1
|
Liu S, Yu M, Luo XY, Liu J, Zou ZM. One-Pot Construction of NHS-Activated Magnetic Particles for Chemoselective Capture of Carboxyl Metabolites. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2413830. [PMID: 39932453 PMCID: PMC11967832 DOI: 10.1002/advs.202413830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 01/17/2025] [Indexed: 04/05/2025]
Abstract
Chemoselective probes immobilize on magnetic materials show great promise in simplifying sample handling and enhancing detection sensitivity. However, their complicated preparation and associated expense limit broader application. In this study, novel magnetic particles with abundant N-hydroxysuccinimide (NHS) esters on the surface are conveniently synthesized using a one-pot method without carbodiimide activation carboxylate molecules. Subsequently, multifunctional probes are synthesized by immobilizing high-density chemical probes on the surface of the magnetic materials through a postsynthetic modification strategy. This versatile probe facilitates the rapid capture of carboxylated compounds from complex matrices, with the labeled metabolites release from the magnetic materials subsequently analyzed using ultra-high performance liquid chromatography-mass spectrometry (UHPLC-MS). The advantages of this innovative chemical biological tool include the simplicity and low cost of the synthesis, as well as the capability to analyze polar and volatile carboxylated metabolites via LC-MS. This new strategy is successfully applied to analyze short-chain fatty acids (SCFAs) in rat cecal contents, demonstrating the reliability of the analytical method. This study presents a cost-effective and easy-to-implement approach for preparing NHS-activated magnetic particles and offers a versatile probe with chemoselective extraction and labeling capabilities, providing a practical tool for analyzing SCFAs in the gut.
Collapse
Affiliation(s)
- Shuai Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China
| | - Meng Yu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China
| | - Xin-Yao Luo
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China
| | - Jie Liu
- Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
| | - Zhong-Mei Zou
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China
| |
Collapse
|
2
|
Wu Y, Wang M, Wang R, Yang S, Li W, Bi S, Li X, Bai Y, Xia Q, Lu H, Hu C, Du D. Novel Isotope-Coded Photochemical Derivatization Coupled with LC-MS and MS Imaging Platform Enables Sensitive Quantification and Accurate Localization of Amine Submetabolome in Pancreatic Disease. Anal Chem 2025; 97:6611-6619. [PMID: 40098248 DOI: 10.1021/acs.analchem.4c06388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
Alterations in amine metabolite levels are closely associated with the poor progression of pancreatic disease, including acute pancreatitis (AP) and pancreatic cancer (PC). However, effectively quantifying and visualizing these metabolites through mass spectrometry (MS) has proven to be challenging. Here, we have designed a novel and rapid strategy for analyzing the amine submetabolome within liquid chromatography-mass spectrometry (LC-MS) and air-flow-assisted desorption electrospray ionization mass spectrometry imaging (AFADESI-MSI) platforms by inducing a pair of isotope-labeling-based photochemical derivatization reagents. The simultaneous introduction of a 4-amino-1-methylpyridinium moiety renders a 160- to 1037-fold higher response in MS. Coupled with full MS-ddMS2 and precursor ion scan modes, this labeling strategy allows for straightforward detection of 423 peaks for indazolone derivatives and identification of 82 amine metabolites in biological samples. The semiquantitation of the 82 amines in plasma from AP patients and healthy controls resulted in the discovery of unreported aromatic amines and aminoaldehydes with significant changes in AP and employing ethanolamine for distinguishing the severities of AP in the early stage. In the MSI platform, the photochemical reagent can efficiently derivatize primary amine metabolites avoiding spatial deviation and significantly enhancing imaging sensitivity in rat brain and kidney. Further joint analysis of amine submetabolome in plasma and pancreas from PC patients by use of these two platforms allowed for identifying the significant metabolite, methylamine. These results together enhance the role of amine-driven biomarker discovery in the diagnosis of pancreatic disease and accelerate the application of on-tissue photochemical derivation in MSI.
Collapse
Affiliation(s)
- Yaling Wu
- Advanced Mass Spectrometry Center, Research Core Facility, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Manjiangcuo Wang
- Advanced Mass Spectrometry Center, Research Core Facility, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Rui Wang
- Advanced Mass Spectrometry Center, Research Core Facility, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Shan Yang
- Department of Critical Care Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Wanmeng Li
- Advanced Mass Spectrometry Center, Research Core Facility, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Siwei Bi
- Department of Plastic and Burn Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xia Li
- Department of Critical Care Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yangjuan Bai
- Department of Laboratory Medicine, Research Centre of Clinical Laboratory Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Qing Xia
- West China Centre of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, Sichuan Provincial Pancreatitis Centre and West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Huimin Lu
- West China Centre of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, Sichuan Provincial Pancreatitis Centre and West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, Chengdu 610041, China
- Department of General Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Chenggong Hu
- Department of Critical Care Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Dan Du
- Advanced Mass Spectrometry Center, Research Core Facility, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
3
|
Tian H, Lai Z, Zhang W, Zhang M, Yang X, Zhou J, Li Z. Isotope-Labeled Chemoselective Probes for Labeling, Separation, and Comprehensive Quantitative Analysis of Sub-Metabolome. SMALL METHODS 2024; 8:e2400529. [PMID: 39268786 DOI: 10.1002/smtd.202400529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 09/03/2024] [Indexed: 09/15/2024]
Abstract
The significance of small molecule metabolites as biomarkers for disease diagnosis and prognosis is growing increasingly evident, necessitating the development of highly sensitive qualitative and quantitative methods. Herein, multi-chemoselective probes are synthesized and applied for profiling metabolites, including carboxyl, phosphate, hydroxyl, amino, thiol, and carbonyl compounds. This approach seamlessly integrates magnetic solid-phase materials, orthogonal cleavage sites, isotopic tags, and selective coupling sites, minimizes matrix interference, and enhances quantitative accuracy. Meanwhile, a homemade program, High-Resolution Isotope-Assisted Identification and Quantitative (HRIAIQuant) is developed to process the data, which adeptly filters through 33,874 ion pairs present in human serum, leading to the identification of 701 known metabolites and a remarkable 1,062 potential novel ones. This method is successfully applied to analyze metabolites in multiple brain regions of SAMP8 and SAMR1 models, offering a novel tool for Alzheimer's disease research.
Collapse
Affiliation(s)
- Hongtao Tian
- Department of Biophysics and Structural Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China
| | - Zhizhen Lai
- Department of Biophysics and Structural Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China
| | - Wenjia Zhang
- Department of Biomedical Engineering, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China
| | - Mo Zhang
- Department of Biophysics and Structural Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China
| | - Xiaolin Yang
- Department of Biomedical Engineering, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China
| | - Jiang Zhou
- Analytical Instrumentation Center, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Zhili Li
- Department of Biophysics and Structural Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China
| |
Collapse
|
4
|
Wang X, Hu D, Wang PG, Yang S. Bioorthogonal Chemistry: Enzyme Immune and Protein Capture for Enhanced LC-MS Bioanalysis. Bioconjug Chem 2024; 35:1699-1710. [PMID: 39470173 DOI: 10.1021/acs.bioconjchem.4c00423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
Immunocapture liquid chromatography-mass spectrometry (IC-LC-MS) bioanalysis has become an indispensable technique across various scientific disciplines, ranging from drug discovery to clinical diagnostics. While traditional immunocapture techniques have proven to be effective, they often encounter limitations in sensitivity, specificity, and compatibility with MS analysis. Chemoenzymatic immunocapture and protein capture (IPC) offers a promising solution, combining the high specificity of antibodies or proteins with the versatility of enzymatic and chemical modifications. This Review explores the foundational principles of chemoenzymatic IPC and examines various modification strategies including bioorthogonal click-chemistry, enzymatic-tagging, and HaloTag/CLIP-tag. Recent advancements in chemoenzymatic IPC techniques have significantly expanded their applicability to a diverse range of biomolecules including small molecules, peptides, RNAs, and proteins. This Review focuses on improvements in analytical performance achieved through these innovative approaches. Moreover, we discuss the broad applications of chemoenzymatic immunocapture in drug discovery, clinical diagnostics, and environmental analysis and explore its potential for future advancements in bioanalysis. We propose a novel solid-phase chemoenzymatic IPC assay (SCEIA) that effectively utilizes bioorthogonal click chemistry and chemoenzymatic approaches for efficient IPC and target analyte release. In summary, chemoenzymatic IPC represents a transformative paradigm shift in IC-LC-MS bioanalysis. By overcoming the limitations of traditional IPC techniques, this approach paves the way for more robust, sensitive, and versatile analytical workflows.
