1
|
Dong HL, Zheng CC, Dai L, Zhang XH, Tan ZJ. Effect of protein binding on the twist-stretch coupling of double-stranded RNA. J Chem Phys 2025; 162:145101. [PMID: 40197586 DOI: 10.1063/5.0260900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Accepted: 03/22/2025] [Indexed: 04/10/2025] Open
Abstract
The elasticities of RNAs are generally essential for their biological functions, and RNAs often become functional when interacting with their binding proteins. However, the effects of binding proteins on the elasticities of double-stranded (ds) RNAs, such as twist-stretch coupling, still remain little understood. Here, our extensive all-atom molecular dynamics simulations show that the twist-stretch coupling of dsRNAs can be reversed from positive to negative by their binding proteins. Our analyses revealed that such a reversing effect of binding proteins is attributed to the protein anchoring across the major groove of dsRNAs, which alters the dominating deformation pathway from a major-groove-mediated one to a helical-radius-mediated one through two base-pair parameters of slide and inclination. Meanwhile, the anchoring effect from binding proteins on dsRNAs is further ascribed to the strong electrostatic attractions between dsRNAs and the positively charged binding domain of the proteins.
Collapse
Affiliation(s)
- Hai-Long Dong
- School of Physics and Technology, College of Life Sciences, Wuhan University, Wuhan 430072, China
- College of Physics and Engineering, Henan University of Science and Technology, Luoyang 471023, China
| | - Chen-Chen Zheng
- School of Physics and Technology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Liang Dai
- Department of Physics, City University of Hong Kong, Hong Kong 999077, China
| | - Xing-Hua Zhang
- School of Physics and Technology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Zhi-Jie Tan
- School of Physics and Technology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| |
Collapse
|
2
|
Zhang S, Ji Y, He Y, Dong J, Li H, Yu S. Effect of Environmental pH on the Mechanics of Chitin and Chitosan: A Single-Molecule Study. Polymers (Basel) 2024; 16:995. [PMID: 38611253 PMCID: PMC11014069 DOI: 10.3390/polym16070995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/29/2024] [Accepted: 03/30/2024] [Indexed: 04/14/2024] Open
Abstract
Chitin and chitosan are important structural macromolecules for most fungi and marine crustaceans. The functions and application areas of the two molecules are also adjacent beyond their similar molecular structure, such as tissue engineering and food safety where solution systems are involved. However, the elasticities of chitin and chitosan in solution lack comparison at the molecular level. In this study, the single-molecule elasticities of chitin and chitosan in different solutions are investigated via atomic force microscope (AFM) based single-molecule spectroscopy (SMFS). The results manifest that the two macromolecules share the similar inherent elasticity in DOSM due to their same chain backbone. However, obvious elastic deviations can be observed in aqueous conditions. Especially, a lower pH value (acid environment) is helpful to increase the elasticity of both chitin and chitosan. On the contrary, the tendency of elastic variation of chitin and chitosan in a larger pH value (alkaline environment) shows obvious diversity, which is mainly determined by the side groups. This basic study may produce enlightenment for the design of intelligent chitin and chitosan food packaging and biomedical materials.
Collapse
Affiliation(s)
- Song Zhang
- Department of Food Science and Engineering, Moutai Institute, Renhuai 564502, China; (Y.J.); (Y.H.); (J.D.); (H.L.)
| | | | | | | | | | - Shirui Yu
- Department of Food Science and Engineering, Moutai Institute, Renhuai 564502, China; (Y.J.); (Y.H.); (J.D.); (H.L.)
| |
Collapse
|
3
|
Zhang S, Zheng H, Miao X, Zhang G, Song Y, Kang X, Qian L. Surprising Nanomechanical and Conformational Transition of Neutral Polyacrylamide in Monovalent Saline Solutions. J Phys Chem B 2023; 127:10088-10096. [PMID: 37939001 DOI: 10.1021/acs.jpcb.3c06126] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
Polyacrylamide (PAM) is one of the most important water-soluble polymers that has been extensively applied in water treatment, drug delivery, and flexible electronic devices. The basic properties, e.g., microstructure, nanomechanics, and solubility, are deeply involved in the performance of PAM materials. Current research has paid more attention to the development and expansion of the macroscopic properties of PAM materials, and the study of the mechanism involved with the roles of water and ions on the properties of PAM is insufficient, especially for the behaviors of neutral amide side groups. In this study, single molecule force spectroscopy was combined with molecular dynamic (MD) simulations, atomic force microscope imaging, and dynamic light scattering to investigate the effects of monovalent ions on the nanomechanics and molecular conformations of neutral PAM (NPAM). These results show that the single-molecule elasticity and conformation of NPAM exhibit huge variation in different monovalent salt solutions. NPAM adopts an extended conformation in aqueous solutions of strong hydrated ion (acetate), while transforms into a collapse globule in the existence of weakly hydrated ion (SCN-). It is believed that the competition between intramolecular and intermolecular weak interactions plays a key role to adjust the molecular conformation and elasticity of NPAM. The competition can be largely influenced by the type of monovalent ions through hydration or a chaotropic effect. Methods utilized in this study provide a means to better understand the Hofmeister effect of ions on other macromolecules containing amide groups at the single-molecule level.
