1
|
Krevert C, Gunkel L, Sutter J, Meyer R, Schneider P, Nagata Y, Hunger J. Deciphering Spectroscopic Signatures of Competing Ca 2+ - Peptide Interactions. J Phys Chem B 2024; 128:10688-10698. [PMID: 39437793 PMCID: PMC11533179 DOI: 10.1021/acs.jpcb.4c04760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 10/06/2024] [Accepted: 10/11/2024] [Indexed: 10/25/2024]
Abstract
Calcium-protein interactions are of paramount importance in biochemistry. They are a key element in a number of biological processes, such as neuronal signaling. Therefore, an understanding of the interaction at the molecular level is highly desirable. Here, we study the zwitterionic model peptide l-alanyl-l-alanine (2Ala), which has two distinct and competing binding sites for Ca2+: The carbonyl of the peptide bond and the C-terminus, the carboxylate group. We perform linear and two-dimensional IR spectroscopy experiments and find that the spectroscopic signatures of both moieties in the IR spectra change in amplitude and peak position upon the addition of CaCl2: A blueshift of the asymmetric carboxylate band and a redshift for the amide I mode. Ab initio molecular dynamics simulations confirm the direct interaction of the Ca2+ ion at both the carboxylate and the amide CO site leading to different spectral responses. The blueshift of the asymmetric carboxylate band is caused by a localization of the charge, leading to a decoupling of the CO stretching modes of the carboxylate group. The slight redshift of the amide I mode of 2Ala upon the addition of CaCl2 contrasts the blueshift that has been observed for isolated amide motifs, such as N-methylacetamide (NMA). This difference is caused by the smaller number of water molecules being replaced by the Ca2+ ion for 2Ala's amide compared to less sterically hindered, isolated amide carbonyls, in conjunction with vibrational Stark effects. Our results highlight the importance of considering potential competing binding sites, such as the amide CO backbone, the termini and residues, as well as the nature of the hydration of both peptide and ion, when exploring ions' interacting with small peptides and larger proteins.
Collapse
Affiliation(s)
- Carola
S. Krevert
- Department
of Molecular Spectroscopy, Max Planck Insitute
for Polymer Research, Ackermannweg 10, Mainz 55128, Germany
| | - Lucas Gunkel
- Department
of Molecular Spectroscopy, Max Planck Insitute
for Polymer Research, Ackermannweg 10, Mainz 55128, Germany
| | - Johannes Sutter
- Department
of Molecular Spectroscopy, Max Planck Insitute
for Polymer Research, Ackermannweg 10, Mainz 55128, Germany
| | - Raphael Meyer
- Department
of the Synthesis of Macromolecule, Max Planck
Insitute for Polymer Research, Ackermannweg 10, Mainz 55128, Germany
| | - Paul Schneider
- Department
of Molecular Spectroscopy, Max Planck Insitute
for Polymer Research, Ackermannweg 10, Mainz 55128, Germany
| | - Yuki Nagata
- Department
of Molecular Spectroscopy, Max Planck Insitute
for Polymer Research, Ackermannweg 10, Mainz 55128, Germany
| | - Johannes Hunger
- Department
of Molecular Spectroscopy, Max Planck Insitute
for Polymer Research, Ackermannweg 10, Mainz 55128, Germany
| |
Collapse
|
2
|
Leung K, Ilgen AG. Modeling separation of lanthanides via heterogeneous ligand binding. Phys Chem Chem Phys 2024. [PMID: 39018152 DOI: 10.1039/d4cp00880d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/19/2024]
Abstract
Individual lanthanide elements have physical/electronic/magnetic properties that make each useful for specific applications. Several of the lanthanides cations (Ln3+) naturally occur together in the same ores. They are notoriously difficult to separate from each other due to their chemical similarity. Predicting the Ln3+ differential binding energies (ΔΔE) or free energies (ΔΔG) at different binding sites, which are key figures of merit for separation applications, will help design of materials with lanthanide selectivity. We apply ab initio molecular dynamics (AIMD) simulations and density functional theory (DFT) to calculate ΔΔG for Ln3+ coordinated to ligands in water and embedded in metal-organic frameworks (MOFs), and ΔΔE for Ln3+ bonded to functionalized silica surfaces, thus circumventing the need for the computational costly absolute binding (free) energies ΔG and ΔE. Perturbative AIMD simulations of water-inundated simulation cells are applied to examine the selectivity of ligands towards adjacent Ln3+ in the periodic table. Static DFT calculations with a full Ln3+ first coordination shell, while less rigorous, show that all ligands examined with net negative charges are more selective towards the heavier lanthanides than a charge-neutral coordination shell made up of water molecules. Amine groups are predicted to be poor ligands for lanthanide-binding. We also address cooperative ion binding, i.e., using different ligands in concert to enhance lanthanide selectivity.
