1
|
Zhao Y, Li H, Yao M, Tao CB, Wan Q, Tao Y, Wang X, Luo Q, Li MB. Pincer-Ligand-Stabilized Group 10 Metal Nanoclusters: Chirality and Boat-Chair Structural Transformation. J Phys Chem Lett 2025; 16:2942-2949. [PMID: 40082257 DOI: 10.1021/acs.jpclett.5c00290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2025]
Abstract
Atomically precise metal nanoclusters bridge the gap between metal atoms and metal nanoparticles, providing an ideal platform for correlating the macroscopic properties of metal nanoparticles to their microstructures. In comparison to the rapid development of coin metal nanoclusters, the knowledge on group 10 metal nanoclusters is relatively limited because of their active nature, resulting in the synthetic challenge. In this work, we successfully synthesize three group 10 metal nanoclusters, that is, Ni3(SNS)3, Ni3(SNOS)3, and Pd3(SNS)3, by using the SNS pincer ligands, which well-stabilize the nickel and palladium metal kernels. Intrinsic chirality of the nanoclusters that originated from the asymmetric arrangement of the surface SNS pincer ligands is discovered. Oxidation-induced irreversible transformation from boat-like Ni3(SNS)3 to chair-like Ni3(SNOS)3 is observed, and the boat/chair structure-dependent reactivity is revealed. The structural features and intriguing properties of Ni3 and Pd3 nanoclusters stabilized by the pincer ligand will inspire further research on group 10 metal nanoclusters.
Collapse
Affiliation(s)
- Yan Zhao
- Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei 230601, P. R. China
| | - Huanhuan Li
- Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei 230601, P. R. China
| | - Ming Yao
- Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei 230601, P. R. China
| | - Cheng-Bo Tao
- Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei 230601, P. R. China
| | - Qiji Wan
- Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei 230601, P. R. China
| | - Yang Tao
- Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei 230601, P. R. China
| | - Xiaoli Wang
- Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei 230601, P. R. China
| | - Qiquan Luo
- Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei 230601, P. R. China
| | - Man-Bo Li
- Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei 230601, P. R. China
| |
Collapse
|
2
|
Rai G, Garçon M, Miller PW, Crimmin MR. Flash Communication: Pd 2Zn 2 Clusters from the Reduction of Palladium(II) Dichloride Precursors with Metallic Zinc. Organometallics 2025; 44:716-719. [PMID: 40151376 PMCID: PMC11938339 DOI: 10.1021/acs.organomet.4c00506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 02/27/2025] [Accepted: 03/04/2025] [Indexed: 03/29/2025]
Abstract
We report the synthesis and solid-state characterization of two unusual Pd2Zn2 clusters formed from the partial reduction of [PdL2Cl2] precursors (L2 = dcpe or dppe) with metallic zinc. The new clusters have been characterized by single crystal X-ray diffraction and contain a Pd2Zn2Cl3 core capped by two chelating phosphine ligands with Zn in the formal +1.5 oxidation state. While they possess a near tetrahedral arrangement of metal ions, calculations and bonding analysis (NBO, AIM) suggest that there is limited Zn- - -Zn bonding in these species. Characterization in the solution state is suggestive of dynamic behavior on dissolution, with both diamagnetic and paramagnetic species observed by NMR and EPR spectroscopy. One of these Pd2Zn2 clusters was shown to be an effective precursor for the homocoupling of an aryl bromide.
Collapse
Affiliation(s)
- Georgina Rai
- Molecular Sciences Research
Hub, Imperial College London, 82 Wood Lane, Shepherds
Bush, London W12 0BZ, U.K.
| | - Martí Garçon
- Molecular Sciences Research
Hub, Imperial College London, 82 Wood Lane, Shepherds
Bush, London W12 0BZ, U.K.
| | - Philip W. Miller
- Molecular Sciences Research
Hub, Imperial College London, 82 Wood Lane, Shepherds
Bush, London W12 0BZ, U.K.
| | - Mark R. Crimmin
- Molecular Sciences Research
Hub, Imperial College London, 82 Wood Lane, Shepherds
Bush, London W12 0BZ, U.K.
| |
Collapse
|
3
|
He Z, Chen M, Song Y, Wu F, Fu F, Wang Y. Regioselective Suzuki-Miyarua Cross-Coupling for Substituted 2,4-Dibromopyridines Catalyzed by C3-Symmetric Tripalladium Clusters. J Org Chem 2025; 90:1895-1904. [PMID: 39854297 DOI: 10.1021/acs.joc.4c02565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2025]
Abstract
Multipalladium clusters possess peculiar structures and synergistic effects for reactivity and selectivity. Herein, C3-symmetric tripalladium clusters (1, 0.5 mol %) afford C2-regioselective SMCC of 2,4-dibromopyridine with phenylboronic acids or pinacol esters (C2:C4 up to 98:1), in contrast to Pd(OAc)2 in ligand-free conditions. In addition, similar C2-selectivity was achieved in Sonogashira, Negishi, and Kumada coupling reactions. This method highlights their powerful catalytic ability, exclusive C2-selectivity, broad substrate scope, efficient amplification, and multiple ligand-exchange feasibility and demonstrates that the conventional sites could be successfully regulated or even reversed by catalysts.
Collapse
Affiliation(s)
- Zhixin He
- Department of Chemistry and Chemical Engineering, Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, Liaocheng University, Liaocheng 252059, China
| | - Meng Chen
- Department of Chemistry and Chemical Engineering, Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, Liaocheng University, Liaocheng 252059, China
| | - Yingrui Song
- Department of Chemistry and Chemical Engineering, Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, Liaocheng University, Liaocheng 252059, China
| | - Fen Wu
- Department of Chemistry and Chemical Engineering, Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, Liaocheng University, Liaocheng 252059, China
| | - Fangyu Fu
- School of Sciences, Great Bay University, Great Bay Institute for Advanced Study, Dongguan 523000, China
| | - Yanlan Wang
- Department of Chemistry and Chemical Engineering, Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, Liaocheng University, Liaocheng 252059, China
| |
Collapse
|
4
|
Mato M, Stamoulis A, Cleto Bruzzese P, Cornella J. Activation and C-C Coupling of Aryl Iodides via Bismuth Photocatalysis. Angew Chem Int Ed Engl 2025; 64:e202418367. [PMID: 39436157 PMCID: PMC11773318 DOI: 10.1002/anie.202418367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 10/14/2024] [Accepted: 10/15/2024] [Indexed: 10/23/2024]
Abstract
Within the emerging field of bismuth redox catalysis, the catalytic formation of C-C bonds using aryl halides would be highly desirable; yet such a process remains a synthetic challenge. Herein, we present a chemoselective bismuth-photocatalyzed activation and subsequent coupling of (hetero)aryl iodides with pyrrole derivatives to access C(sp2)-C(sp2) linkages through C-H functionalization. This unique reactivity is the result of the bismuth complex featuring two redox state-dependent interactions with light, which 1) activates the Bi(I) complex for oxidative addition via MLCT, and 2) promotes the homolytic cleavage of aryl Bi(III) intermediates through a LLCT process.