Collapse
Affiliation(s)
- Song Zhang
- Department of Food Science and Engineering, Moutai Institute, Renhuai 564502, Guizhou, P. R. China
| | - Huayan Zheng
- Department of Food Science and Engineering, Moutai Institute, Renhuai 564502, Guizhou, P. R. China
| | - Xiaohe Miao
- Instrumentation and Service Center for Physical Sciences, Westlake University, Hangzhou 310024, Zhejiang Province, China
| | - Guoqiang Zhang
- Department of Food Science and Engineering, Moutai Institute, Renhuai 564502, Guizhou, P. R. China
| | - Ya Song
- Department of Food Science and Engineering, Moutai Institute, Renhuai 564502, Guizhou, P. R. China
| | - Xiaomin Kang
- School of Mechanical Engineering, University of South China, Hengyang 421001, China
| | - Lu Qian
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, Guangdong, China
| |
Collapse
|
4
|
Zhang S, Yu M, Zhang G, He G, Ji Y, Dong J, Zheng H, Qian L. Revealing the Control Mechanisms of pH on the Solution Properties of Chitin via Single-Molecule Studies. Molecules 2023; 28:6769. [PMID: 37836611 PMCID: PMC10574145 DOI: 10.3390/molecules28196769] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/16/2023] [Accepted: 09/20/2023] [Indexed: 10/15/2023] Open
Abstract
Chitin is one of the most common polysaccharides and is abundant in the cell walls of fungi and the shells of insects and aquatic organisms as a skeleton. The mechanism of how chitin responds to pH is essential to the precise control of brewing and the design of smart chitin materials. However, this molecular mechanism remains a mystery. Results from single-molecule studies, including single-molecule force spectroscopy (SMFS), AFM imaging, and molecular dynamic (MD) simulations, have shown that the mechanical and conformational behaviors of chitin molecules show surprising pH responsiveness. This can be compared with how, in natural aqueous solutions, chitin tends to form a more relaxed spreading conformation and show considerable elasticity under low stretching forces in acidic conditions. However, its molecular chain collapses into a rigid globule in alkaline solutions. The results show that the chain state of chitin can be regulated by the proportions of inter- and intramolecular H-bonds, which are determined via the number of water bridges on the chain under different pH values. This basic study may be helpful for understanding the cellular activities of fungi under pH stress and the design of chitin-based drug carriers.
Collapse
Affiliation(s)
- Song Zhang
- Department of Food Science and Engineering, Moutai Institute, Renhuai 564502, China; (S.Z.); (G.Z.); (G.H.); (Y.J.); (J.D.)
| | - Miao Yu
- School of Mechanical Engineering, Sichuan University, Chengdu 610065, China;
| | - Guoqiang Zhang
- Department of Food Science and Engineering, Moutai Institute, Renhuai 564502, China; (S.Z.); (G.Z.); (G.H.); (Y.J.); (J.D.)
| | - Guanmei He
- Department of Food Science and Engineering, Moutai Institute, Renhuai 564502, China; (S.Z.); (G.Z.); (G.H.); (Y.J.); (J.D.)
| | - Yunxu Ji
- Department of Food Science and Engineering, Moutai Institute, Renhuai 564502, China; (S.Z.); (G.Z.); (G.H.); (Y.J.); (J.D.)
| | - Juan Dong
- Department of Food Science and Engineering, Moutai Institute, Renhuai 564502, China; (S.Z.); (G.Z.); (G.H.); (Y.J.); (J.D.)
| | - Huayan Zheng
- Department of Food Science and Engineering, Moutai Institute, Renhuai 564502, China; (S.Z.); (G.Z.); (G.H.); (Y.J.); (J.D.)
| | - Lu Qian
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, China
| |
Collapse
|
5
|
Zhuo B, Ou X, Li J. Structure and Mechanical Stabilities of the Three-Way Junction Motifs in Prohead RNA. J Phys Chem B 2021; 125:12125-12134. [PMID: 34719230 DOI: 10.1021/acs.jpcb.1c04681] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The core structure of phi29 prohead RNA (pRNA) is composed of three major helices organized into three-way junction pRNA (3WJ-pRNA) and has stout structural rigidity along the coaxial helices. Prohead RNAs of the other Bacillus subtilis bacteriophages such as GA1 and SF5 share similar secondary structure and function with phi29; whether these pRNAs have similar mechanical rigidity remains to be elucidated. In this study, we constructed the tertiary structures of GA1 and SF5 3WJ-pRNAs by comparative modeling. Both GA1 and SF5 3WJ-pRNAs adopt a similar structure, in which three helices are organized as the three-way junction and two of the three helices are stacked coaxially. Moreover, detailed structural features of GA1 and SF5 3WJ-pRNAs are also similar to those of phi29 3WJ-pRNA: all of the bases of the coaxial helices are paired, and all of the adenines in the junction region are paired, which eliminates the interference of A-minor tertiary interactions. Hence, the coaxial helices tightly join to each other, and the major groove between them is very narrow. Two Mg2+ ions can thus fit into this major groove and form double Mg clamps. A steered molecular dynamics simulation was used to study the mechanical properties of these 3WJ-pRNAs. Both GA1 and SF5 3WJ-pRNAs show strong resistance to applied force in the direction of their coaxial helices. Such mechanical stability can be attributed to the Mg clamps.
