
- CAS Research/Education Center for Excellence in Molecule Science, Beijing 100190, China
| |
Collapse
|
20
|
Kuroboshi M, Kojima A, Tanaka H. Synthesis of Dendrimer-Type Viologen and Its Use in Pd-Mediated Homocoupling of Aryl Halides. HETEROCYCLES 2017. [DOI: 10.3987/com-17-13812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|