Collapse
Affiliation(s)
- Xiaotong Wang
- Department of Hepatology and Gastroenterology, The Affiliated Infectious Hospital of Soochow University, Suzhou 215004, China
- Center for Clinical Mass Spectrometry, College of Pharmaceutical Sciences, Soochow University, Jiangsu 215123, China
- Department of Gastroenterology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, China
| | - Duanmin Hu
- Department of Gastroenterology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, China
| | - Perry G Wang
- Human Foods Program, U.S. Food and Drug Administration, College Park, Maryland 20740, United States
| | - Shuang Yang
- Center for Clinical Mass Spectrometry, College of Pharmaceutical Sciences, Soochow University, Jiangsu 215123, China
- Department of Respiratory Medicine, The Fourth Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215123, China
- Health Management Center, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, China
| |
Collapse
|
5
|
Zhao AQ, Zheng JY, Chen C, Liu LF, Xin GZ. Enzyme-Driven LC-HRMS Approach for Specific Recognition of 12α-Hydroxy Bile Acids. Anal Chem 2024; 96:8613-8621. [PMID: 38706229 DOI: 10.1021/acs.analchem.4c00676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2024]
Abstract
The synthesis of 12α-hydroxylated bile acids (12HBAs) and non-12α-hydroxylated bile acids (non-12HBAs) occurs via classical and alternative pathways, respectively. The composition of these BAs is a crucial index for pathophysiologic assessment. However, accurately differentiating 12HBAs and non-12HBAs is highly challenging due to the limited standard substances. Here, we innovatively introduce 12α-hydroxysteroid dehydrogenase (12α-HSDH) as an enzymatic probe synthesized by heterologous expression in Escherichia coli, which can specifically and efficiently convert 12HBAs in vitro under mild conditions. Coupled to the conversion rate determined by liquid chromatography-high resolution mass spectrometry (LC-HRMS), this enzymatic probe allows for the straightforward distinguishing of 210 12HBAs and 312 non-12HBAs from complex biological matrices, resulting in a BAs profile with a well-defined hydroxyl feature at the C12 site. Notably, this enzyme-driven LC-HRMS approach can be extended to any molecule with explicit knowledge of enzymatic transformation. We demonstrate the practicality of this BAs profile in terms of both revealing cross-species BAs heterogeneity and monitoring the alterations of 12HBAs and non-12HBAs under asthma disease. We envisage that this work will provide a novel pattern to recognize the shift of BA metabolism from classical to alternative synthesis pathways in different pathophysiological states, thereby offering valuable insights into the management of related diseases.
Collapse
Affiliation(s)
- An-Qi Zhao
- State Key Laboratory of Natural Medicines, Department of Chinese Medicines Analysis, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing 210009, China
| | - Jia-Yi Zheng
- State Key Laboratory of Natural Medicines, Department of Chinese Medicines Analysis, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing 210009, China
| | - Chen Chen
- Department of Clinical Laboratory, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, No. 123 Tianfei Lane, Nanjing 210004, China
| | - Li-Fang Liu
- State Key Laboratory of Natural Medicines, Department of Chinese Medicines Analysis, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing 210009, China
| | - Gui-Zhong Xin
- State Key Laboratory of Natural Medicines, Department of Chinese Medicines Analysis, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing 210009, China
| |
Collapse
|
6
|
Yuan Y, Ren M, Zhu C, Lou Y, Liang Q, Xiong Z. Chemoselectivity Strategy Based on B-Label Integrated with Tailored COF for Targeted Metabolomic Analysis of Short-Chain Fatty Acids by UHPLC-MS/MS. Anal Chem 2024; 96:6575-6583. [PMID: 38637908 DOI: 10.1021/acs.analchem.3c05590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
Chemoselective extraction strategy is an emerging and powerful means for targeted metabolomics analysis, which allows for the selective identification of biomarkers. Short-chain fatty acids (SCFAs) as functional metabolites for many diseases pose challenges in qualitative and quantitative analyses due to their high polarity and uneven abundance. In our study, we proposed the B-labeled method for the derivatization of SCFAs using easily available 3-aminobenzeneboronic acid as the derivatization reagent, which enables the introduction of recognition unit (boric acid groups). To analyze the B-labeled targeted metabolites accurately, cis-diol-based covalent organic framework (COF) was designed to specifically capture and release target compounds by pH-response borate affinity principle. The COF synthesized by the one-step Schiff base reaction possessed a large surface area (215.77 m2/g), excellent adsorption capacity (774.9 μmol/g), good selectivity, and strong regeneration ability (20 times). Combined with ultrahigh-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) analysis, our results indicated that the detection sensitivities of SCFAs increased by 1.2-2500 folds compared with unlabeled method, and the retention time and isomer separation were improved. Using this strategy, we determined twenty-six SCFAs in the serum and urine of rats in four groups about osteoporosis and identified important biomarkers related to the tricarboxylic acid cycle and fatty acid metabolism pathways. In summary, UHPLC-MS/MS based on B-labeled derivatization with tailored COF strategy shows its high selectivity, excellent sensitivity, and good chromatographic behavior and has remarkable application prospect in targeted metabolomics study of biospecimens.
Collapse
Affiliation(s)
- Yue Yuan
- School of Pharmacy, Shenyang Pharmaceutical University, No.26 Huatuo Rd, High & New Tech Development Zone, Benxi, Liaoning 117004, PR China
| | - Mengxin Ren
- School of Pharmacy, Shenyang Pharmaceutical University, No.26 Huatuo Rd, High & New Tech Development Zone, Benxi, Liaoning 117004, PR China
| | - Chengze Zhu
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, No.26 Huatuo Rd, High & New Tech Development Zone, Benxi, Liaoning 117004, PR China
| | - Yanwei Lou
- School of Pharmacy, Shenyang Pharmaceutical University, No.26 Huatuo Rd, High & New Tech Development Zone, Benxi, Liaoning 117004, PR China
| | - Qinghua Liang
- School of Pharmacy, Shenyang Pharmaceutical University, No.26 Huatuo Rd, High & New Tech Development Zone, Benxi, Liaoning 117004, PR China
| | - Zhili Xiong
- School of Pharmacy, Shenyang Pharmaceutical University, No.26 Huatuo Rd, High & New Tech Development Zone, Benxi, Liaoning 117004, PR China
| |
Collapse
|
7
|
Lin W, Gerullat L, Braadland PR, Fournier A, Hov JR, Globisch D. Rapid and Bifunctional Chemoselective Metabolome Analysis of Liver Disease Plasma Using the Reagent 4-Nitrophenyl-2H-azirine. Angew Chem Int Ed Engl 2024; 63:e202318579. [PMID: 38235602 DOI: 10.1002/anie.202318579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/15/2024] [Accepted: 01/16/2024] [Indexed: 01/19/2024]
Abstract
Primary sclerosing cholangitis (PSC) is a chronic inflammatory disease of the bile ducts that has been associated with diverse metabolic carboxylic acids. Mass spectrometric techniques are the method of choice for their analysis. However, the broad investigation of this metabolite class remains challenging. Derivatization of carboxylic acids represents a strategy to overcome these limitations but available methods suffer from diverse analytical challenges. Herein, we have designed a novel strategy introducing 4-nitrophenyl-2H-azirine as a new chemoselective moiety for the first time for carboxylic acid metabolites. This moiety was selected as it rapidly forms a stable amide bond and also generates a new ketone, which can be analyzed by our recently developed quant-SCHEMA method specific for carbonyl metabolites. Optimization of this new method revealed a high reproducibility and robustness, which was utilized to validate 102 metabolic carboxylic acids using authentic synthetic standard conjugates in human plasma samples including nine metabolites that were newly detected. Using this sequential analysis of the carbonyl- and carboxylic acid-metabolomes revealed alterations of the ketogenesis pathway, which demonstrates the vast benefit of our unique methodology. We anticipate that the developed azirine moiety with rapid functional group transformation will find broad application in diverse chemical biology research fields.