Collapse
Affiliation(s)
- Boyang Zhuo
- Department of Physics, Zhejiang University, Hangzhou 310027, China
| | - Xinwen Ou
- Department of Physics, Zhejiang University, Hangzhou 310027, China
| | - Jingyuan Li
- Department of Physics, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
6
|
Pandey S, Xiang Y, Walpita Kankanamalage DVD, Jayawickramarajah J, Leng Y, Mao H. Measurement of Single-Molecule Forces in Cholesterol and Cyclodextrin Host-Guest Complexes. J Phys Chem B 2021; 125:11112-11121. [PMID: 34523939 PMCID: PMC8788999 DOI: 10.1021/acs.jpcb.1c03916] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Biological host molecules such as β-cyclodextrins (β-CDs) have been used to remove cholesterol guests from membranes and artery plaques. In this work, we calibrated the host-guest intermolecular mechanical forces (IMMFs) between cholesterol and cyclodextrin complexes by combining single-molecule force spectroscopy in optical tweezers and computational molecular simulations for the first time. Compared to native β-CD, methylated beta cyclodextrins complexed with cholesterols demonstrated higher mechanical stabilities due to the loss of more high-energy water molecules inside the methylated β-CD cavities. This result is consistent with the finding that methylated β-CD is more potent at solubilizing cholesterols than β-CD, suggesting that the IMMF can serve as a novel indicator to evaluate the solubility of small molecules such as cholesterols. Importantly, we found that the force spectroscopy measured in such biological host-guest complexes is direction-dependent: pulling from the alkyl end of the cholesterol molecule resulted in a larger IMMF than that from the hydroxyl end of the cholesterol molecule. Molecular dynamics coupled with umbrella sampling simulations further revealed that cholesterol molecules tend to enter or leave from the wide opening of cyclodextrins. Such an orientation rationalizes that cyclodextrins are rather efficient at extracting cholesterols from the phospholipid bilayer in which hydroxyl groups of cholesterols are readily exposed to the hydrophobic cavities of cyclodextrins. We anticipate that the IMMF measured by both experimental and computational force spectroscopy measurements help elucidate solubility mechanisms not only for cholesterols in different environments but also to host-guest systems in general, which have been widely exploited for their solubilization properties in drug delivery, for example.
Collapse
Affiliation(s)
- Shankar Pandey
- Department of Chemistry and Biochemistry, and Advanced Materials and Liquid Crystal Institute, Kent State University, Kent, OH, 44242
| | - Yuan Xiang
- School of Engineering and Applied Science, The George Washington University, Washington, DC 20052, USA
| | | | | | - Yongsheng Leng
- School of Engineering and Applied Science, The George Washington University, Washington, DC 20052, USA
| | - Hanbin Mao
- Department of Chemistry and Biochemistry, and Advanced Materials and Liquid Crystal Institute, Kent State University, Kent, OH, 44242
| |
Collapse
|
7
|
Cheng H, Yu J, Wang Z, Ma P, Guo C, Wang B, Zhong W, Xu B. Details of Single-Molecule Force Spectroscopy Data Decoded by a Network-Based Automatic Clustering Algorithm. J Phys Chem B 2021; 125:9660-9667. [PMID: 34425052 DOI: 10.1021/acs.jpcb.1c03552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Atomic force microscopy-single-molecule force spectroscopy (AFM-SMFS) is a powerful methodology to probe intermolecular and intramolecular interactions in biological systems because of its operability in physiological conditions, facile and rapid sample preparation, versatile molecular manipulation, and combined functionality with high-resolution imaging. Since a huge number of AFM-SMFS force-distance curves are collected to avoid human bias and errors and to save time, numerous algorithms have been developed to analyze the AFM-SMFS curves. Nevertheless, there is still a need to develop new algorithms for the analysis of AFM-SMFS data since the current algorithms cannot specify an unbinding force to a corresponding/each binding site due to the lack of networking functionality to model the relationship between the unbinding forces. To address this challenge, herein, we develop an unsupervised method, i.e., a network-based automatic clustering algorithm (NASA), to decode the details of specific molecules, e.g., the unbinding force of each binding site, given the input of AFM-SMFS curves. Using the interaction of heparan sulfate (HS)-antithrombin (AT) on different endothelial cell surfaces as a model system, we demonstrate that NASA is able to automatically detect the peak and calculate the unbinding force. More importantly, NASA successfully identifies three unbinding force clusters, which could belong to three different binding sites, for both Ext1f/f and Ndst1f/f cell lines. NASA has great potential to be applied either readily or slightly modified to other AFM-based SMFS measurements that result in "saw-tooth"-shaped force-distance curves showing jumps related to the force unbinding, such as antibody-antigen interaction and DNA-protein interaction.