Collapse
Affiliation(s)
- Kevin Leung
- Geochemistry Department, MS 0750, Sandia National Laboratories, Albuquerque, New Mexico 87185, USA.
| | - Anastasia G Ilgen
- Geochemistry Department, MS 0750, Sandia National Laboratories, Albuquerque, New Mexico 87185, USA.
| |
Collapse
|
3
|
Balos V, Wolf M, Kovalev S, Sajadi M. Optical rectification and electro-optic sampling in quartz. OPTICS EXPRESS 2023; 31:13317-13327. [PMID: 37157471 DOI: 10.1364/oe.480339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
We report the electro-optic sampling (EOS) response and the terahertz (THz) optical rectification (OR) of the z-cut α-quartz. Due to its small effective second-order nonlinearity, large transparency window and hardness, freestanding thin quartz plates can faithfully measure the waveform of intense THz pulses with MV/cm electric-field strength. We show that both its OR and EOS responses are broad with extension up to ∼8 THz. Strikingly, the latter responses are independent of the crystal thickness, a plausible indication of dominant surface contribution to the total second-order nonlinear susceptibility of quartz at THz frequencies. Our study introduces the crystalline quartz as a reliable THz electro-optic medium for high field THz detection, and characterize its emission as a common substrate.
Collapse
|
4
|
Negi I, Jangra R, Gharu A, Trant JF, Sharma P. Guanidinium–amino acid hydrogen-bonding interactions in protein crystal structures: implications for guanidinium-induced protein denaturation. Phys Chem Chem Phys 2023; 25:857-869. [DOI: 10.1039/d2cp04943k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Structural analysis of guanidinium–amino acid interaction pairs in protein crystal structures is coupled with an effective scheme for classifying the optimized pairs, to gain understanding of the guanidinium:protein hydrogen bonding modes.
Collapse
Affiliation(s)
- Indu Negi
- Computational Biochemistry Laboratory, Department of Chemistry and Centre for Advanced Studies in Chemistry, Panjab University, Chandigarh, 160014, India
| | - Raman Jangra
- Computational Biochemistry Laboratory, Department of Chemistry and Centre for Advanced Studies in Chemistry, Panjab University, Chandigarh, 160014, India
| | - Amit Gharu
- Computational Biochemistry Laboratory, Department of Chemistry and Centre for Advanced Studies in Chemistry, Panjab University, Chandigarh, 160014, India
| | - John F. Trant
- Department of Chemistry and Biochemistry, University of Windsor, 401 Sunset Ave. Windsor ON, N9B 3P4, Canada
- Binary Star Research Services, LaSalle, ON, N9J 3 X 8, Canada
| | - Purshotam Sharma
- Computational Biochemistry Laboratory, Department of Chemistry and Centre for Advanced Studies in Chemistry, Panjab University, Chandigarh, 160014, India
- Department of Chemistry and Biochemistry, University of Windsor, 401 Sunset Ave. Windsor ON, N9B 3P4, Canada
| |
Collapse
|
5
|
Krevert CS, Gunkel L, Haese C, Hunger J. Ion-specific binding of cations to the carboxylate and of anions to the amide of alanylalanine. Commun Chem 2022; 5:173. [PMID: 36697920 PMCID: PMC9814750 DOI: 10.1038/s42004-022-00789-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 11/30/2022] [Indexed: 12/24/2022] Open
Abstract
Studies of ion-specific effects on oligopeptides have aided our understanding of Hofmeister effects on proteins, yet the use of different model peptides and different experimental sensitivities have led to conflicting conclusions. To resolve these controversies, we study a small model peptide, L-Alanyl-L-alanine (2Ala), carrying all fundamental chemical protein motifs: C-terminus, amide bond, and N-terminus. We elucidate the effect of GdmCl, LiCl, KCl, KI, and KSCN by combining dielectric relaxation, nuclear magnetic resonance (1H-NMR), and (two-dimensional) infrared spectroscopy. Our dielectric results show that all ions reduce the rotational mobility of 2Ala, yet the magnitude of the reduction is larger for denaturing cations than for anions. The NMR chemical shifts of the amide group are particularly sensitive to denaturing anions, indicative of anion-amide interactions. Infrared experiments reveal that LiCl alters the spectral homogeneity and dynamics of the carboxylate, but not the amide group. Interaction of LiCl with the negatively charged pole of 2Ala, the COO- group, can explain the marked cationic effect on dipolar rotation, while interaction of anions between the poles, at the amide, only weakly perturbs dipolar dynamics. As such, our results provide a unifying view on ions' preferential interaction sites at 2Ala and help rationalize Hofmeister effects on proteins.