Collapse
Affiliation(s)
- Mauro Mato
- Max-Planck-Institut für KohlenforschungKaiser-Wilhelm-Platz 145470Mülheim an der RuhrGermany
| | - Alexios Stamoulis
- Max-Planck-Institut für KohlenforschungKaiser-Wilhelm-Platz 145470Mülheim an der RuhrGermany
| | - Paolo Cleto Bruzzese
- Max-Planck-Institut für Chemische EnergiekonversionStiftstrasse 34–3645470Mülheim an der RuhrGermany
| | - Josep Cornella
- Max-Planck-Institut für KohlenforschungKaiser-Wilhelm-Platz 145470Mülheim an der RuhrGermany
| |
Collapse
|
5
|
Wang M, He Z, Chen M, Fu F, Wang Y. Heterogenization of Palladium Trimer and Nanoparticles Through Polymerization Boosted Catalytic Efficiencies in Recyclable Coupling and Reduction Reactions. Chemistry 2024; 30:e202403447. [PMID: 39401948 DOI: 10.1002/chem.202403447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Accepted: 10/14/2024] [Indexed: 11/15/2024]
Abstract
The development of heterogeneous palladium catalysts has shown continuous vitality in the field of catalysis and materials. In this work, we report one concise free radical polymerization approach to accomplish the aromatic palladium trimer functionalized polymers PSSy-[Pd3]+ (2) and its derived palladium nanoparticles (3). Full characterizations could confirm the successful combination of cationic [Pd3]+ or nanoparticles with poly(p-sulfonated styrene) skeleton. Compared to their monomeric tri-palladium precursor (1) and common Pd(dba)2, Pd(PPh3)4, Pd(OAc)2, heterogeneous PSSy-[Pd3]+ (2) shows much superior catalytic activities (0.15 mol %, TOF=1333.3 h-1) in the SMCC reaction. The identically ligated PdNPs (3) are formed in-suit in the presence of NaBH4 and accomplish quantitative reduction of 4-nitrophenol in just 320 s (0.50 mol %, TOF=2250 h-1). Moreover, these heterogeneous catalysts are reused for 5-6 times without significant loss of catalytic activity. Their superior catalytic ability is probably attributed to the synergistic effect of polymer entanglement and the tri-palladium fragment. This work enlightens that the immobilization of palladium clusters or nanoparticles by polymerization could offer multiple advantages in stability, efficiency and recyclability for their involved catalyses and show far-reaching future implications.
Collapse
Affiliation(s)
- Miaomiao Wang
- Department of Chemistry and Chemical Engineering, Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, Liaocheng University, 252059, Liaocheng (China)., China
| | - Zhixin He
- Department of Chemistry and Chemical Engineering, Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, Liaocheng University, 252059, Liaocheng (China)., China
| | - Meng Chen
- Department of Chemistry and Chemical Engineering, Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, Liaocheng University, 252059, Liaocheng (China)., China
| | - Fangyu Fu
- School of Sciences, Great Bay University, Great Bay Institute for Advanced Study, Dongguan, 523000, China
| | - Yanlan Wang
- Department of Chemistry and Chemical Engineering, Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, Liaocheng University, 252059, Liaocheng (China)., China
| |
Collapse
|
6
|
McGhie L, Marotta A, Loftus PO, Seeberger PH, Funes-Ardoiz I, Molloy JJ. Photogeneration of α-Bimetalloid Radicals via Selective Activation of Multifunctional C1 Units. J Am Chem Soc 2024; 146:15850-15859. [PMID: 38805091 PMCID: PMC11177267 DOI: 10.1021/jacs.4c02261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 05/12/2024] [Accepted: 05/14/2024] [Indexed: 05/29/2024]
Abstract
Light-driven strategies that enable the chemoselective activation of a specific bond in multifunctional systems are comparatively underexplored in comparison to transition-metal-based technologies, yet desirable when considering the controlled exploration of chemical space. With the current drive to discover next-generation therapeutics, reaction design that enables the strategic incorporation of an sp3 carbon center, containing multiple synthetic handles for the subsequent exploration of chemical space would be highly enabling. Here, we describe the photoactivation of ambiphilic C1 units to generate α-bimetalloid radicals using only a Lewis base and light source to directly activate the C-I bond. Interception of these transient radicals with various SOMOphiles enables the rapid synthesis of organic scaffolds containing synthetic handles (B, Si, and Ge) for subsequent orthogonal activation. In-depth theoretical and mechanistic studies reveal the prominent role of 2,6-lutidine in forming a photoactive charge transfer complex and in stabilizing in situ generated iodine radicals, as well as the influential role of the boron p-orbital in the activation/weakening of the C-I bond. This simple and efficient methodology enabled expedient access to functionalized 3D frameworks that can be further derivatized using available technologies for C-B and C-Si bond activation.
Collapse
Affiliation(s)
- Lewis McGhie
- Department
of Biomolecular Systems, Max-Planck-Institute
of Colloids and Interfaces, Potsdam 14476, Germany
- Department
of Chemistry and Biochemistry, Freie Universität
Berlin, Berlin 14195, Germany
| | - Alessandro Marotta
- Department
of Biomolecular Systems, Max-Planck-Institute
of Colloids and Interfaces, Potsdam 14476, Germany
- Department
of Chemistry and Biochemistry, Freie Universität
Berlin, Berlin 14195, Germany
| | - Patrick O. Loftus
- Department
of Biomolecular Systems, Max-Planck-Institute
of Colloids and Interfaces, Potsdam 14476, Germany
| | - Peter H. Seeberger
- Department
of Biomolecular Systems, Max-Planck-Institute
of Colloids and Interfaces, Potsdam 14476, Germany
- Department
of Chemistry and Biochemistry, Freie Universität
Berlin, Berlin 14195, Germany
| | - Ignacio Funes-Ardoiz
- Department
of Chemistry, Instituto de Investigación Química de
la Universidad de La Rioja (IQUR), Universidad
de La Rioja Madre de Dios 53, Logroño 26004, Spain
| | - John J. Molloy
- Department
of Biomolecular Systems, Max-Planck-Institute
of Colloids and Interfaces, Potsdam 14476, Germany
| |
Collapse
|
7
|
Hossain MM, Shaikh AC, Kaur R, Gianetti TL. Red Light-Blue Light Chromoselective C(sp 2)-X Bond Activation by Organic Helicenium-Based Photocatalysis. J Am Chem Soc 2024; 146:7922-7930. [PMID: 38498938 DOI: 10.1021/jacs.3c13380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
Chromoselective bond activation has been achieved in organic helicenium (nPr-DMQA+)-based photoredox catalysis. Consequently, control over chromoselective C(sp2)-X bond activation in multihalogenated aromatics has been demonstrated. nPr-DMQA+ can only initiate the halogen atom transfer (XAT) pathway under red light irradiation to activate low-energy-accessible C(sp2)-I bonds. In contrast, blue light irradiation initiates consecutive photoinduced electron transfer (conPET) to activate more challenging C(sp2)-Br bonds. Comparative reaction outcomes have been demonstrated in the α-arylation of cyclic ketones with red and blue lights. Furthermore, red-light-mediated selective C(sp2)-I bonds have been activated in iodobromoarenes to keep the bromo functional handle untouched. Finally, the strength of the chromoselective catalysis has been highlighted with two-fold functionalization using both photo-to-transition metal and photo-to-photocatalyzed transformations.