Collapse
Affiliation(s)
- Huimin Cheng
- Big Data Analytics Lab, Department of Statistics, University of Georgia, Athens, Georgia 30602, United States
| | - Jun Yu
- School of Mathematics and Statistics, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Zhen Wang
- Big Data Analytics Lab, Department of Statistics, University of Georgia, Athens, Georgia 30602, United States
| | - Ping Ma
- Big Data Analytics Lab, Department of Statistics, University of Georgia, Athens, Georgia 30602, United States
| | - Cunlan Guo
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China.,Single Molecule Study Laboratory, College of Engineering, University of Georgia, Athens, Georgia 30602, United States
| | - Bin Wang
- Single Molecule Study Laboratory, College of Engineering, University of Georgia, Athens, Georgia 30602, United States
| | - Wenxuan Zhong
- Big Data Analytics Lab, Department of Statistics, University of Georgia, Athens, Georgia 30602, United States
| | - Bingqian Xu
- Single Molecule Study Laboratory, College of Engineering, University of Georgia, Athens, Georgia 30602, United States
| |
Collapse
|
8
|
Niu X, Liu Q, Xu Z, Chen Z, Xu L, Xu L, Li J, Fang X. Molecular mechanisms underlying the extreme mechanical anisotropy of the flaviviral exoribonuclease-resistant RNAs (xrRNAs). Nat Commun 2020; 11:5496. [PMID: 33127896 PMCID: PMC7603331 DOI: 10.1038/s41467-020-19260-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 10/07/2020] [Indexed: 02/06/2023] Open
Abstract
Mechanical anisotropy is an essential property for many biomolecules to assume their structures, functions and applications, however, the mechanisms for their direction-dependent mechanical responses remain elusive. Herein, by using a single-molecule nanopore sensing technique, we explore the mechanisms of directional mechanical stability of the xrRNA1 RNA from ZIKA virus (ZIKV), which forms a complex ring-like architecture. We reveal extreme mechanical anisotropy in ZIKV xrRNA1 which highly depends on Mg2+ and the key tertiary interactions. The absence of Mg2+ and disruption of the key tertiary interactions strongly affect the structural integrity and attenuate mechanical anisotropy. The significance of ring structures in RNA mechanical anisotropy is further supported by steered molecular dynamics simulations in combination with force distribution analysis. We anticipate the ring structures can be used as key elements to build RNA-based nanostructures with controllable mechanical anisotropy for biomaterial and biomedical applications.
Collapse
Affiliation(s)
- Xiaolin Niu
- Beijing Advanced Innovation Center for Structfural Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Qiuhan Liu
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Zhonghe Xu
- Beijing Advanced Innovation Center for Structfural Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Zhifeng Chen
- Beijing Advanced Innovation Center for Structfural Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Linghui Xu
- Beijing Advanced Innovation Center for Structfural Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Lilei Xu
- Beijing Advanced Innovation Center for Structfural Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Jinghong Li
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, China.
| | - Xianyang Fang
- Beijing Advanced Innovation Center for Structfural Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
9
|
Sun W, Xue B, Fan Q, Tao R, Wang C, Wang X, Li Y, Qin M, Wang W, Chen B, Cao Y. Molecular engineering of metal coordination interactions for strong, tough, and fast-recovery hydrogels. SCIENCE ADVANCES 2020; 6:eaaz9531. [PMID: 32494623 PMCID: PMC7164941 DOI: 10.1126/sciadv.aaz9531] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 01/22/2020] [Indexed: 05/19/2023]
Abstract
Many load-bearing tissues, such as muscles and cartilages, show high elasticity, toughness, and fast recovery. However, combining these mechanical properties in the same synthetic biomaterials is fundamentally challenging. Here, we show that strong, tough, and fast-recovery hydrogels can be engineered using cross-linkers involving cooperative dynamic interactions. We designed a histidine-rich decapeptide containing two tandem zinc binding motifs. Because of allosteric structural change-induced cooperative binding, this decapeptide had a higher thermodynamic stability, stronger binding strength, and faster binding rate than single binding motifs or isolated ligands. The engineered hybrid network hydrogels containing the peptide-zinc complex exhibit a break stress of ~3.0 MPa, toughness of ~4.0 MJ m-3, and fast recovery in seconds. We expect that they can function effectively as scaffolds for load-bearing tissue engineering and as building blocks for soft robotics. Our results provide a general route to tune the mechanical and dynamic properties of hydrogels at the molecular level.
Collapse
Affiliation(s)
- Wenxu Sun
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, and Department of Physics, Nanjing University, Nanjing 210093, P.R. China
| | - Bin Xue
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, and Department of Physics, Nanjing University, Nanjing 210093, P.R. China
| | - Qiyang Fan
- Department of Engineering Mechanics, Zhejiang University, Hangzhou 310027, China
- Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province, Hangzhou 310027, China
| | - Runhan Tao
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, and Department of Physics, Nanjing University, Nanjing 210093, P.R. China
| | - Chunxi Wang
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, and Department of Physics, Nanjing University, Nanjing 210093, P.R. China
| | - Xin Wang
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, and Department of Physics, Nanjing University, Nanjing 210093, P.R. China
| | - Yiran Li
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, and Department of Physics, Nanjing University, Nanjing 210093, P.R. China
| | - Meng Qin
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, and Department of Physics, Nanjing University, Nanjing 210093, P.R. China
| | - Wei Wang
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, and Department of Physics, Nanjing University, Nanjing 210093, P.R. China
- Corresponding author. (W.W.); (B.C.); (Y.C.)