Collapse
Affiliation(s)
- Weifeng Lin
- Department of Chemistry-, BMC, Science for Life Laboratory, Uppsala University, Box 576, SE-75123, Uppsala, Sweden
| | - Lars Gerullat
- Department of Chemistry-, BMC, Science for Life Laboratory, Uppsala University, Box 576, SE-75123, Uppsala, Sweden
| | - Peder R Braadland
- Norwegian PSC Research Center at Department of Transplantation Medicine, Research Institute of Internal Medicine, Oslo University Hospital and University of Oslo, 0424, Oslo, Norway
| | - Anaïs Fournier
- Department of Chemistry-, BMC, Science for Life Laboratory, Uppsala University, Box 576, SE-75123, Uppsala, Sweden
| | - Johannes R Hov
- Norwegian PSC Research Center at Department of Transplantation Medicine, Research Institute of Internal Medicine, Oslo University Hospital and University of Oslo, 0424, Oslo, Norway
| | - Daniel Globisch
- Department of Chemistry-, BMC, Science for Life Laboratory, Uppsala University, Box 576, SE-75123, Uppsala, Sweden
| |
Collapse
|
8
|
Fu XK, Han SQ, Ha W, Shi YP. Click Chemoselective Probe with a Photoswitchable Handle for Highly Sensitive Determination of Steroid Hormones in Food Samples. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:14814-14824. [PMID: 37782472 DOI: 10.1021/acs.jafc.3c05262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
Residues of endocrine disrupting steroid hormones in food might cause various diseases like cardiovascular diseases and breast and prostate cancers. Monitoring steroid hormone levels plays a vital role in ensuring food safety and exploring the pathogenic mechanism of steroid hormone-related diseases. Based on the Cu(I)-catalyzed azide-alkyne cycloaddition (CuAAC) click reaction, a novel chemoselective probe, Azo-N3, which contains a reactive site N3, an imidazolium salt-based MS tag, and an azobenzene-based photoswitchable handle, was designed and synthesized to label ethynyl-bearing steroid hormones. The probe Azo-N3 was applied for the highly selective and sensitive detection of four ethynyl-bearing steroid hormones in food samples (milk, egg, and pork) by using ultraperformance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). The ionization efficiency of the labeled analytes could be increased by 6-105-fold, and such a labeled method exhibited satisfactory detection limits (0.04-0.2 μg/L), recovery (80.6-122.4%), and precision (RSDs% lower than 6.9%). Interestingly, the efficient immobilization of the probe Azo-N3 onto α-cyclodextrin (α-CD)-modified magnetic particles to construct a solid supported chemoselective probe Fe3O4-CD-Azo-N3 and UV light-controlled release of the labeled analytes from a magnetic support can be achieved by taking advantage of the photoswitched host-guest inclusion between the azobenzene unit and α-CD. The potential applications of Fe3O4-CD-Azo-N3 for labeling, capturing, and the photocontrolled release of the labeled steroid hormones were fully investigated by mass spectrometry imaging analysis. This work not only provides a sensitive and accurate method to detect steroid hormones in food but also opens a new avenue in designing solid supported chemoselective probes.
Collapse
Affiliation(s)
- Xiao-Kang Fu
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources, Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou 730000, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Si-Qi Han
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources, Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou 730000, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Wei Ha
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources, Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou 730000, P. R. China
| | - Yan-Ping Shi
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources, Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou 730000, P. R. China
| |
Collapse
|
9
|
Kaur A, Lin W, Dovhalyuk V, Driutti L, Di Martino ML, Vujasinovic M, Löhr JM, Sellin ME, Globisch D. Chemoselective bicyclobutane-based mass spectrometric detection of biological thiols uncovers human and bacterial metabolites. Chem Sci 2023; 14:5291-5301. [PMID: 37234898 PMCID: PMC10207876 DOI: 10.1039/d3sc00224a] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 04/05/2023] [Indexed: 05/28/2023] Open
Abstract
Sulfur is an essential element of life. Thiol-containing metabolites in all organisms are involved in the regulation of diverse biological processes. Especially, the microbiome produces bioactive metabolites or biological intermediates of this compound class. The analysis of thiol-containing metabolites is challenging due to the lack of specific tools, making these compounds difficult to investigate selectively. We have now developed a new methodology comprising bicyclobutane for chemoselective and irreversible capturing of this metabolite class. We utilized this new chemical biology tool immobilized onto magnetic beads for the investigation of human plasma, fecal samples, and bacterial cultures. Our mass spectrometric investigation detected a broad range of human, dietary and bacterial thiol-containing metabolites and we even captured the reactive sulfur species cysteine persulfide in both fecal and bacterial samples. The described comprehensive methodology represents a new mass spectrometric strategy for the discovery of bioactive thiol-containing metabolites in humans and the microbiome.
Collapse
Affiliation(s)
- Amanpreet Kaur
- Department of Chemistry - BMC, Science for Life Laboratory, Uppsala University 75124 Uppsala Sweden
| | - Weifeng Lin
- Department of Chemistry - BMC, Science for Life Laboratory, Uppsala University 75124 Uppsala Sweden
| | - Vladyslav Dovhalyuk
- Department of Chemistry - BMC, Science for Life Laboratory, Uppsala University 75124 Uppsala Sweden
| | - Léna Driutti
- Department of Chemistry - BMC, Science for Life Laboratory, Uppsala University 75124 Uppsala Sweden
| | - Maria Letizia Di Martino
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University 75123 Uppsala Sweden
| | - Miroslav Vujasinovic
- Department for Digestive Diseases, Karolinska University Hospital Stockholm Sweden
| | - J-Matthias Löhr
- Department for Digestive Diseases, Karolinska University Hospital Stockholm Sweden
- Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institute Stockholm Sweden
| | - Mikael E Sellin
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University 75123 Uppsala Sweden
| | - Daniel Globisch
- Department of Chemistry - BMC, Science for Life Laboratory, Uppsala University 75124 Uppsala Sweden
| |
Collapse
|
10
|
Qiu Y, Zhang M, Lai Z, Zhang R, Tian H, Liu S, Li D, Zhou J, Li Z. Profiling of amines in biological samples using polythioester-functionalized magnetic nanoprobe. Front Bioeng Biotechnol 2023; 10:1103995. [PMID: 36686230 PMCID: PMC9846243 DOI: 10.3389/fbioe.2022.1103995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 12/19/2022] [Indexed: 01/05/2023] Open
Abstract
Introduction: The metabolic balance of amines is closely related to human health. It remains a great challenge to analyze amines with high-throughput and high-coverage. Methods: Polythioester-functionalized magnetic nanoprobes (PMPs) have been prepared under mild conditions and applied in chemoselective capture of amides. With the introduction of polythioester, PMPs demonstrate remarkably increased capture efficiency, leading to the dramatically improved sensitivity of mass spectrometry detection. Results: The analysis method with PMPs treatment has been applied in rapid detection of more than 100 amines in lung adenocarcinoma cell lines, mouse organ tissues, and 103 human serum samples with high-throughput and high-coverage. Statistical analysis shows that arginine biosynthesis differed between lung adenocarcinoma cell lines. Discussion: Phenylalanine, tyrosine and tryptophan biosynthesis differed between tissues. The combination indicators demonstrate a great diagnostic accuracy for distinguishing between health and lung disease subjects as well as differentiating the patients with benign lung disease and lung cancer. With powerful capture ability, low-cost preparation, and convenient separation, the PMPs demonstrate promising application in the intensive study of metabolic pathways and early diagnosis of disease.high-throughput and high-coverage. Here, polythioester-functionalized magnetic nanoprobes (PMPs) have been prepared under mild conditions and applied in chemoselective capture of amides. With the introduction of polythioester, PMPs demonstrate remarkably increased capture efficiency, leading to the dramatically improved sensitivity of mass spectrometry detection. The analysis method with PMPs treatment has been applied in rapid detection of more than 100 amines in lung adenocarcinoma cell lines, mouse organ tissues, and 103 human serum samples with high-throughput and high-coverage. Statistical analysis shows that arginine biosynthesis differed between lung adenocarcinoma cell lines. Phenylalanine, tyrosine and tryptophan biosynthesis differed between tissues. The combination indicators demonstrate a great diagnostic accuracy for distinguishing between health and lung disease subjects as well as differentiating the patients with benign lung disease and lung cancer. With powerful capture ability, low-cost preparation, and convenient separation, the PMPs demonstrate promising application in the intensive study of metabolic pathways and early diagnosis of disease.