Collapse
Affiliation(s)
- Carola Sophie Krevert
- grid.419547.a0000 0001 1010 1663Department of Molecular Spectroscopy, Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Lucas Gunkel
- grid.419547.a0000 0001 1010 1663Department of Molecular Spectroscopy, Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Constantin Haese
- grid.419547.a0000 0001 1010 1663Department of Molecular Electronics, Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Johannes Hunger
- grid.419547.a0000 0001 1010 1663Department of Molecular Spectroscopy, Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| |
Collapse
|
6
|
Balos V, Kaliannan NK, Elgabarty H, Wolf M, Kühne TD, Sajadi M. Time-resolved terahertz-Raman spectroscopy reveals that cations and anions distinctly modify intermolecular interactions of water. Nat Chem 2022; 14:1031-1037. [PMID: 35773490 PMCID: PMC9417992 DOI: 10.1038/s41557-022-00977-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 05/16/2022] [Indexed: 11/09/2022]
Abstract
The solvation of ions changes the physical, chemical and thermodynamic properties of water, and the microscopic origin of this behaviour is believed to be ion-induced perturbation of water's hydrogen-bonding network. Here we provide microscopic insights into this process by monitoring the dissipation of energy in salt solutions using time-resolved terahertz-Raman spectroscopy. We resonantly drive the low-frequency rotational dynamics of water molecules using intense terahertz pulses and probe the Raman response of their intermolecular translational motions. We find that the intermolecular rotational-to-translational energy transfer is enhanced by highly charged cations and is drastically reduced by highly charged anions, scaling with the ion surface charge density and ion concentration. Our molecular dynamics simulations reveal that the water-water hydrogen-bond strength between the first and second solvation shells of cations increases, while it decreases around anions. The opposite effects of cations and anions on the intermolecular interactions of water resemble the effects of ions on the stabilization and denaturation of proteins.
Collapse
Affiliation(s)
- Vasileios Balos
- Fritz Haber Institute of the Max-Planck Society, Berlin, Germany. .,IMDEA Nanociencia, Ciudad Universitaria de Cantoblanco, Madrid, Spain.
| | - Naveen Kumar Kaliannan
- Dynamics of Condensed Matter and Center for Sustainable Systems Design, Chair of Theoretical Chemistry, University of Paderborn, Paderborn, Germany
| | - Hossam Elgabarty
- Dynamics of Condensed Matter and Center for Sustainable Systems Design, Chair of Theoretical Chemistry, University of Paderborn, Paderborn, Germany.
| | - Martin Wolf
- Fritz Haber Institute of the Max-Planck Society, Berlin, Germany
| | - Thomas D Kühne
- Dynamics of Condensed Matter and Center for Sustainable Systems Design, Chair of Theoretical Chemistry, University of Paderborn, Paderborn, Germany
| | - Mohsen Sajadi
- Fritz Haber Institute of the Max-Planck Society, Berlin, Germany. .,Dynamics of Condensed Matter and Center for Sustainable Systems Design, Chair of Theoretical Chemistry, University of Paderborn, Paderborn, Germany.