| | - Bin Chen
- Department of Engineering Mechanics, Zhejiang University, Hangzhou 310027, China
- Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province, Hangzhou 310027, China
- Corresponding author. (W.W.); (B.C.); (Y.C.)
| | - Yi Cao
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, and Department of Physics, Nanjing University, Nanjing 210093, P.R. China
- Corresponding author. (W.W.); (B.C.); (Y.C.)
| |
Collapse
|
10
|
Bao Y, Luo Z, Cui S. Environment-dependent single-chain mechanics of synthetic polymers and biomacromolecules by atomic force microscopy-based single-molecule force spectroscopy and the implications for advanced polymer materials. Chem Soc Rev 2020; 49:2799-2827. [PMID: 32236171 DOI: 10.1039/c9cs00855a] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
"The Tao begets the One. One begets all things of the world." This quote from Tao Te Ching is still inspiring for scientists in chemistry and materials science: The "One" can refer to a single molecule. A macroscopic material is composed of numerous molecules. Although the relationship between the properties of the single molecule and macroscopic material is not well understood yet, it is expected that a deeper understanding of the single-chain mechanics of macromolecules will certainly facilitate the development of materials science. Atomic force microscopy-based single-molecule force spectroscopy (AFM-SMFS) has been exploited extensively as a powerful tool to study the single-chain behaviors of macromolecules. In this review, we summarize the recent advances in the emerging field of environment-dependent single-chain mechanics of synthetic polymers and biomacromolecules by means of AFM-SMFS. First, the single-chain inherent elasticities of several typical linear macromolecules are introduced, which are also confirmed by one of three polymer models with theoretical elasticities of the corresponding macromolecules obtained from quantum mechanical (QM) calculations. Then, the effects of the external environments on the single-chain mechanics of synthetic polymers and biomacromolecules are reviewed. Finally, the impacts of single-chain mechanics of macromolecules on the development of polymer science especially polymer materials are illustrated.
Collapse
Affiliation(s)
- Yu Bao
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu 610031, China.
| | | | | |
Collapse
|
11
|
Zou A, Lee S, Li J, Zhou R. Retained Stability of the RNA Structure in DNA Packaging Motor with a Single Mg2+ Ion Bound at the Double Mg-Clamp Structure. J Phys Chem B 2020; 124:701-707. [DOI: 10.1021/acs.jpcb.9b06428] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Aodong Zou
- Department of Engineering Mechanics, Zhejiang University, Hangzhou 310027, China
- Institute of Quantitative Biology and Department of Physics, Zhejiang University, Hangzhou 310027, China
| | - Sangyun Lee
- Computational Biological Center, IBM Thomas J. Watson Research Center, Yorktown Heights, New York 10598, United States
| | - Jingyuan Li
- Institute of Quantitative Biology and Department of Physics, Zhejiang University, Hangzhou 310027, China
| | - Ruhong Zhou
- Institute of Quantitative Biology and Department of Physics, Zhejiang University, Hangzhou 310027, China
- Computational Biological Center, IBM Thomas J. Watson Research Center, Yorktown Heights, New York 10598, United States
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| |
Collapse
|
12
|
Li Y, Cao Y. The molecular mechanisms underlying mussel adhesion. NANOSCALE ADVANCES 2019; 1:4246-4257. [PMID: 36134404 PMCID: PMC9418609 DOI: 10.1039/c9na00582j] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Accepted: 10/09/2019] [Indexed: 06/12/2023]
Abstract
Marine mussels are able to firmly affix on various wet surfaces by the overproduction of special mussel foot proteins (mfps). Abundant fundamental studies have been conducted to understand the molecular basis of mussel adhesion, where the catecholic amino acid, l-3,4-dihydroxyphenylalanine (DOPA) has been found to play the major role. These studies continue to inspire the engineering of novel adhesives and coatings with improved underwater performances. Despite the fact that the recent advances of adhesives and coatings inspired by mussel adhesive proteins have been intensively reviewed in literature, the fundamental biochemical and biophysical studies on the origin of the strong and versatile wet adhesion have not been fully covered. In this review, we show how the force measurements at the molecular level by surface force apparatus (SFA) and single molecule atomic force microscopy (AFM) can be used to reveal the direct link between DOPA and the wet adhesion strength of mussel proteins. We highlight a few important technical details that are critical to the successful experimental design. We also summarize many new insights going beyond DOPA adhesion, such as the surface environment and protein sequence dependent synergistic and cooperative binding. We also provide a perspective on a few uncharted but outstanding questions for future studies. A comprehensive understanding on mussel adhesion will be beneficial to the design of novel synthetic wet adhesives for various biomedical applications.