Collapse
Affiliation(s)
- Yuming Qiu
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Mo Zhang
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhizhen Lai
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Renjun Zhang
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hongtao Tian
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shuai Liu
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Dan Li
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jiang Zhou
- Analytical Instrumentation Center, College of Chemistry and Molecular Engineering, Peking University, Beijing, China,*Correspondence: Zhili Li, ; Jiang Zhou,
| | - Zhili Li
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China,*Correspondence: Zhili Li, ; Jiang Zhou,
| |
Collapse
|
11
|
Zhang M, Lai Z, Zhang R, Liu S, Tian H, Qiu Y, Li D, Zhou J, Li Z. Polyurea-Modified Magnetic Particles with Versatile Probes for Chemoselective Capture of Carbonyl Metabolites and Biomarker Discovery. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2204734. [PMID: 36354199 DOI: 10.1002/smll.202204734] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 10/11/2022] [Indexed: 06/16/2023]
Abstract
Playing a great role in human physiologies and pathologies, carbonyl metabolites are intimately associated with a variety of diseases, though the effective analysis method of them remains a challenge. A hydrazide-terminated polyurea-modified magnetic particle (HPMP) with versatile probes is developed to address this issue. The capture ability of HPMPs for carbonyl metabolite is more than 1200 µmol g-1 , which is increased by 4 orders of magnitude via the introduction of polyurea. With a broad linear range of over 4 orders of magnitude, remarkably improved sensitivity, and limit of detection at attomole quantities, HPMPs are applied in relative quantification of more than 1500 carbonyl metabolites in 113 human serum samples with high throughput and high coverage. The combined indicators of these metabolites demonstrates a great diagnostic accuracy for distinguishing between health and disease subjects as well as differentiating the patients with benign lung disease and lung cancer. Combining powerful capture ability, low-cost preparation, and convenient operation, the HPMPs demonstrate extensive application in biomarker discovery and the detailed study of the biochemical landscape.
Collapse
Affiliation(s)
- Mo Zhang
- Department of Biophysics and Structural Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China
| | - Zhizhen Lai
- Department of Biophysics and Structural Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China
| | - Renjun Zhang
- Department of Biophysics and Structural Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China
| | - Shuai Liu
- Department of Biophysics and Structural Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China
| | - Hongtao Tian
- Department of Biophysics and Structural Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China
| | - Yuming Qiu
- Department of Biophysics and Structural Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China
| | - Dan Li
- Department of Biophysics and Structural Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China
| | - Jiang Zhou
- Analytical Instrumentation Center, College of Chemistry and Molecular Engineering, Peking University, 292 Chengfu Road, Beijing, 100871, China
| | - Zhili Li
- Department of Biophysics and Structural Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China
| |
Collapse
|
12
|
Liu S, Zhang M, Lai Z, Tian H, Qiu Y, Li Z. Coral-like Magnetic Particles for Chemoselective Extraction of Anionic Metabolites. ACS APPLIED MATERIALS & INTERFACES 2022; 14:32890-32900. [PMID: 35819264 DOI: 10.1021/acsami.2c06922] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
To date, advanced chemical biology tools for chemoselective extraction of metabolites are limited. In this study, unique coral-like polymer particles were synthesized via high concentrations of 1-ethyl-3-(3-(dimethylamino)propyl) carbodiimide hydrochloride (EDC)/N-hydroxysuccinimide (NHS), which are usually used as condensation agents. The polymers can wrap or adhere Fe3O4 nanoparticles (Fe3O4-NPs) to form polymer magnetic microparticles (PMMPs). With abundant NHS-activated moieties on their surface, the coral-like PMMPs could be modified by cystamine for the chemoselective extraction of phosphate/carboxylate anion metabolites from complex biological samples. Finally, 97 metabolites including nucleotides, phosphates, phosphate sugars, carboxylate sugars, and organic acids were extracted and identified from serum, tissues, and cells. These metabolites are involved in four major metabolic pathways including glycolysis, the tricarboxylic acid cycle, the pentose phosphate pathway, and nucleotide metabolism. This study has provided a cost-effective and easy-to-implement preparation of PMMPs with a robust chemoselective extraction ability and versatile applications.
Collapse
Affiliation(s)
- Shuai Liu
- Department of Biophysics and Structural Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical College, 5 Dongdan San Tiao, Beijing 100005, China
| | - Mo Zhang
- Department of Biophysics and Structural Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical College, 5 Dongdan San Tiao, Beijing 100005, China
| | - Zhizhen Lai
- Department of Biophysics and Structural Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical College, 5 Dongdan San Tiao, Beijing 100005, China
| | - Hongtao Tian
- Department of Biophysics and Structural Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical College, 5 Dongdan San Tiao, Beijing 100005, China
| | - Yuming Qiu
- Department of Biophysics and Structural Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical College, 5 Dongdan San Tiao, Beijing 100005, China
| | - Zhili Li
- Department of Biophysics and Structural Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical College, 5 Dongdan San Tiao, Beijing 100005, China
| |
Collapse
|
13
|
Miranda RR, Parthasarathy A, Hudson AO. Exploration of Chemical Biology Approaches to Facilitate the Discovery and Development of Novel Antibiotics. FRONTIERS IN TROPICAL DISEASES 2022. [DOI: 10.3389/fitd.2022.845469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Approximately 2.8 million people worldwide are infected with bacteria that are deemed resistant to clinically relevant antibiotics. This accounts for 700,000 deaths every year and represents a major public health threat that has been on the rise for the past two decades. In contrast, the pace of antibiotic discovery to treat these resistant pathogens has significantly decreased. Most antibiotics are complex natural products that were isolated from soil microorganisms during the golden era of antibiotic discovery (1940s to 1960s) employing the “Waksman platform”. After the collapse of this discovery platform, other strategies and approaches emerged, including phenotype- or target-based screenings of large synthetic compound libraries. However, these methods have not resulted in the discovery and/or development of new drugs for clinical use in over 30 years. A better understanding of the structure and function of the molecular components that constitute the bacterial system is of paramount importance to design new strategies to tackle drug-resistant pathogens. Herein, we review the traditional approaches as well as novel strategies to facilitate antibiotic discovery that are chemical biology-focused. These include the design and application of chemical probes that can undergo bioorthogonal reactions, such as copper (I)-catalyzed azide-alkyne cycloadditions (CuAAC). By specifically interacting with bacterial proteins or being incorporated in the microorganism’s metabolism, chemical probes are powerful tools in drug discovery that can help uncover new drug targets and investigate the mechanisms of action and resistance of new antibacterial leads.
Collapse
|
14
|
Müller MJ, Dorst A, Paulus C, Khan I, Sieber S. Catch-enrich-release approach for amine-containing natural products. Chem Commun (Camb) 2022; 58:12560-12563. [DOI: 10.1039/d2cc04905h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Chemoselective approach to extract amine-containing natural products from complex matrices. The enzymatic release from the probe affords the underivatised compounds as products.