Collapse
Affiliation(s)
- Md Mubarak Hossain
- Department of Chemistry and Biochemistry, The University of Arizona, Tucson, Arizona 85721, United States
| | - Aslam C Shaikh
- Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar, Punjab 140001, India
| | - Ramandeep Kaur
- Department of Chemistry and Biochemistry, The University of Arizona, Tucson, Arizona 85721, United States
| | - Thomas L Gianetti
- Department of Chemistry and Biochemistry, The University of Arizona, Tucson, Arizona 85721, United States
| |
Collapse
|
8
|
Wang M, Wang Y. Advances for Triangular and Sandwich-Shaped All-Metal Aromatics. Molecules 2024; 29:763. [PMID: 38398515 PMCID: PMC10892378 DOI: 10.3390/molecules29040763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 01/19/2024] [Accepted: 01/26/2024] [Indexed: 02/25/2024] Open
Abstract
Much experimental work has been contributed to all-metal σ, π and δ-aromaticity among transition metals, semimetallics and other metals in the past two decades. Before our focused investigations on the properties of triangular and sandwich-shaped all-metal aromatics, A. I. Boldyrev presented general discussions on the concepts of all-metal σ-aromaticity and σ-antiaromaticity for metallo-clusters. Schleyer illustrated that Nucleus-Independent Chemical Shifts (NICS) were among the most authoritative criteria for aromaticity. Ugalde discussed the earlier developments of all-metal aromatic compounds with all possible shapes. Besides the theoretical predictions, many stable all-metal aromatic trinuclear clusters have been isolated as the metallic analogues of either the σ-aromatic molecule's [H3]+ ion or the π-aromatic molecule's [C3H3]+ ion. Different from Hoffman's opinion on all-metal aromaticity, triangular all-metal aromatics were found to hold great potential in applications in coordination chemistry, catalysis, and material science. Triangular all-metal aromatics, which were theoretically proved to conform to the Hückel (4n + 2) rule and possess the smallest aromatic ring, could also play roles as stable ligands during the formation of all-metal sandwiches. The triangular and sandwich-shaped all-metal aromatics have not yet been specifically summarized despite their diversity of existence, puissant developments and various interesting applications. These findings are different from the public opinion that all-metal aromatics would be limited to further applications due to their overstated difficulties in synthesis and uncertain stabilities. Our review will specifically focus on the summarization of theoretical predictions, feasible syntheses and isolations, and multiple applications of triangular and sandwich shaped all-metal aromatics. The appropriateness and necessities of this review will emphasize and disseminate their importance and applications forcefully and in a timely manner.
Collapse
Affiliation(s)
| | - Yanlan Wang
- Department of Chemistry and Chemical Engineering, Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, Liaocheng University, Liaocheng 252059, China;
| |
Collapse
|
9
|
Yao J, Shao L, Kang X, Zhu M, Huo X, Wang X. Direct α-Arylation of Benzo[ b]furans Catalyzed by a Pd 3 Cluster. J Org Chem 2024; 89:1719-1726. [PMID: 38204281 DOI: 10.1021/acs.joc.3c02428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
As an interim paradigm for the catalysts between those based on more conventional mononuclear molecular Pd complexes and Pdn nanoparticles widely used in organic synthesis, polynuclear palladium clusters have attracted great attention for their unique reactivity and electronic properties. However, the development of Pd cluster catalysts for organic transformations and mechanistic investigations is still largely unexploited. Herein, we disclose the use of trinuclear palladium (Pd3Cl) species as an active catalyst for the direct C-H α-arylation of benzo[b]furans with aryl iodides to afford 2-arylbenzofurans in good yields under mild conditions. With this method, broad substrate adaptability was observed, and several drug intermediates were synthesized in high yields. Mechanistic studies indicated that the Pd3 core most likely remained intact throughout the reaction course.
Collapse
Affiliation(s)
- Jian Yao
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiaotong University, 800 Dongchuan Road, Shanghai 200240, China
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Lili Shao
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Xi Kang
- Department of Chemistry and Center for Atomic Engineering of Advanced Materials, Anhui University, Hefei 230601, China
| | - Manzhou Zhu
- Department of Chemistry and Center for Atomic Engineering of Advanced Materials, Anhui University, Hefei 230601, China
| | - Xiaohong Huo
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiaotong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Xiaoming Wang
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou 310024, China
| |
Collapse
|
10
|
Wang M, He Z, Chen M, Wang Y. Aryl sulfonate anion stabilized aromatic triangular cation [Pd 3] +: syntheses, structures and properties. RSC Adv 2023; 13:29689-29694. [PMID: 37822652 PMCID: PMC10563175 DOI: 10.1039/d3ra04460b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 09/19/2023] [Indexed: 10/13/2023] Open
Abstract
A series of sulfonate anions paired aromatic triangular palladium clusters 3-7, abbreviated as [Pd3]+[ArSO3]-, were synthesized using a simple "one pot" method, and gave excellent isolated yields (90-95%). Their structures and properties have been fully characterized and further investigated by fluorescence, single crystal X-ray Diffraction (XRD) and X-ray Photoelectron Spectroscopy (XPS). In varying organic solvents, they presented apparently stronger absorption and emission in MeOH, driven by the combined interactions of hydrogen bonds and polarity. The crystallographic data demonstrated that the methyl orange ion stabilized complex 7 possessed a D3h symmetric metallic core which was still coplanar and almost equilateral, jointly influenced by the giant hindrance and milder donating effect from the sulfonate. The binding energies for Pdn+ 3d5/2 and Pdn+ 3d3/2 measured by XPS presented at 336.55 and 342.00 eV, respectively. These data were much lower than that of a usual Pd2+ 3d and significantly higher than that of a Pd0 species, further proving the unified palladium valence state (+4/3) in the tri-palladium core and its aromaticity featured by the cyclic electron delocalization.