Collapse
Affiliation(s)
- Yiran Li
- Shenzhen Research Institute of Nanjing University Shenzhen 518057 China
- Department of Physics, Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Soli State Microstructure, Nanjing University Nanjing 210093 China
| | - Yi Cao
- Shenzhen Research Institute of Nanjing University Shenzhen 518057 China
- Department of Physics, Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Soli State Microstructure, Nanjing University Nanjing 210093 China
- Chemistry and Biomedicine Innovation Center, Nanjing University Nanjing 210093 China
| |
Collapse
|
13
|
Wang H, Chen Y, Zhang W. A single-molecule atomic force microscopy study reveals the antiviral mechanism of tannin and its derivatives. NANOSCALE 2019; 11:16368-16376. [PMID: 31436278 DOI: 10.1039/c9nr05410c] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Antiviral agents work by stopping or intervening the virus replication. Virus replication is a fast and multi-step process while effective antiviral intervention requires agents to interact with the protein coat, genetic RNA/DNA or both during virus replication. Thus, quantifying these interactions at the molecular level, although it is quite challenging, is very important for an understanding of the underlying molecular mechanism of antiviral intervention. Here, at the single molecule level, we employ single molecule force spectroscopy (SMFS) in combination with AFM imaging and choose tobacco mosaic virus (TMV)/tannin as a model system of tubular virus to directly study how the inhibitor influences the interactions of RNA and coat protein. We illustrated the antiviral mechanism of tannin during the three main stages of TMV infection, i.e., before the entry of cells, the disassembly of genetic RNA and reassembly of genetic RNA, respectively. Our SMFS results show that tannin and its derivatives can stabilize the TMV complex by enhancing the interactions between RNA and coat protein via weak interactions, such as hydrogen bonding and hydrophobic interactions. In addition, the stabilization effect showed molecular weight dependence, i.e., for higher molecular weight tannin the stabilization occurs after genetic RNA gets partially disassembled from the protein coat, while the lower molecular weight tannin hydrolyte starts experiencing the stabilization effect before the RNA disassembly. Furthermore, the cycling stretching-relaxation experiments in the presence/absence of tannin proved that tannin can prevent the assembling of RNA and coat protein. In addition, the AFM imaging results demonstrate that tannin can cause the aggregation of TMV particles in a concentration-dependent manner; a higher concentration of tannin will cause more severe aggregations. These results deepen our understanding of the antiviral mechanism of tannin and its derivatives, which facilitate the rational design of efficient agents for antiviral therapy.
Collapse
Affiliation(s)
- Huijie Wang
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun, 130012, P. R. China.
| | - Ying Chen
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun, 130012, P. R. China.
| | - Wenke Zhang
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun, 130012, P. R. China.
| |
Collapse
|
14
|
Zhang S, Qian H, Liu Z, Ju H, Lu Z, Zhang H, Chi L, Cui S. Towards Unveiling the Exact Molecular Structure of Amorphous Red Phosphorus by Single‐Molecule Studies. Angew Chem Int Ed Engl 2019; 58:1659-1663. [DOI: 10.1002/anie.201811152] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 11/11/2018] [Indexed: 11/09/2022]
Affiliation(s)
- Song Zhang
- Key Laboratory of Advanced Technologies of Materials, (Ministry of Education)Southwest Jiaotong University Chengdu 610031 China
| | - Hu‐jun Qian
- State Key Laboratory of Supramolecular Structure and MaterialsInstitute of Theoretical ChemistryJilin University Changchun 130023 China
| | - Zhonghua Liu
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & DevicesInstitute of Functional Nano & Soft Materials (FUNSOM)Soochow University Suzhou 215123 China
| | - Hongyu Ju
- Key Laboratory of Advanced Technologies of Materials, (Ministry of Education)Southwest Jiaotong University Chengdu 610031 China
| | - Zhong‐yuan Lu
- State Key Laboratory of Supramolecular Structure and MaterialsInstitute of Theoretical ChemistryJilin University Changchun 130023 China
| | - Haiming Zhang
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & DevicesInstitute of Functional Nano & Soft Materials (FUNSOM)Soochow University Suzhou 215123 China
| | - Lifeng Chi
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & DevicesInstitute of Functional Nano & Soft Materials (FUNSOM)Soochow University Suzhou 215123 China
| | - Shuxun Cui
- Key Laboratory of Advanced Technologies of Materials, (Ministry of Education)Southwest Jiaotong University Chengdu 610031 China
| |
Collapse
|
15
|