Collapse
Affiliation(s)
| | - Andrea Dorst
- Department of Chemistry, University of Zurich, 8057 Zurich, Switzerland
| | - Constanze Paulus
- Department of Chemistry, University of Zurich, 8057 Zurich, Switzerland
| | - Imran Khan
- Department of Chemistry, University of Zurich, 8057 Zurich, Switzerland
| | - Simon Sieber
- Department of Chemistry, University of Zurich, 8057 Zurich, Switzerland
| |
Collapse
|
15
|
Vallianatou T, Bèchet NB, Correia MSP, Lundgaard I, Globisch D. Regional Brain Analysis of Modified Amino Acids and Dipeptides during the Sleep/Wake Cycle. Metabolites 2021; 12:metabo12010021. [PMID: 35050142 PMCID: PMC8780251 DOI: 10.3390/metabo12010021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 12/19/2021] [Accepted: 12/22/2021] [Indexed: 12/18/2022] Open
Abstract
Sleep is a state in which important restorative and anabolic processes occur. Understanding changes of these metabolic processes during the circadian rhythm in the brain is crucial to elucidate neurophysiological mechanisms important for sleep function. Investigation of amino acid modifications and dipeptides has recently emerged as a valuable approach in the metabolic profiling of the central nervous system. Nonetheless, very little is known about the effects of sleep on the brain levels of amino acid analogues. In the present study, we examined brain regional sleep-induced alterations selective for modified amino acids and dipeptides using Ultra-high performance liquid chromatography-MS/MS (UHPLC-MS/MS) based metabolomics. Our approach enabled the detection and identification of numerous amino acid-containing metabolites in the cortex, the hippocampus, the midbrain, and the cerebellum. In particular, analogues of the aromatic amino acids phenylalanine, tyrosine and tryptophan were significantly altered during sleep in the investigated brain regions. Cortical levels of medium and long chain N-acyl glycines were higher during sleep. Regional specific changes were also detected, especially related to tyrosine analogues in the hippocampus and the cerebellum. Our findings demonstrate a strong correlation between circadian rhythms and amino acid metabolism specific for different brain regions that provide previously unknown insights in brain metabolism.
Collapse
Affiliation(s)
- Theodosia Vallianatou
- Science for Life Laboratory, Department of Chemistry-BMC, Uppsala University, Box 599, SE-75124 Uppsala, Sweden; (T.V.); (M.S.P.C.)
| | - Nicholas B. Bèchet
- Department of Experimental Medical Science, Lund University, SE-22362 Lund, Sweden; (N.B.B.); (I.L.)
- Wallenberg Centre for Molecular Medicine, Lund University, SE-22362 Lund, Sweden
| | - Mario S. P. Correia
- Science for Life Laboratory, Department of Chemistry-BMC, Uppsala University, Box 599, SE-75124 Uppsala, Sweden; (T.V.); (M.S.P.C.)
| | - Iben Lundgaard
- Department of Experimental Medical Science, Lund University, SE-22362 Lund, Sweden; (N.B.B.); (I.L.)
- Wallenberg Centre for Molecular Medicine, Lund University, SE-22362 Lund, Sweden
| | - Daniel Globisch
- Science for Life Laboratory, Department of Chemistry-BMC, Uppsala University, Box 599, SE-75124 Uppsala, Sweden; (T.V.); (M.S.P.C.)
- Correspondence:
| |
Collapse
|
16
|
Lin W, Conway LP, Vujasinovic M, Löhr J, Globisch D. Chemoselective and Highly Sensitive Quantification of Gut Microbiome and Human Metabolites. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202107101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Weifeng Lin
- Department of Chemistry—BMC Science for Life Laboratory Uppsala University, Box 599 75124 Uppsala Sweden
| | - Louis P. Conway
- Department of Chemistry—BMC Science for Life Laboratory Uppsala University, Box 599 75124 Uppsala Sweden
| | - Miroslav Vujasinovic
- Department for Digestive Diseases Karolinska University Hospital Stockholm Sweden
| | - J.‐Matthias Löhr
- Department for Digestive Diseases Karolinska University Hospital Stockholm Sweden
- Department of Clinical Science Intervention and Technology (CLINTEC) Karolinska Institute Stockholm Sweden
| | - Daniel Globisch
- Department of Chemistry—BMC Science for Life Laboratory Uppsala University, Box 599 75124 Uppsala Sweden
| |
Collapse
|
17
|
Lin W, Conway LP, Vujasinovic M, Löhr J, Globisch D. Chemoselective and Highly Sensitive Quantification of Gut Microbiome and Human Metabolites. Angew Chem Int Ed Engl 2021; 60:23232-23240. [PMID: 34339587 PMCID: PMC8597006 DOI: 10.1002/anie.202107101] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/15/2021] [Indexed: 11/18/2022]
Abstract
The microbiome has a fundamental impact on the human host's physiology through the production of highly reactive compounds that can lead to disease development. One class of such compounds are carbonyl-containing metabolites, which are involved in diverse biochemical processes. Mass spectrometry is the method of choice for analysis of metabolites but carbonyls are analytically challenging. Herein, we have developed a new chemical biology tool using chemoselective modification to overcome analytical limitations. Two isotopic probes allow for the simultaneous and semi-quantitative analysis at the femtomole level as well as qualitative analysis at attomole quantities that allows for detection of more than 200 metabolites in human fecal, urine and plasma samples. This comprehensive mass spectrometric analysis enhances the scope of metabolomics-driven biomarker discovery. We anticipate that our chemical biology tool will be of general use in metabolomics analysis to obtain a better understanding of microbial interactions with the human host and disease development.
Collapse
Affiliation(s)
- Weifeng Lin
- Department of Chemistry—BMCScience for Life LaboratoryUppsala University, Box 59975124UppsalaSweden
| | - Louis P. Conway
- Department of Chemistry—BMCScience for Life LaboratoryUppsala University, Box 59975124UppsalaSweden
| | | | - J.‐Matthias Löhr
- Department for Digestive DiseasesKarolinska University HospitalStockholmSweden
- Department of Clinical ScienceIntervention and Technology (CLINTEC)Karolinska InstituteStockholmSweden
| | - Daniel Globisch
- Department of Chemistry—BMCScience for Life LaboratoryUppsala University, Box 59975124UppsalaSweden
| |
Collapse
|
18
|
Lin W, Yang Z, Kaur A, Block A, Vujasinovic M, Löhr JM, Globisch D. Squaric acid as a new chemoselective moiety for mass spectrometry-based metabolomics analysis of amines. RSC Chem Biol 2021; 2:1479-1483. [PMID: 34704052 PMCID: PMC8496035 DOI: 10.1039/d1cb00132a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 08/10/2021] [Indexed: 12/24/2022] Open
Abstract
The investigation of microbiome-derived metabolites is important to understand metabolic interactions with their human host. New methodologies for mass spectrometric discovery of undetected metabolites with unknown bioactivity are required. Herein, we introduce squaric acid as a new chemoselective moiety for amine metabolite analysis in human fecal samples.