Collapse
Affiliation(s)
- Miaomiao Wang
- Department of Chemistry and Chemical Engineering, Liaocheng University 252059 Liaocheng China
| | - Zhixin He
- Department of Chemistry and Chemical Engineering, Liaocheng University 252059 Liaocheng China
| | - Meng Chen
- Department of Chemistry and Chemical Engineering, Liaocheng University 252059 Liaocheng China
| | - Yanlan Wang
- Department of Chemistry and Chemical Engineering, Liaocheng University 252059 Liaocheng China
| |
Collapse
|
11
|
Karl TM, Bouayad-Gervais S, Hueffel JA, Sperger T, Wellig S, Kaldas SJ, Dabranskaya U, Ward JS, Rissanen K, Tizzard GJ, Schoenebeck F. Machine Learning-Guided Development of Trialkylphosphine Ni (I) Dimers and Applications in Site-Selective Catalysis. J Am Chem Soc 2023. [PMID: 37411044 DOI: 10.1021/jacs.3c03403] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/08/2023]
Abstract
Owing to the unknown correlation of a metal's ligand and its resulting preferred speciation in terms of oxidation state, geometry, and nuclearity, a rational design of multinuclear catalysts remains challenging. With the goal to accelerate the identification of suitable ligands that form trialkylphosphine-derived dihalogen-bridged Ni(I) dimers, we herein employed an assumption-based machine learning approach. The workflow offers guidance in ligand space for a desired speciation without (or only minimal) prior experimental data points. We experimentally verified the predictions and synthesized numerous novel Ni(I) dimers as well as explored their potential in catalysis. We demonstrate C-I selective arylations of polyhalogenated arenes bearing competing C-Br and C-Cl sites in under 5 min at room temperature using 0.2 mol % of the newly developed dimer, [Ni(I)(μ-Br)PAd2(n-Bu)]2, which is so far unmet with alternative dinuclear or mononuclear Ni or Pd catalysts.
Collapse
Affiliation(s)
- Teresa M Karl
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| | - Samir Bouayad-Gervais
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| | - Julian A Hueffel
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| | - Theresa Sperger
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| | - Sebastian Wellig
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| | - Sherif J Kaldas
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| | | | - Jas S Ward
- Department of Chemistry, University of Jyvaskyla, FIN40014 Jyväskylä, Finland
| | - Kari Rissanen
- Department of Chemistry, University of Jyvaskyla, FIN40014 Jyväskylä, Finland
| | - Graham J Tizzard
- UK National Crystallography Service, School of Chemistry, University of Southampton, SO17 1BJ Southhampton, U.K
| | - Franziska Schoenebeck
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| |
Collapse
|
12
|
Deaminative bromination, chlorination, and iodination of primary amines. iScience 2023; 26:106255. [PMID: 36909668 PMCID: PMC9993034 DOI: 10.1016/j.isci.2023.106255] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 02/06/2023] [Accepted: 02/17/2023] [Indexed: 02/24/2023] Open
Abstract
The primary amino group has been seldom utilized as a transformable functionality in organic synthesis. Reported herein is a deaminative halogenation of primary amines using N-anomeric amide as the nitrogen-deletion reagent. Both aliphatic and aromatic amines are competent substrates for direct halogenations. The mildness and robustness of the protocol are evidenced by the successful reactions of several complex- and functional group-enriched bioactive compounds or drugs. Elaboration of the resulting products provides interesting analogues of drug molecules.
Collapse
|
13
|
Yao J, Bai J, Kang X, Zhu M, Guo Y, Wang X. Non-directed C-H arylation of electron-deficient arenes by synergistic silver and Pd 3 cluster catalysis. NANOSCALE 2023; 15:3560-3565. [PMID: 36723135 DOI: 10.1039/d2nr05825a] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Transition-metal clusters have attracted great attention in catalysis due to their unique reactivity and electronic properties, especially for novel substrate binding and activation modes at the bridging coordination sites of metal clusters. Although palladium complexes have demonstrated outstanding catalytic performance in various transformations, the catalytic behaviors of polynuclear palladium clusters in many important synthetic methodologies remain much less explored so far. Herein, we disclose the use of an atomically defined tri-nuclear palladium (Pd3Cl) species as a catalyst precursor in Ag(I)-assisted direct C-H arylation with aryl iodides under mild conditions. This catalyst system leads to the formation of synthetically important biaryls in good yields with high site selectivities without the assistance of directing groups.
Collapse
Affiliation(s)
- Jian Yao
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China.
| | - Jiahui Bai
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China.
| | - Xi Kang
- Department of Chemistry and Center for Atomic Engineering of Advanced Materials, Anhui University, Hefei 230601, China
| | - Manzhou Zhu
- Department of Chemistry and Center for Atomic Engineering of Advanced Materials, Anhui University, Hefei 230601, China
| | - Yinlong Guo
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China.
| | - Xiaoming Wang
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China.
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou 310024, China
| |
Collapse
|
14
|
Bigi F, Cauzzi D, Della Ca’ N, Malacria M, Maggi R, Motti E, Wang Y, Maestri G. Evolution of Triangular All-Metal Aromatic Complexes from Bonding Quandaries to Powerful Catalytic Platforms. ACS ORGANIC & INORGANIC AU 2022; 2:373-385. [PMID: 36855666 PMCID: PMC9955218 DOI: 10.1021/acsorginorgau.2c00029] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/13/2022] [Accepted: 07/13/2022] [Indexed: 11/30/2022]
Abstract
This manuscript describes an overview on the literature detailing the observation of trinuclear complexes that present delocalized metal-metal bonds similar to those of regular aromatics, which are formed combining main group elements. A particular emphasis is given to the structural and electronic features of aromatic clusters that are sufficiently stable to allow their isolation. In parallel to the description of their key bonding properties, the work presents reported catalytic applications of these complexes, which already span from elaborated C-C-forming cascades to highly efficient cross-coupling methods. These examples present peculiar aspects of the unique reactivity exerted by all-metal aromatic complexes, which can often be superior to their established, popular mononuclear peers in terms of chemoselectivity and chemical robustness.