| |
Collapse
|
7
|
Sun L, Gong J, Xu B, Wang Y, Ding X, Zhang Y, Liu C, Zhao L, Xu B. Ion-Specific Effects on Vesicle-to-Micelle Transitions of an Amino Acid Surfactant Probed by Chemical Trapping. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:6295-6304. [PMID: 35476409 DOI: 10.1021/acs.langmuir.1c03415] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Ion-specific effects widely exist in biological and chemical systems and cannot be explained by classical theories. The complexity of ion-specific effects in protein systems at the molecular level necessitates the use of mimetic models involving smaller molecules, such as amino acids, oligopeptides, and other organic molecules bearing amide bonds. Therefore, it is of theoretical value to determine the effect of additional salts on the aggregation transitions of acyl amino acid surfactants. Herein, the effects of specific tetraalkylammonium ions (TAA+) on sodium lauroyl glycinate (SLG) aggregation were studied by dynamic light scattering (DLS) and transmission electron microscopy. Although previous studies have shown that the kosmotropic TAA+ ions tend to induce micellar growth or micelle-to-vesicle transitions of some anionic surfactants, TAA+ addition in the present study induced partial vesicle-to-micelle transitions in SLG solutions. The chemical trapping (CT) method was employed to estimate changes in the interfacial molarities of water, amide bonds, and carboxylate groups during such transitions. The vesicle-to-micelle transitions were accompanied by a marked rise in interfacial water molarity and a decline in interfacial amide bonds molarity, suggesting that the hydrated TAA+ entered the interfacial region and disrupted hydrogen bonding, thus preventing the SLG monomers from packing tightly. Molecular dynamic simulation was also performed to demonstrate the salt-induced cleavage of amide-amide bonds between SLG headgroups. Furthermore, both CT and DLS results show that the ability of tetraalkylammonium cations to induce such transitions increased with increasing size and hydrophobicity of the cation, which follows the Hofmeister series. The current study offers critical molecular-level evidence for understanding the specific effects of tetraalkylammonium ions on the aggregation transitions of an acyl amino acid surfactant.
Collapse
Affiliation(s)
- Lijie Sun
- Department of Daily Chemical Engineering, Beijing Technology and Business University, No. 11 Fucheng Road, Beijing 100048, People's Republic of China
| | - Jiani Gong
- Department of Daily Chemical Engineering, Beijing Technology and Business University, No. 11 Fucheng Road, Beijing 100048, People's Republic of China
| | - Bo Xu
- McIntire School of Commerce, University of Virginia, Charlottesville, Virginia 22903, United States
| | - Yuzhao Wang
- Department of Daily Chemical Engineering, Beijing Technology and Business University, No. 11 Fucheng Road, Beijing 100048, People's Republic of China
| | - Xiaoxuan Ding
- Department of Daily Chemical Engineering, Beijing Technology and Business University, No. 11 Fucheng Road, Beijing 100048, People's Republic of China
| | - Yongliang Zhang
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 610 Taylor Road, Piscataway, New Jersey 08854, United States
| | - Changyao Liu
- Department of Daily Chemical Engineering, Beijing Technology and Business University, No. 11 Fucheng Road, Beijing 100048, People's Republic of China
| | - Li Zhao
- Department of Daily Chemical Engineering, Beijing Technology and Business University, No. 11 Fucheng Road, Beijing 100048, People's Republic of China
| | - Baocai Xu
- Department of Daily Chemical Engineering, Beijing Technology and Business University, No. 11 Fucheng Road, Beijing 100048, People's Republic of China
| |
Collapse
|
8
|
Gregory KP, Wanless EJ, Webber GB, Craig VSJ, Page AJ. The electrostatic origins of specific ion effects: quantifying the Hofmeister series for anions. Chem Sci 2021; 12:15007-15015. [PMID: 34976339 PMCID: PMC8612401 DOI: 10.1039/d1sc03568a] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 10/15/2021] [Indexed: 12/23/2022] Open
Abstract
Life as we know it is dependent upon water, or more specifically salty water. Without dissolved ions, the interactions between biological molecules are insufficiently complex to support life. This complexity is intimately tied to the variation in properties induced by the presence of different ions. These specific ion effects, widely known as Hofmeister effects, have been known for more than 100 years. They are ubiquitous throughout the chemical, biological and physical sciences. The origin of these effects and their relative strengths is still hotly debated. Here we reconsider the origins of specific ion effects through the lens of Coulomb interactions and establish a foundation for anion effects in aqueous and non-aqueous environments. We show that, for anions, the Hofmeister series can be explained and quantified by consideration of site-specific electrostatic interactions. This can simply be approximated by the radial charge density of the anion, which we have calculated for commonly reported ions. This broadly quantifies previously unpredictable specific ion effects, including those known to influence solution properties, virus activities and reaction rates. Furthermore, in non-aqueous solvents, the relative magnitude of the anion series is dependent on the Lewis acidity of the solvent, as measured by the Gutmann Acceptor Number. Analogous SIEs for cations bear limited correlation with their radial charge density, highlighting a fundamental asymmetry in the origins of specific ion effects for anions and cations, due to competing non-Coulombic phenomena.