Jonchhe S, Ghimire C, Cui Y, Sasaki S, McCool M, Park S, Iida K, Nagasawa K, Sugiyama H, Mao H. Binding of a Telomestatin Derivative Changes the Mechanical Anisotropy of a Human Telomeric G‐Quadruplex. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201811046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Sagun Jonchhe
- Department of Chemistry & Biochemistry and School of Biomedical Sciences Kent State University Kent OH 44240 USA
| | - Chiran Ghimire
- Department of Chemistry & Biochemistry and School of Biomedical Sciences Kent State University Kent OH 44240 USA
| | - Yunxi Cui
- State Key Laboratory of Medicinal Chemical Biology Nankai University Tianjin 300071 China
| | - Shogo Sasaki
- Department of Biotechnology and Life Science Faculty of Technology Tokyo University of Agriculture and Technology (TUAT) Koganei Tokyo 184-8588 Japan
| | - Mason McCool
- Department of Chemistry & Biochemistry and School of Biomedical Sciences Kent State University Kent OH 44240 USA
| | - Soyoung Park
- Department of Chemistry Graduate School of Science Kyoto University Kitashirakawa-oiwakecho, Sakyo-ku Kyoto 606-8502 Japan
- Institute for Integrated Cell Material Sciences (iCeMS) Kyoto University Yoshida-ushinomiyacho, Sakyo-ku Kyoto 606-8501 Japan
| | - Keisuke Iida
- Department of Biotechnology and Life Science Faculty of Technology Tokyo University of Agriculture and Technology (TUAT) Koganei Tokyo 184-8588 Japan
| | - Kazuo Nagasawa
- Department of Biotechnology and Life Science Faculty of Technology Tokyo University of Agriculture and Technology (TUAT) Koganei Tokyo 184-8588 Japan
| | - Hiroshi Sugiyama
- Department of Chemistry Graduate School of Science Kyoto University Kitashirakawa-oiwakecho, Sakyo-ku Kyoto 606-8502 Japan
- Institute for Integrated Cell Material Sciences (iCeMS) Kyoto University Yoshida-ushinomiyacho, Sakyo-ku Kyoto 606-8501 Japan
| | - Hanbin Mao
- Department of Chemistry & Biochemistry and School of Biomedical Sciences Kent State University Kent OH 44240 USA
| |
Collapse
|
16
|
Zhang S, Qian H, Liu Z, Ju H, Lu Z, Zhang H, Chi L, Cui S. Towards Unveiling the Exact Molecular Structure of Amorphous Red Phosphorus by Single‐Molecule Studies. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201811152] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Song Zhang
- Key Laboratory of Advanced Technologies of Materials, (Ministry of Education)Southwest Jiaotong University Chengdu 610031 China
| | - Hu‐jun Qian
- State Key Laboratory of Supramolecular Structure and MaterialsInstitute of Theoretical ChemistryJilin University Changchun 130023 China
| | - Zhonghua Liu
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & DevicesInstitute of Functional Nano & Soft Materials (FUNSOM)Soochow University Suzhou 215123 China
| | - Hongyu Ju
- Key Laboratory of Advanced Technologies of Materials, (Ministry of Education)Southwest Jiaotong University Chengdu 610031 China
| | - Zhong‐yuan Lu
- State Key Laboratory of Supramolecular Structure and MaterialsInstitute of Theoretical ChemistryJilin University Changchun 130023 China
| | - Haiming Zhang
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & DevicesInstitute of Functional Nano & Soft Materials (FUNSOM)Soochow University Suzhou 215123 China
| | - Lifeng Chi
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & DevicesInstitute of Functional Nano & Soft Materials (FUNSOM)Soochow University Suzhou 215123 China
| | - Shuxun Cui
- Key Laboratory of Advanced Technologies of Materials, (Ministry of Education)Southwest Jiaotong University Chengdu 610031 China
| |
Collapse
|
17
|
Jonchhe S, Ghimire C, Cui Y, Sasaki S, McCool M, Park S, Iida K, Nagasawa K, Sugiyama H, Mao H. Binding of a Telomestatin Derivative Changes the Mechanical Anisotropy of a Human Telomeric G-Quadruplex. Angew Chem Int Ed Engl 2018; 58:877-881. [PMID: 30476359 DOI: 10.1002/anie.201811046] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Indexed: 01/31/2023]
Abstract
Mechanical anisotropy is an essential property for biomolecules to assume structural and functional roles in mechanobiology. However, there is insufficient information on the mechanical anisotropy of ligand-biomolecule complexes. Herein, we investigated the mechanical property of individual human telomeric G-quadruplexes bound to telomestatin, using optical tweezers. Stacking of the ligand to the G-tetrad planes changes the conformation of the G-quadruplex, which resembles a balloon squeezed in certain directions. Such a squeezed balloon effect strengthens the G-tetrad planes, but dislocates and weakens the loops in the G-quadruplex upon ligand binding. These dynamic interactions indicate that the binding between the ligand and G-quadruplex follows the induced-fit model. We anticipate that the altered mechanical anisotropy of the ligand-G-quadruplex complex can add additional level of regulations on the motor enzymes that process DNA or RNA molecules.