Collapse
Affiliation(s)
- Franca Bigi
- Department
of Chemistry, Life Sciences and Environmental Sustainability, Università di Parma, Parco Area delle Scienze 17/A, 43124 Parma, Italy,IMEM-CNR, Parco Area
delle Scienze 37/A, 43124 Parma, Italy
| | - Daniele Cauzzi
- Department
of Chemistry, Life Sciences and Environmental Sustainability, Università di Parma, Parco Area delle Scienze 17/A, 43124 Parma, Italy
| | - Nicola Della Ca’
- Department
of Chemistry, Life Sciences and Environmental Sustainability, Università di Parma, Parco Area delle Scienze 17/A, 43124 Parma, Italy
| | - Max Malacria
- Faculty
of Science and Engineering, IPCM, UMR CNRS 8232, Sorbonne Université, 4 place Jussieu, Paris 75252 Cedex 05, France
| | - Raimondo Maggi
- Department
of Chemistry, Life Sciences and Environmental Sustainability, Università di Parma, Parco Area delle Scienze 17/A, 43124 Parma, Italy
| | - Elena Motti
- Department
of Chemistry, Life Sciences and Environmental Sustainability, Università di Parma, Parco Area delle Scienze 17/A, 43124 Parma, Italy
| | - Yanlan Wang
- Department
of Chemistry and Chemical Engineering, Liaocheng
University, 252059 Liaocheng, China
| | - Giovanni Maestri
- Department
of Chemistry, Life Sciences and Environmental Sustainability, Università di Parma, Parco Area delle Scienze 17/A, 43124 Parma, Italy,
| |
Collapse
|
15
|
Horbaczewskyj CS, Fairlamb IJS. Pd-Catalyzed Cross-Couplings: On the Importance of the Catalyst Quantity Descriptors, mol % and ppm. Org Process Res Dev 2022; 26:2240-2269. [PMID: 36032362 PMCID: PMC9396667 DOI: 10.1021/acs.oprd.2c00051] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Indexed: 12/26/2022]
Abstract
![]()
This Review examines parts per million (ppm) palladium
concentrations
in catalytic cross-coupling reactions and their relationship with
mole percentage (mol %). Most studies in catalytic cross-coupling
chemistry have historically focused on the concentration ratio between
(pre)catalyst and the limiting reagent (substrate), expressed as mol
%. Several recent papers have outlined the use of “ppm level”
palladium as an alternative means of describing catalytic cross-coupling
reaction systems. This led us to delve deeper into the literature
to assess whether “ppm level” palladium is a practically
useful descriptor of catalyst quantities in palladium-catalyzed cross-coupling
reactions. Indeed, we conjectured that many reactions could, unknowingly,
have employed low “ppm levels” of palladium (pre)catalyst,
and generally, what would the spread of ppm palladium look like across
a selection of studies reported across the vast array of the cross-coupling
chemistry literature. In a few selected examples, we have examined
other metal catalyst systems for comparison with palladium.
Collapse
Affiliation(s)
| | - Ian J. S. Fairlamb
- University of York, Heslington, York, North Yorkshire, YO10 5DD, United Kingdom
| |
Collapse
|
16
|
Kreisel T, Mendel M, Queen AE, Deckers K, Hupperich D, Riegger J, Fricke C, Schoenebeck F. Modular Generation of (Iodinated) Polyarenes Using Triethylgermane as Orthogonal Masking Group. Angew Chem Int Ed Engl 2022; 61:e202201475. [PMID: 35263493 PMCID: PMC9314983 DOI: 10.1002/anie.202201475] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Indexed: 02/06/2023]
Abstract
While the modular construction of molecules from suitable building blocks is a powerful means to more rapidly generate a diversity of molecules than through customized syntheses, the further evolution of the underlying coupling methodology is key to realize widespread applications. We herein disclose a complementary modular coupling approach to the widely employed Suzuki coupling strategy of boron containing precursors, which relies on organogermane containing building blocks as key orthogonal functionality and an electrophilic (rather than nucleophilic) unmasking event paired with air-stable PdI dimer based bond construction. This allows to significantly shorten the reaction times for the iterative coupling steps and/or to close gaps in the accessible compound space, enabling straightforward access also to iodinated compounds.
Collapse
Affiliation(s)
- Tatjana Kreisel
- Institute of Organic ChemistryRWTH Aachen UniversityLandoltweg 152074AachenGermany
| | - Marvin Mendel
- Institute of Organic ChemistryRWTH Aachen UniversityLandoltweg 152074AachenGermany
| | - Adele E. Queen
- Institute of Organic ChemistryRWTH Aachen UniversityLandoltweg 152074AachenGermany
| | - Kristina Deckers
- Institute of Organic ChemistryRWTH Aachen UniversityLandoltweg 152074AachenGermany
| | - Daniel Hupperich
- Institute of Organic ChemistryRWTH Aachen UniversityLandoltweg 152074AachenGermany
| | - Julian Riegger
- Institute of Organic ChemistryRWTH Aachen UniversityLandoltweg 152074AachenGermany
| | - Christoph Fricke
- Institute of Organic ChemistryRWTH Aachen UniversityLandoltweg 152074AachenGermany
| | | |
Collapse
|
17
|
Selmani A, Schoetz MD, Queen AE, Schoenebeck F. Modularity in the C sp3 Space─Alkyl Germanes as Orthogonal Molecular Handles for Chemoselective Diversification. ACS Catal 2022. [DOI: 10.1021/acscatal.2c00852] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Aymane Selmani
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| | - Markus D. Schoetz
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| | - Adele E. Queen
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| | - Franziska Schoenebeck
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| |
Collapse
|
18
|
Kreisel T, Mendel M, Queen AE, Deckers K, Hupperich D, Riegger J, Fricke C, Schoenebeck F. Modular Generation of (Iodinated) Polyarenes Using Triethylgermane as Orthogonal Masking Group. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202201475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Tatjana Kreisel
- Institute of Organic Chemistry RWTH Aachen University Landoltweg 1 52074 Aachen Germany
| | - Marvin Mendel
- Institute of Organic Chemistry RWTH Aachen University Landoltweg 1 52074 Aachen Germany
| | - Adele E. Queen
- Institute of Organic Chemistry RWTH Aachen University Landoltweg 1 52074 Aachen Germany
| | - Kristina Deckers
- Institute of Organic Chemistry RWTH Aachen University Landoltweg 1 52074 Aachen Germany
| | - Daniel Hupperich
- Institute of Organic Chemistry RWTH Aachen University Landoltweg 1 52074 Aachen Germany
| | - Julian Riegger
- Institute of Organic Chemistry RWTH Aachen University Landoltweg 1 52074 Aachen Germany
| | - Christoph Fricke
- Institute of Organic Chemistry RWTH Aachen University Landoltweg 1 52074 Aachen Germany
| | - Franziska Schoenebeck
- Institute of Organic Chemistry RWTH Aachen University Landoltweg 1 52074 Aachen Germany
| |
Collapse
|
19
|
Wang X, Sun L, Wang M, Maestri G, Malacria M, Liu X, Wang Y, Wu L. C‐I Selective Sonogashira and Heck Coupling Reactions Catalyzed by Aromatic Triangular Tri‐palladium. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Xiaoshuang Wang