Collapse
Affiliation(s)
- Weifeng Lin
- Department of Chemistry-BMC, Science for Life Laboratory, Uppsala University, Box 599 Uppsala SE-75124 Sweden
| | - Zhen Yang
- Department of Chemistry-BMC, Science for Life Laboratory, Uppsala University, Box 599 Uppsala SE-75124 Sweden
| | - Amanpreet Kaur
- Department of Chemistry-BMC, Science for Life Laboratory, Uppsala University, Box 599 Uppsala SE-75124 Sweden
| | - Annika Block
- Department of Chemistry-BMC, Science for Life Laboratory, Uppsala University, Box 599 Uppsala SE-75124 Sweden
| | - Miroslav Vujasinovic
- Department for Digestive Diseases, Karolinska University Hospital Stockholm Sweden
| | - J-Matthias Löhr
- Department for Digestive Diseases, Karolinska University Hospital Stockholm Sweden
- Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institute Stockholm Sweden
| | - Daniel Globisch
- Department of Chemistry-BMC, Science for Life Laboratory, Uppsala University, Box 599 Uppsala SE-75124 Sweden
| |
Collapse
|
19
|
Li Z, Chen Q, Wang J, Pan X, Lu W. Research Progress and Application of Bioorthogonal Reactions in Biomolecular Analysis and Disease Diagnosis. Top Curr Chem (Cham) 2021; 379:39. [PMID: 34590223 DOI: 10.1007/s41061-021-00352-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 09/14/2021] [Indexed: 12/14/2022]
Abstract
Bioorthogonal reactions are rapid, specific and high yield reactions that can be performed in in vivo microenvironments or simulated microenvironments. At present, the main biorthogonal reactions include Staudinger ligation, copper-catalyzed azide alkyne cycloaddition, strain-promoted [3 + 2] reaction, tetrazine ligation, metal-catalyzed coupling reaction and photo-induced biorthogonal reactions. To date, many reviews have reported that bioorthogonal reactions have been used widely as a powerful tool in the field of life sciences, such as in target recognition, drug discovery, drug activation, omics research, visualization of life processes or exogenous bacterial infection processes, signal transduction pathway research, chemical reaction dynamics analysis, disease diagnosis and treatment. In contrast, to date, few studies have investigated the application of bioorthogonal reactions in the analysis of biomacromolecules in vivo. Therefore, the application of bioorthogonal reactions in the analysis of proteins, nucleic acids, metabolites, enzyme activities and other endogenous molecules, and the determination of disease-related targets is reviewed. In addition, this review discusses the future development opportunities and challenges of biorthogonal reactions. This review presents an overview of recent advances for application in biomolecular analysis and disease diagnosis, with a focus on proteins, metabolites and RNA detection.
Collapse
Affiliation(s)
- Zilong Li
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Qinhua Chen
- Department of Pharmacy, Shenzhen Baoan Authentic TCM Therapy Hospital, Shenzhen, 518101, China
| | - Jin Wang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Xiaoyan Pan
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Wen Lu
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China.
| |
Collapse
|
20
|
Beard HA, Korovesis D, Chen S, Verhelst SHL. Cleavable linkers and their application in MS-based target identification. Mol Omics 2021; 17:197-209. [PMID: 33507200 DOI: 10.1039/d0mo00181c] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Covalent chemical probes are important tools in chemical biology. They range from post-translational modification (PTM)-derived metabolic probes, to activity-based probes and photoaffinity labels. Identification of the probe targets is often performed by tandem mass spectrometry-based proteomics methods. In the past fifteen years, cleavable linker technologies have been implemented in these workflows in order to identify probe targets with lower background and higher confidence. In addition, the linkers have enabled identification of modification sites. Overall, this has led to an increased knowledge of PTMs, enzyme function and drug action. This review gives an overview of the different types of cleavable linkers, and their benefits and limitations. Their applicability in target identification is also illustrated by several specific examples.
Collapse
Affiliation(s)
- Hester A Beard
- KU Leuven, Department of Cellular and Molecular Medicine, Laboratory of Chemical Biology, Herestr. 49 box 802, 3000 Leuven, Belgium.
| | | | | | | |
Collapse
|
21
|
Li H, Li T, Shi X, Xu G. Recent development of nanoparticle-assisted metabolites analysis with mass spectrometry. J Chromatogr A 2020; 1636:461785. [PMID: 33340742 DOI: 10.1016/j.chroma.2020.461785] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 11/27/2020] [Accepted: 12/01/2020] [Indexed: 02/07/2023]
Abstract
Metabolomics systematically studies the changes of metabolites in biological systems in the temporal or spatial dimensions. It is a challenging task for comprehensive analysis of metabolomics because of diverse physicochemical properties and wide concentration distribution of metabolites. Used as enrichment sorbents, chemoselective probes, chromatographic stationary phases, MS ionization matrix, nanomaterials play excellent roles in improving the selectivity, separation performance, detection sensitivity and identification efficiency of metabolites when mass spectrometry is employed as the detection technique. This review summarized the recent development of nanoparticle-assisted metabolites analysis in terms of assisting the pretreatment of biological samples, improving the separation performance and enhancing the MALDI-MS detection.
Collapse
Affiliation(s)
- Hua Li
- SUSTech Core Research Facilities, Southern University of Science and Technology, Shenzhen, 518055 China
| | - Ting Li
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian, 116024, China
| | - Xianzhe Shi
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
| | - Guowang Xu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
| |
Collapse
|
22
|
Correia MSP, Jain A, Alotaibi W, Young Tie Yang P, Rodriguez-Mateos A, Globisch D. Comparative dietary sulfated metabolome analysis reveals unknown metabolic interactions of the gut microbiome and the human host. Free Radic Biol Med 2020; 160:745-754. [PMID: 32927015 DOI: 10.1016/j.freeradbiomed.2020.09.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 09/04/2020] [Indexed: 12/15/2022]
Abstract
The gut microbiome converts dietary compounds that are absorbed in the gastrointestinal tract and further metabolized by the human host. Sulfated metabolites are a major compound class derived from this co-metabolism and have been linked to disease development. In the present multidisciplinary study, we have investigated human urine samples from a dietary intervention study with 22 individuals collected before and after consumption of a polyphenol rich breakfast. These samples were analyzed utilizing our method combining enzymatic metabolite hydrolysis using an arylsulfatase and mass spectrometric metabolomics. Key to this study is the validation of 235 structurally diverse sulfated metabolites. We have identified 48 significantly upregulated metabolites upon dietary intervention including 11 previously unknown sulfated metabolites for this diet. We observed a large variation in subjects based on their potential to sulfate metabolites, which may be the foundation for classification of subjects as high and low sulfate metabolizers in future large cohort studies. The reported sulfatase-based method is a robust tool for the discovery of unknown microbiota-derived metabolites in human samples.
Collapse
Affiliation(s)
- Mario S P Correia
- Department of Medicinal Chemistry, Science for Life Laboratory, Uppsala University, Box 574, SE-75123, Uppsala, Sweden
| | - Abhishek Jain
- Department of Medicinal Chemistry, Science for Life Laboratory, Uppsala University, Box 574, SE-75123, Uppsala, Sweden
| | - Wafa Alotaibi
- Department of Nutritional Sciences, School of Life Course Sciences, Faculty of Life Sciences and Medicine, King's College London, UK
| | - Paul Young Tie Yang
- Department of Nutritional Sciences, School of Life Course Sciences, Faculty of Life Sciences and Medicine, King's College London, UK
| | - Ana Rodriguez-Mateos
- Department of Nutritional Sciences, School of Life Course Sciences, Faculty of Life Sciences and Medicine, King's College London, UK.
| | - Daniel Globisch
- Department of Medicinal Chemistry, Science for Life Laboratory, Uppsala University, Box 574, SE-75123, Uppsala, Sweden.
| |
Collapse
|
23
|
Correia MSP, Lin W, Aria AJ, Jain A, Globisch D. Rapid Preparation of a Large Sulfated Metabolite Library for Structure Validation in Human Samples. Metabolites 2020; 10:metabo10100415. [PMID: 33081284 PMCID: PMC7603051 DOI: 10.3390/metabo10100415] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 10/04/2020] [Accepted: 10/13/2020] [Indexed: 12/12/2022] Open
Abstract
Metabolomics analysis of biological samples is widely applied in medical and natural sciences. Assigning the correct chemical structure in the metabolite identification process is required to draw the correct biological conclusions and still remains a major challenge in this research field. Several metabolite tandem mass spectrometry (MS/MS) fragmentation spectra libraries have been developed that are either based on computational methods or authentic libraries. These libraries are limited due to the high number of structurally diverse metabolites, low commercial availability of these compounds, and the increasing number of newly discovered metabolites. Phase II modification of xenobiotics is a compound class that is underrepresented in these databases despite their importance in diet, drug, or microbiome metabolism. The O-sulfated metabolites have been described as a signature for the co-metabolism of bacteria and their human host. Herein, we have developed a straightforward chemical synthesis method for rapid preparation of sulfated metabolite standards to obtain mass spectrometric fragmentation pattern and retention time information. We report the preparation of 38 O-sulfated alcohols and phenols for the determination of their MS/MS fragmentation pattern and chromatographic properties. Many of these metabolites are regioisomers that cannot be distinguished solely by their fragmentation pattern. We demonstrate that the versatility of this method is comparable to standard chemical synthesis. This comprehensive metabolite library can be applied for co-injection experiments to validate metabolites in different human sample types to explore microbiota-host co-metabolism, xenobiotic, and diet metabolism.