Collapse
Affiliation(s)
- Kasimir P Gregory
- Discipline of Chemistry, School of Environmental and Life Sciences, The University of Newcastle Callaghan New South Wales 2308 Australia
| | - Erica J Wanless
- Discipline of Chemistry, School of Environmental and Life Sciences, The University of Newcastle Callaghan New South Wales 2308 Australia
| | - Grant B Webber
- School of Engineering, The University of Newcastle Callaghan New South Wales 2308 Australia
| | - Vincent S J Craig
- Department of Applied Mathematics, Research School of Physics, Australian National University Canberra ACT 0200 Australia
| | - Alister J Page
- Discipline of Chemistry, School of Environmental and Life Sciences, The University of Newcastle Callaghan New South Wales 2308 Australia
| |
Collapse
|
9
|
He X, Ewing AG. Counteranions in the Stimulation Solution Alter the Dynamics of Exocytosis Consistent with the Hofmeister Series. J Am Chem Soc 2020; 142:12591-12595. [PMID: 32598145 PMCID: PMC7386575 DOI: 10.1021/jacs.0c05319] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
![]()
We
show that the Hofmeister series of ions can be used to explain
the cellular changes in exocytosis observed by single-cell amperometry
for different counteranions. The formation, expansion, and closing
of the membrane fusion pore during exocytosis was found to be strongly
dependent on the counteranion species in solution. With stimulation
of chaotropic anions (e.g., ClO4–), the
expansion and closing time of the fusion pore are longer, suggesting
chaotropes can extend the duration of exocytosis compared with kosmotropic
anions (e.g., Cl–). At a concentration of 30 mM,
the two parameters (e.g., t1/2 and tfall) that define the duration of exocytosis
vary with the Hofmeister series (Cl– < Br– < NO3– ≤ ClO4– < SCN–). More interestingly,
fewer (e.g., Nfoot/Nevents) and smaller (e.g., Ifoot) prespike events are observed when chaotropes are counterions in
the stimulation solution, and the values can be sorted by the reverse
Hofmeister series (Cl– ≥ Br– > NO3– > ClO4– > SCN–). Based on ion specificity,
an adsorption-repulsion
mechanism, we suggest that the exocytotic Hofmeister series effect
originates from a looser swelling lipid bilayer structure due to the
adsorption and electrostatic repulsion of chaotropes on the hydrophobic
portion of the membrane. Our results provide a chemical link between
the Hofmeister series and the cellular process of neurotransmitter
release via exocytosis and provide a better physical framework to
understand this important phenomenon.
Collapse
Affiliation(s)
- Xiulan He
- Department of Chemistry and Molecular Biology, University of Gothenburg, 41296 Gothenburg, Sweden
| | - Andrew G Ewing
- Department of Chemistry and Molecular Biology, University of Gothenburg, 41296 Gothenburg, Sweden
| |
Collapse
|
10
|
Meletiou A, Gebbie-Rayet J, Laughton C. Tios: The Internet of Simulations. Turning Molecular Dynamics into a Data Streaming Web Application. J Chem Inf Model 2019; 59:3359-3364. [PMID: 31339723 DOI: 10.1021/acs.jcim.9b00351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The configuration of most current academic high-performance computing (HPC) resources tends to enforce ways of working with, and thinking about, molecular dynamics (MD) simulations that are not always optimal. For example, when the aim of the simulation(s) is to produce a representative sample of a Boltzmann weighted ensemble, the ideal scenario would be to be able to do just that-i.e. to tap into a running simulation of indefinite length, collect data from it in real time, and only terminate the simulation once the quality of a sample was assured. Current approaches, based on batch jobs of proscribed maximum length, and a postprocessing style of data analysis, inhibit this. In the spirit of the Internet of Things, we have developed Tios, a Python application that turns MD simulations into remotely discoverable and accessible streaming web applications to which researchers can connect and download data as they please. Tios is freely available, works with standard MD codes, and requires no modifications to them. In this paper we outline how Tios works and present a number of test cases that demonstrate its capabilities.
Collapse
Affiliation(s)
- Athina Meletiou
- School of Pharmacy and Centre for Biomolecular Sciences , University of Nottingham , University Park, Nottingham NG7 2RD , United Kingdom
| | - James Gebbie-Rayet
- Scientific Computing Department , STFC Daresbury Laboratory , Warrington WA4 4AD , United Kingdom
| | - Charles Laughton
- School of Pharmacy and Centre for Biomolecular Sciences , University of Nottingham , University Park, Nottingham NG7 2RD , United Kingdom
| |
Collapse
|