- Liaocheng University department of chemistry and chemical engineering CHINA
| | - Lei Sun
- Liaocheng University department of chemistry and chemical engineering CHINA
| | - Miaomiao Wang
- Liaocheng University department of chemistry and chemical engineering CHINA
| | - Giovanni Maestri
- University of Parma: Universita degli Studi di Parma deparment of chemistry, life sciences and environmental sustainability ITALY
| | - Max Malacria
- CNRS: Centre National de la Recherche Scientifique ICSN FRANCE
| | - Xiang Liu
- China Three Gorges University college of materials and chemical engineering CHINA
| | - Yanlan Wang
- Liaocheng University Department of chemistry and chemical engineering 1,Hunan Road, Liaocheng City, Shandong Province, China 252059 Liaocheng CHINA
| | - Lingang Wu
- Liaocheng University department of chemistry and chemical engineering CHINA
| |
Collapse
|
20
|
Zhang D, Tang T, Zhang Z, Le L, Xu Z, Lu H, Tong Z, Zeng D, Wong WY, Yin SF, Ghaderi A, Kambe N, Qiu R. Nickel- and Palladium-Catalyzed Cross-Coupling of Stibines with Organic Halides: Site-Selective Sequential Reactions with Polyhalogenated Arenes. ACS Catal 2021. [DOI: 10.1021/acscatal.1c04533] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Dejiang Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Ting Tang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Zhao Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Liyuan Le
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Zhi Xu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Hao Lu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Zhou Tong
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Dishu Zeng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Wai-Yeung Wong
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Kowloon, Hong Kong 999077, China
| | - Shuang-Feng Yin
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Arash Ghaderi
- Department of Chemistry, College of Sciences, University of Hormozgan, Bandar Abbas 7916193145, Iran
| | - Nobuaki Kambe
- The Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihogaoka, Ibaraki-shi, Osaka 567-0047, Japan
| | - Renhua Qiu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| |
Collapse
|
21
|
Hueffel JA, Sperger T, Funes-Ardoiz I, Ward JS, Rissanen K, Schoenebeck F. Accelerated dinuclear palladium catalyst identification through unsupervised machine learning. Science 2021; 374:1134-1140. [PMID: 34822285 DOI: 10.1126/science.abj0999] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Julian A Hueffel
- Institute of Organic Chemistry, RWTH Aachen University; Landoltweg 1, 52074 Aachen, Germany
| | - Theresa Sperger
- Institute of Organic Chemistry, RWTH Aachen University; Landoltweg 1, 52074 Aachen, Germany
| | - Ignacio Funes-Ardoiz
- Institute of Organic Chemistry, RWTH Aachen University; Landoltweg 1, 52074 Aachen, Germany
| | - Jas S Ward
- Department of Chemistry, University of Jyväskylä; P.O. Box 35, 40014 Jyväskylä, Finland
| | - Kari Rissanen
- Department of Chemistry, University of Jyväskylä; P.O. Box 35, 40014 Jyväskylä, Finland
| | - Franziska Schoenebeck
- Institute of Organic Chemistry, RWTH Aachen University; Landoltweg 1, 52074 Aachen, Germany
| |
Collapse
|
22
|
Bigi F, Cera G, Maggi R, Wang Y, Malacria M, Maestri G. Is Aromaticity a Driving Force in Catalytic Cycles? A Case from the Cycloisomerization of Enynes Catalyzed by All-Metal Aromatic Pd 3+ Clusters and Carboxylic Acids. J Phys Chem A 2021; 125:10035-10043. [PMID: 34784222 DOI: 10.1021/acs.jpca.1c07253] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The work details a mechanistic study based on density functional theory modeling on the cycloisomerization of polyunsaturated substrates catalyzed by all-metal aromatic tripalladium complexes and carboxylic acids. These clusters are an emerging class of catalysts for a variety of relevant transformations, including C-C forming processes that occur under mild conditions and display synthetic features complementary to those of established mononuclear complexes. This study is the first computational one devoted to the comprehension of the series of elementary steps involved in a synthetic transformation catalyzed by an all-metal aromatic complex. Present results confirm previous experimental hints on the striking mechanistic differences exerted by these clusters with respect to the usual cyclization pathways of related substrates. Moreover, the catalytic cycle involving present all-metal aromatic clusters closely parallels the mechanism of the aromatic substitution of regular arenes.
Collapse
Affiliation(s)
- Franca Bigi
- Department of Chemistry, Life Sciences and Environmental Sustainability, Università di Parma, Parco Area delle Scienze 17/A, 43124 Parma, Italy.,IMEM-CNR, Parco Area delle Scienze 37/A, 43124 Parma, Italy
| | - Gianpiero Cera
- Department of Chemistry, Life Sciences and Environmental Sustainability, Università di Parma, Parco Area delle Scienze 17/A, 43124 Parma, Italy
| | - Raimondo Maggi
- Department of Chemistry, Life Sciences and Environmental Sustainability, Università di Parma, Parco Area delle Scienze 17/A, 43124 Parma, Italy
| | - Yanlan Wang
- Department of Chemistry and Chemical Engineering, Liaocheng University, 252059 Liaocheng, China
| | - Max Malacria
- Sorbonne Université, Faculty of Science and Engineering, CNRS, Institut Parisien de Chimie Moléculaire (UMR CNRS 8232), 75252 Paris Cedex 05, France
| | - Giovanni Maestri
- Department of Chemistry, Life Sciences and Environmental Sustainability, Università di Parma, Parco Area delle Scienze 17/A, 43124 Parma, Italy
| |
Collapse
|
23
|
Serafino A, Camedda N, Lanzi M, Della Ca' N, Cera G, Maestri G. Inter/Intramolecular Cascade of 1,6-Enynes Catalyzed by All-Metal Aromatic Tripalladium Complexes and Carboxylic Acids. J Org Chem 2021; 86:15433-15452. [PMID: 34657418 DOI: 10.1021/acs.joc.1c01962] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Trinuclear all-metal aromatic clusters are an original class of molecules with a cyclic and planar metal core. Characterized by peculiar metal-metal delocalized bonds, they represent a new frontier in transition-metal catalysis. We report a study on C-C-forming reactions of polyunsaturated substrates catalyzed by trinuclear all-metal aromatic palladium clusters. The synthesis of two new families of tricyclic compounds was obtained with a broad functional group tolerance under mild reaction conditions. A peculiar regio- and diastereoselectivity characterized the method, demonstrating that trinuclear palladium complexes are complementary to their popular mononuclear peers. Furthermore, preliminary studies on the mechanism of these polycyclization reactions revealed unique features of the homogeneous catalytic system.