Collapse
|
24
|
Hoki JS, Le HH, Mellott KE, Zhang YK, Fox BW, Rodrigues PR, Yu Y, Helf MJ, Baccile JA, Schroeder FC. Deep Interrogation of Metabolism Using a Pathway-Targeted Click-Chemistry Approach. J Am Chem Soc 2020; 142:18449-18459. [PMID: 33053303 DOI: 10.1021/jacs.0c06877] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Untargeted metabolomics indicates that the number of unidentified small-molecule metabolites may exceed the number of protein-coding genes for many organisms, including humans, by orders of magnitude. Uncovering the underlying metabolic networks is essential for elucidating the physiological and ecological significance of these biogenic small molecules. Here we develop a click-chemistry-based enrichment strategy, DIMEN (deep interrogation of metabolism via enrichment), that we apply to investigate metabolism of the ascarosides, a family of signaling molecules in the model organism C. elegans. Using a single alkyne-modified metabolite and a solid-phase azide resin that installs a diagnostic moiety for MS/MS-based identification, DIMEN uncovered several hundred novel compounds originating from diverse biosynthetic transformations that reveal unexpected intersection with amino acid, carbohydrate, and energy metabolism. Many of the newly discovered transformations could not be identified or detected by conventional LC-MS analyses without enrichment, demonstrating the utility of DIMEN for deeply probing biochemical networks that generate extensive yet uncharacterized structure space.
Collapse
Affiliation(s)
- Jason S Hoki
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Henry H Le
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Karlie E Mellott
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Ying K Zhang
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Bennett W Fox
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Pedro R Rodrigues
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Yan Yu
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Maximilian J Helf
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Joshua A Baccile
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Frank C Schroeder
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
25
|
Conway LP, Rendo V, Correia MSP, Bergdahl IA, Sjöblom T, Globisch D. Unexpected Acetylation of Endogenous Aliphatic Amines by Arylamine N-Acetyltransferase NAT2. Angew Chem Int Ed Engl 2020; 59:14342-14346. [PMID: 32497306 PMCID: PMC7497018 DOI: 10.1002/anie.202005915] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 05/19/2020] [Indexed: 12/21/2022]
Abstract
N-Acetyltransferases play critical roles in the deactivation and clearance of xenobiotics, including clinical drugs. NAT2 has been classified as an arylamine N-acetyltransferase that mainly converts aromatic amines, hydroxylamines, and hydrazines. Herein, we demonstrate that the human arylamine N-acetyltransferase NAT2 also acetylates aliphatic endogenous amines. Metabolomic analysis and chemical synthesis revealed increased intracellular concentrations of mono- and diacetylated spermidine in human cell lines expressing the rapid compared to the slow acetylator NAT2 phenotype. The regioselective N8 -acetylation of monoacetylated spermidine by NAT2 answers the long-standing question of the source of diacetylspermidine. We also identified selective acetylation of structurally diverse alkylamine-containing drugs by NAT2, which may contribute to variations in patient responses. The results demonstrate a previously unknown functionality and potential regulatory role for NAT2, and we suggest that this enzyme should be considered for re-classification.
Collapse
Affiliation(s)
- Louis P. Conway
- Department of Medicinal ChemistryScience for Life LaboratoryUppsala UniversityBox 57475123UppsalaSweden
| | - Veronica Rendo
- Department of Immunology, Genetics and PathologyScience for Life LaboratoryUppsala University75123UppsalaSweden
| | - Mário S. P. Correia
- Department of Medicinal ChemistryScience for Life LaboratoryUppsala UniversityBox 57475123UppsalaSweden
| | - Ingvar A. Bergdahl
- The Biobank Research Unit and Department of Public Health and Clinical MedicineSection of Sustainable HealthUmeå University90185UmeåSweden
| | - Tobias Sjöblom
- Department of Immunology, Genetics and PathologyScience for Life LaboratoryUppsala University75123UppsalaSweden
| | - Daniel Globisch
- Department of Medicinal ChemistryScience for Life LaboratoryUppsala UniversityBox 57475123UppsalaSweden
| |
Collapse
|
26
|
Conway LP, Rendo V, Correia MSP, Bergdahl IA, Sjöblom T, Globisch D. Unexpected Acetylation of Endogenous Aliphatic Amines by Arylamine
N
‐Acetyltransferase NAT2. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202005915] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Louis P. Conway
- Department of Medicinal Chemistry Science for Life Laboratory Uppsala University Box 574 75123 Uppsala Sweden
| | - Veronica Rendo
- Department of Immunology, Genetics and Pathology Science for Life Laboratory Uppsala University 75123 Uppsala Sweden
| | - Mário S. P. Correia
- Department of Medicinal Chemistry Science for Life Laboratory Uppsala University Box 574 75123 Uppsala Sweden
| | - Ingvar A. Bergdahl
- The Biobank Research Unit and Department of Public Health and Clinical Medicine Section of Sustainable Health Umeå University 90185 Umeå Sweden
| | - Tobias Sjöblom
- Department of Immunology, Genetics and Pathology Science for Life Laboratory Uppsala University 75123 Uppsala Sweden
| | - Daniel Globisch
- Department of Medicinal Chemistry Science for Life Laboratory Uppsala University Box 574 75123 Uppsala Sweden
| |
Collapse
|
27
|
Qiao Y, Hayashi H, Chong Teo S. Chemical Toolbox to Decode the Microbiota Lexicon. Chem Asian J 2020; 15:2117-2128. [PMID: 32558250 DOI: 10.1002/asia.202000541] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 06/14/2020] [Indexed: 12/15/2022]
Abstract
The human microbiota deploys a diverse range of molecules and metabolites to engage in chemical communications with the host, mediating fundamental aspects of host health. Studies of the structures and activities of bioactive molecules produced by the microbiota are imperative to address their implications in microbiota associated diseases in human. By drawing experiences from different research fields, chemists and chemical biologists, who are experts in dealing with chemical molecules, are uniquely positioned to contribute to the emerging knowledge of human microbiota. In this minireview, we discuss the current chemical tools and methods that are pertinent to the discovery of microbiota molecules and metabolites, characterizations of their protein targets, as well as evaluations of their biodistributions in hosts. These are key aspects in understanding the chemical underpinnings of the microbiota-host interactions that would enable future development of diagnostics and therapeutics targeting the human microbiota.