Collapse
Affiliation(s)
- Sagun Jonchhe
- Department of Chemistry & Biochemistry and School of Biomedical Sciences, Kent State University, Kent, OH, 44240, USA
| | - Chiran Ghimire
- Department of Chemistry & Biochemistry and School of Biomedical Sciences, Kent State University, Kent, OH, 44240, USA
| | - Yunxi Cui
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, China
| | - Shogo Sasaki
- Department of Biotechnology and Life Science Faculty of Technology, Tokyo University of Agriculture and Technology (TUAT), Koganei, Tokyo, 184-8588, Japan
| | - Mason McCool
- Department of Chemistry & Biochemistry and School of Biomedical Sciences, Kent State University, Kent, OH, 44240, USA
| | - Soyoung Park
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-oiwakecho, Sakyo-ku, Kyoto, 606-8502, Japan.,Institute for Integrated Cell Material Sciences (iCeMS), Kyoto University, Yoshida-ushinomiyacho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Keisuke Iida
- Department of Biotechnology and Life Science Faculty of Technology, Tokyo University of Agriculture and Technology (TUAT), Koganei, Tokyo, 184-8588, Japan
| | - Kazuo Nagasawa
- Department of Biotechnology and Life Science Faculty of Technology, Tokyo University of Agriculture and Technology (TUAT), Koganei, Tokyo, 184-8588, Japan
| | - Hiroshi Sugiyama
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-oiwakecho, Sakyo-ku, Kyoto, 606-8502, Japan.,Institute for Integrated Cell Material Sciences (iCeMS), Kyoto University, Yoshida-ushinomiyacho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Hanbin Mao
- Department of Chemistry & Biochemistry and School of Biomedical Sciences, Kent State University, Kent, OH, 44240, USA
| |
Collapse
|
18
|
Li B, Wang X, Li Y, Paananen A, Szilvay GR, Qin M, Wang W, Cao Y. Single-Molecule Force Spectroscopy Reveals Self-Assembly Enhanced Surface Binding of Hydrophobins. Chemistry 2018; 24:9224-9228. [PMID: 29687928 DOI: 10.1002/chem.201801730] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Indexed: 01/26/2023]
Abstract
Hydrophobins have raised lots of interest as powerful surface adhesives. However, it remains largely unexplored how their strong and versatile surface adhesion is linked to their unique amphiphilic structural features. Here, we develop an AFM-based single-molecule force spectroscopy assay to quantitatively measure the binding strength of hydrophobin to various types of surfaces both in isolation and in preformed protein films. We find that individual class II hydrophobins (HFBI) bind strongly to hydrophobic surfaces but weakly to hydrophilic ones. After self-assembly into protein films, they show much stronger binding strength to both surfaces due to the cooperativity of different interactions at nanoscale. Such self-assembly enhanced surface binding may serve as a general design principle for synthetic bioactive adhesives.
Collapse
Affiliation(s)
- Bing Li
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing, 210093, P. R. China
| | - Xin Wang
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing, 210093, P. R. China
| | - Ying Li
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing, Jiangsu, 210044, P. R. China
| | - Arja Paananen
- Industrial Biotechnology, VTT Technical Research Centre of Finland Ltd, 02044 VTT, Espoo, Finland
| | - Géza R Szilvay
- Industrial Biotechnology, VTT Technical Research Centre of Finland Ltd, 02044 VTT, Espoo, Finland
| | - Meng Qin
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing, 210093, P. R. China
| | - Wei Wang
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing, 210093, P. R. China
| | - Yi Cao
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing, 210093, P. R. China
| |
Collapse
|
19
|
Guo S, Piao X, Li H, Guo P. Methods for construction and characterization of simple or special multifunctional RNA nanoparticles based on the 3WJ of phi29 DNA packaging motor. Methods 2018. [PMID: 29530505 DOI: 10.1016/j.ymeth.2018.02.025] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The field of RNA nanotechnology has developed rapidly over the last decade, as more elaborate RNA nanoarchitectures and therapeutic RNA nanoparticles have been constructed, and their applications have been extensively explored. Now it is time to offer different levels of RNA construction methods for both the beginners and the experienced researchers or enterprisers. The first and second parts of this article will provide instructions on basic and simple methods for the assembly and characterization of RNA nanoparticles, mainly based on the pRNA three-way junction (pRNA-3WJ) of phi29 DNA packaging motor. The third part of this article will focus on specific methods for the construction of more sophisticated multivalent RNA nanoparticles for therapeutic applications. In these parts, some simple protocols are provided to facilitate the initiation of the RNA nanoparticle construction in labs new to the field of RNA nanotechnology. This article is intended to serve as a general reference aimed at both apprentices and senior scientists for their future design, construction and characterization of RNA nanoparticles based on the pRNA-3WJ of phi29 DNA packaging motor.
Collapse
Affiliation(s)
- Sijin Guo
- Center for RNA Nanobiotechnology and Nanomedicine, The Ohio State University, Columbus, OH 43210, USA; College of Pharmacy, Division of Pharmaceutics and Pharmaceutical Chemistry, The Ohio State University, Columbus, OH 43210, USA
| | - Xijun Piao
- Center for RNA Nanobiotechnology and Nanomedicine, The Ohio State University, Columbus, OH 43210, USA; College of Pharmacy, Division of Pharmaceutics and Pharmaceutical Chemistry, The Ohio State University, Columbus, OH 43210, USA
| | - Hui Li
- Center for RNA Nanobiotechnology and Nanomedicine, The Ohio State University, Columbus, OH 43210, USA; College of Pharmacy, Division of Pharmaceutics and Pharmaceutical Chemistry, The Ohio State University, Columbus, OH 43210, USA
| | - Peixuan Guo
- Center for RNA Nanobiotechnology and Nanomedicine, The Ohio State University, Columbus, OH 43210, USA; College of Pharmacy, Division of Pharmaceutics and Pharmaceutical Chemistry, The Ohio State University, Columbus, OH 43210, USA; College of Medicine, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH 43210, USA; James Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|