Collapse
Affiliation(s)
- Andrea Serafino
- Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità Ambientale, Università di Parma, Parco Area delle Scienze 17/A, 43124 Parma, Italy
| | - Nicola Camedda
- Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità Ambientale, Università di Parma, Parco Area delle Scienze 17/A, 43124 Parma, Italy
| | - Matteo Lanzi
- Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità Ambientale, Università di Parma, Parco Area delle Scienze 17/A, 43124 Parma, Italy
| | - Nicola Della Ca'
- Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità Ambientale, Università di Parma, Parco Area delle Scienze 17/A, 43124 Parma, Italy
| | - Gianpiero Cera
- Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità Ambientale, Università di Parma, Parco Area delle Scienze 17/A, 43124 Parma, Italy
| | - Giovanni Maestri
- Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità Ambientale, Università di Parma, Parco Area delle Scienze 17/A, 43124 Parma, Italy
| |
Collapse
|
24
|
Appleby KM, Dzotsi E, Scott NWJ, Dexin G, Jeddi N, Whitwood AC, Pridmore NE, Hart S, Duckett SB, Fairlamb IJS. Bridging the Gap from Mononuclear Pd II Precatalysts to Pd Nanoparticles: Identification of Intermediate Linear [Pd 3(XPh 3) 4] 2+ Clusters as Catalytic Species for Suzuki–Miyaura Couplings (X = P, As). Organometallics 2021. [DOI: 10.1021/acs.organomet.1c00452] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Kate M. Appleby
- Centre for Hyperpolorisation, University of York, York, North Yorkshire YO10 5NY, United Kingdom
- Department of Chemistry, University of York, York, North Yorkshire YO10 5DD, United Kingdom
| | - Evans Dzotsi
- Department of Chemistry, University of York, York, North Yorkshire YO10 5DD, United Kingdom
| | - Neil W. J. Scott
- Department of Chemistry, University of York, York, North Yorkshire YO10 5DD, United Kingdom
| | - Guan Dexin
- Centre for Hyperpolorisation, University of York, York, North Yorkshire YO10 5NY, United Kingdom
| | - Neda Jeddi
- Department of Chemistry, University of York, York, North Yorkshire YO10 5DD, United Kingdom
| | - Adrian C. Whitwood
- Department of Chemistry, University of York, York, North Yorkshire YO10 5DD, United Kingdom
| | - Natalie E. Pridmore
- Department of Chemistry, University of York, York, North Yorkshire YO10 5DD, United Kingdom
| | - Sam Hart
- Department of Chemistry, University of York, York, North Yorkshire YO10 5DD, United Kingdom
| | - Simon B. Duckett
- Centre for Hyperpolorisation, University of York, York, North Yorkshire YO10 5NY, United Kingdom
- Department of Chemistry, University of York, York, North Yorkshire YO10 5DD, United Kingdom
| | - Ian J. S. Fairlamb
- Department of Chemistry, University of York, York, North Yorkshire YO10 5DD, United Kingdom
| |
Collapse
|
25
|
Usui R, Sunada Y. Triangular Palladium Cluster from Activation of the Si-Si Bond in a Disilane with Phosphine Pendants. Inorg Chem 2021; 60:15101-15105. [PMID: 34558907 DOI: 10.1021/acs.inorgchem.1c02043] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A disilane that contains two diphenylphosphino moieties, (Ph2PCH2)Ph2Si-SiPh2(CH2PPh), was readily synthesized from the reaction of ClPh2Si-SiPh2Cl with (tmeda)Li(CH2PPh2). Treatment of the thus-obtained disilane with the palladium(0) precursor [Pd(CNtBu)2]3 led to the exclusive formation of a trinuclear palladium cluster in which three palladium atoms are arranged in a triangular fashion. Single-crystal X-ray diffraction analysis of the obtained triangular cluster revealed that novel silylphosphido chelating ligands were formed via a skeletal rearrangement of the ligand framework.
Collapse
Affiliation(s)
| | - Yusuke Sunada
- JST PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012 Japan
| |
Collapse
|
26
|
Scott NWJ, Ford MJ, Husbands DR, Whitwood AC, Fairlamb IJS. Reactivity of a Dinuclear Pd I Complex [Pd 2(μ-PPh 2)(μ 2-OAc)(PPh 3) 2] with PPh 3: Implications for Cross-Coupling Catalysis Using the Ubiquitous Pd(OAc) 2/nPPh 3 Catalyst System. Organometallics 2021; 40:2995-3002. [PMID: 34539028 PMCID: PMC8441971 DOI: 10.1021/acs.organomet.1c00347] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Indexed: 01/13/2023]
Abstract
![]()
[PdI2(μ-PPh2)(μ2-OAc)(PPh3)2] is
the reduction product
of PdII(OAc)2(PPh3)2,
generated by reaction of ‘Pd(OAc)2’ with
two equivalents of PPh3. Here, we report that the reaction
of [PdI2(μ-PPh2)(μ2-OAc)(PPh3)2] with PPh3 results
in a nuanced disproportionation reaction, forming [Pd0(PPh3)3] and a phosphinito-bridged PdI-dinuclear
complex, namely [PdI2(μ-PPh2){κ2-P,O-μ-P(O)Ph2}(κ-PPh3)2]. The latter complex is proposed to form by
abstraction of an oxygen atom from an acetate ligand at Pd. A mechanism
for the formal reduction of a putative PdII disproportionation
species to the observed PdI complex is postulated. Upon
reaction of the mixture of [Pd0(PPh)3] and [PdI2(μ-PPh2){κ2-P,O-μ-P(O)Ph2}(κ-PPh3)2] with 2-bromopyridine,
the former Pd0 complex undergoes a fast oxidative addition
reaction, while the latter dinuclear PdI complex converts
slowly to a tripalladium cluster, of the type [Pd3(μ-X)(μ-PPh2)2(PPh3)3]X, with an overall
4/3 oxidation state per Pd. Our findings reveal complexity
associated with the precatalyst activation step for the ubiquitous
‘Pd(OAc)2’/nPPh3 catalyst system,
with implications for cross-coupling catalysis.