Collapse
Affiliation(s)
- Yuan Qiao
- School of Physical and Mathematical Sciences (SPMS), Nanyang Technological University (NTU), 21 Nanyang Link, CBC 04-22, Singapore, 637371, Singapore
| | - Hirohito Hayashi
- School of Physical and Mathematical Sciences (SPMS), Nanyang Technological University (NTU), 21 Nanyang Link, CBC 04-22, Singapore, 637371, Singapore
| | - Seng Chong Teo
- School of Physical and Mathematical Sciences (SPMS), Nanyang Technological University (NTU), 21 Nanyang Link, CBC 04-22, Singapore, 637371, Singapore
| |
Collapse
|
28
|
Lin W, Conway LP, Block A, Sommi G, Vujasinovic M, Löhr JM, Globisch D. Sensitive mass spectrometric analysis of carbonyl metabolites in human urine and fecal samples using chemoselective modification. Analyst 2020; 145:3822-3831. [PMID: 32393929 DOI: 10.1039/d0an00150c] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Metabolites with ketone or aldehyde functionalities comprise a large proportion of the human metabolome, most notably in the form of sugars. However, these reactive molecules are also generated through oxidative stress or gut microbiota metabolism and have been linked to disease development. The discovery and structural validation of this class of metabolites over the large concentration range found in human samples is crucial to identify their links to pathogenesis. Herein, we have utilized an advanced chemoselective probe methodology alongside bioinformatic analysis to identify carbonyl-metabolites in urine and fecal samples. In total, 99 metabolites were identified in urine samples and the chemical structure for 40 metabolites were unambiguously validated using a co-injection procedure. We also describe the preparation of a metabolite-conjugate library of 94 compounds utilized to efficiently validate these ketones and aldehydes. This method was used to validate 33 metabolites in a pooled fecal sample extract to demonstrate the potential for rapid and efficient metabolite detection over a wide metabolite concentration range. This analysis revealed the presence of six metabolites that have not previously been detected in either sample type. The constructed library can be utilized for straightforward, large-scale, and expeditious analysis of carbonyls in any sample type.
Collapse
Affiliation(s)
- Weifeng Lin
- Department of Medicinal Chemistry, Science for Life Laboratory, Uppsala University, Box 574, SE-75123 Uppsala, Sweden.
| | | | | | | | | | | | | |
Collapse
|
29
|
Chen J, Tian Y, Zhang YX, Xu FG. Chemoselective Probes Serving as Promising Derivatization Tools in Targeted Metabolomics Research. JOURNAL OF ANALYSIS AND TESTING 2020. [DOI: 10.1007/s41664-020-00125-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
30
|
Xie X, Li B, Wang J, Zhan C, Huang Y, Zeng F, Wu S. Tetrazine-Mediated Bioorthogonal System for Prodrug Activation, Photothermal Therapy, and Optoacoustic Imaging. ACS APPLIED MATERIALS & INTERFACES 2019; 11:41875-41888. [PMID: 31638763 DOI: 10.1021/acsami.9b13374] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Bioorthogonal "bond cleavage" reactions hold great promise in a variety of biological applications such as controlled activation of the drug and probe, while the application of these biocompatible reactions in living animals is still in its infancy and has yet to be further explored. Herein we demonstrate a nanosized and two-component bioorthogonal system for tumor inhibition through the combined action of chemo- and photothermal therapy. The trigger of the system was fabricated by immobilizing PEGylated tetrazine on the gold nanorods, and the bioorthogonal prodrug was synthesized by caging the drug camptothecin with vinyl ether, followed by encapsulating it with phospholipid liposomes. The tetrazine-based trigger effectively mediates the bioorthogonal reaction and triggers the release of camptothecin for chemotherapy, and the gold nanorods exhibit high photothermal capability for photothermal therapy and for three-dimensional optoacoustic imaging. Upon injection into tumor-bearing mice, the two components accumulate in the tumor region and carry out a bioorthogonal reaction therein, hence releasing the parent drug. The combined actions of chemo- and photothermal therapy greatly inhibited tumor growth in mice. This strategy may afford a promising approach for achieving controlled release of an active drug in vivo through an alternative external stimulus-a bioorthogonal reaction.
Collapse
Affiliation(s)
- Xin Xie
- State Key Laboratory of Luminescent Materials and Devices, Key Laboratory of Luminescence from Molecular Aggregates of Guangdong Province, College of Materials Science and Engineering , South China University of Technology (SCUT) , Guangzhou 510640 , People's Republic of China
| | - Bowen Li
- State Key Laboratory of Luminescent Materials and Devices, Key Laboratory of Luminescence from Molecular Aggregates of Guangdong Province, College of Materials Science and Engineering , South China University of Technology (SCUT) , Guangzhou 510640 , People's Republic of China
| | - Jie Wang
- State Key Laboratory of Luminescent Materials and Devices, Key Laboratory of Luminescence from Molecular Aggregates of Guangdong Province, College of Materials Science and Engineering , South China University of Technology (SCUT) , Guangzhou 510640 , People's Republic of China
| | - Chenyue Zhan
- State Key Laboratory of Luminescent Materials and Devices, Key Laboratory of Luminescence from Molecular Aggregates of Guangdong Province, College of Materials Science and Engineering , South China University of Technology (SCUT) , Guangzhou 510640 , People's Republic of China
| | - Yong Huang
- State Key Laboratory of Luminescent Materials and Devices, Key Laboratory of Luminescence from Molecular Aggregates of Guangdong Province, College of Materials Science and Engineering , South China University of Technology (SCUT) , Guangzhou 510640 , People's Republic of China
| | - Fang Zeng
- State Key Laboratory of Luminescent Materials and Devices, Key Laboratory of Luminescence from Molecular Aggregates of Guangdong Province, College of Materials Science and Engineering , South China University of Technology (SCUT) , Guangzhou 510640 , People's Republic of China
| | - Shuizhu Wu
- State Key Laboratory of Luminescent Materials and Devices, Key Laboratory of Luminescence from Molecular Aggregates of Guangdong Province, College of Materials Science and Engineering , South China University of Technology (SCUT) , Guangzhou 510640 , People's Republic of China
| |
Collapse
|
31
|
Conway LP, Garg N, Lin W, Vujasinovic M, Löhr JM, Globisch D. Chemoselective probe for detailed analysis of ketones and aldehydes produced by gut microbiota in human samples. Chem Commun (Camb) 2019; 55:9080-9083. [PMID: 31287110 DOI: 10.1039/c9cc04605d] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
New strategies are required for the discovery of unknown bioactive molecules produced by gut microbiota in the human host. Herein, we utilize a chemoselective probe immobilized to magnetic beads for analysis of carbonyls in human fecal samples. We identified 112 metabolites due to femtomole analysis and an increased mass spectrometric sensitivity by up to six orders of magnitude.
Collapse
Affiliation(s)
- Louis P Conway
- Department of Medicinal Chemistry, Science for Life Laboratory, Uppsala University, Box 574, SE-75123 Uppsala, Sweden.
| | - Neeraj Garg
- Department of Medicinal Chemistry, Science for Life Laboratory, Uppsala University, Box 574, SE-75123 Uppsala, Sweden.
| | - Weifeng Lin
- Department of Medicinal Chemistry, Science for Life Laboratory, Uppsala University, Box 574, SE-75123 Uppsala, Sweden.
| | - Miroslav Vujasinovic
- Department for Digestive Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - J-Matthias Löhr
- Department for Digestive Diseases, Karolinska University Hospital, Stockholm, Sweden and Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institute, Stockholm, Sweden
| | - Daniel Globisch
- Department of Medicinal Chemistry, Science for Life Laboratory, Uppsala University, Box 574, SE-75123 Uppsala, Sweden.
| |
Collapse
|
32
|
Correia MSP, Rao M, Ballet C, Globisch D. Coupled Enzymatic Treatment and Mass Spectrometric Analysis for Identification of Glucuronidated Metabolites in Human Samples. Chembiochem 2019; 20:1678-1683. [DOI: 10.1002/cbic.201900065] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Indexed: 12/26/2022]
Affiliation(s)
- Mario S. P. Correia
- Department of Medicinal ChemistryScience for Life LaboratoryUppsala University Box 574 75123 Uppsala Sweden
| | - Menghua Rao
- Department of Medicinal ChemistryScience for Life LaboratoryUppsala University Box 574 75123 Uppsala Sweden
| | - Caroline Ballet
- Department of Medicinal ChemistryScience for Life LaboratoryUppsala University Box 574 75123 Uppsala Sweden
| | - Daniel Globisch
- Department of Medicinal ChemistryScience for Life LaboratoryUppsala University Box 574 75123 Uppsala Sweden
| |
Collapse
|