Collapse
Affiliation(s)
- Neil W J Scott
- Department of Chemistry, University of York, Heslington, York, North Yorkshire YO10 5DD, United Kingdom
| | - Mark J Ford
- Bayer AG, Alfred-Nobel-Strasse 50, 40789 Monheim, Germany
| | - David R Husbands
- Department of Chemistry, University of York, Heslington, York, North Yorkshire YO10 5DD, United Kingdom
| | - Adrian C Whitwood
- Department of Chemistry, University of York, Heslington, York, North Yorkshire YO10 5DD, United Kingdom
| | - Ian J S Fairlamb
- Department of Chemistry, University of York, Heslington, York, North Yorkshire YO10 5DD, United Kingdom
| |
Collapse
|
27
|
Li X, Li J, Wang X, Wu L, Wang Y, Maestri G, Malacria M, Liu X. Photoelectric properties of aromatic triangular tri-palladium complexes and their catalytic applications in the Suzuki-Miyaura coupling reaction. Dalton Trans 2021; 50:11834-11842. [PMID: 34369501 DOI: 10.1039/d1dt01597d] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The photoelectric properties and catalytic activities of substituted triphenylphosphine and sulfur/selenium ligand supported aromatic triangular tri-palladium complexes 1-4, abbreviated as [Pd3]+, were investigated. The cyclic voltammogram of [Pd3]+ in CH3CN-nBu4NPF6 showed a single quasi-reversible wave which was consistent with their robust property and provided preliminary proof for their electron transfer processes in catalysis. With excitation at 267 nm, [Pd3]+ exhibited strong ratiometric fluorescence at 550 and 780 nm at a temperature gradient from 77 K to 287 K. These peculiar triangular tri-palladium complexes showed excellent catalytic activities and exclusive reactivity with aryl iodides over the other halogenated aromatics in the Suzuki-Miyaura coupling reaction. The electronic and steric hindrance effects of substituents on the aryl iodides and aryl boronic acids including heteroaromatics like pyridine, pyrazine and thiophenes were explored and most substrates achieved up to 99% of yields. (2-[1,1'-Biphenyl]-2-ylbenzothiazole) which was analogous to the selective cyclooxygenase-2 (COX-2) inhibitors was also synthesized with our tri-palladium catalyst and gave good isolated yield (94%). The study of the catalytic process revealed that the mechanism of the reaction may involve the replacement of the sulphur ligand on [Pd3]+ by iodine from aryl iodides, which was beneficial for the matching of C-I bond energy.
Collapse
Affiliation(s)
- Xujun Li
- Department of chemistry and chemical engineering, Liaocheng University, 252059, Liaocheng, China.
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Scott NW, Ford MJ, Jeddi N, Eyles A, Simon L, Whitwood AC, Tanner T, Willans CE, Fairlamb IJS. A Dichotomy in Cross-Coupling Site Selectivity in a Dihalogenated Heteroarene: Influence of Mononuclear Pd, Pd Clusters, and Pd Nanoparticles-the Case for Exploiting Pd Catalyst Speciation. J Am Chem Soc 2021; 143:9682-9693. [PMID: 34152135 PMCID: PMC8297865 DOI: 10.1021/jacs.1c05294] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Indexed: 12/23/2022]
Abstract
Site-selective dihalogenated heteroarene cross-coupling with organometallic reagents usually occurs at the halogen proximal to the heteroatom, enabled by intrinsic relative electrophilicity, particularly in strongly polarized systems. An archetypical example is the Suzuki-Miyaura cross-coupling (SMCC) of 2,4-dibromopyridine with organoboron species, which typically exhibit C2-arylation site-selectivity using mononuclear Pd (pre)catalysts. Given that Pd speciation, particularly aggregation, is known to lead to the formation of catalytically competent multinuclear Pdn species, the influence of these species on cross-coupling site-selectivity remains largely unknown. Herein, we disclose that multinuclear Pd species, in the form of Pd3-type clusters and nanoparticles, switch arylation site-selectivity from C2 to C4, in 2,4-dibromopyridine cross-couplings with both organoboronic acids (SMCC reactions) and Grignard reagents (Kumada-type reactions). The Pd/ligand ratio and the presence of suitable stabilizing salts were found to be critically important in switching the site-selectivity. More generally, this study provides experimental evidence that aggregated Pd catalyst species not only are catalytically competent but also alter reaction outcomes through changes in product selectivity.
Collapse
Affiliation(s)
- Neil W.
J. Scott
- Department
of Chemistry, University of York, Heslington, York, North
Yorkshire YO10 5DD, United Kingdom
| | - Mark J. Ford
- Bayer
AG, Alfred-Nobel-Strasse
50, 40789 Monheim, Germany
| | - Neda Jeddi
- Department
of Chemistry, University of York, Heslington, York, North
Yorkshire YO10 5DD, United Kingdom
| | - Anthony Eyles
- Department
of Chemistry, University of York, Heslington, York, North
Yorkshire YO10 5DD, United Kingdom
| | - Lauriane Simon
- Department
of Chemistry, University of York, Heslington, York, North
Yorkshire YO10 5DD, United Kingdom
| | - Adrian C. Whitwood
- Department
of Chemistry, University of York, Heslington, York, North
Yorkshire YO10 5DD, United Kingdom
| | - Theo Tanner
- Department
of Chemistry, University of York, Heslington, York, North
Yorkshire YO10 5DD, United Kingdom
| | - Charlotte E. Willans
- School
of Chemistry, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, United
Kingdom
| | - Ian J. S. Fairlamb
- Department
of Chemistry, University of York, Heslington, York, North
Yorkshire YO10 5DD, United Kingdom
| |
Collapse
|
29
|
Reeves EK, Entz ED, Neufeldt SR. Chemodivergence between Electrophiles in Cross-Coupling Reactions. Chemistry 2021; 27:6161-6177. [PMID: 33206420 DOI: 10.1002/chem.202004437] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Indexed: 12/14/2022]
Abstract
Chemodivergent cross-couplings are those in which either one of two (or more) potentially reactive functional groups can be made to react based on choice of conditions. In particular, this review focuses on cross-couplings involving two different (pseudo)halides that can compete for the role of the electrophilic coupling partner. The discussion is primarily organized by pairs of electrophiles including chloride vs. triflate, bromide vs. triflate, chloride vs. tosylate, and halide vs. halide. Some common themes emerge regarding the origin of selectivity control. These include catalyst ligation state and solvent polarity or coordinating ability. However, in many cases, further systematic studies will be necessary to deconvolute the influences of metal identity, ligand, solvent, additives, nucleophilic coupling partner, and other factors on chemoselectivity.
Collapse
Affiliation(s)
- Emily K Reeves
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana, 59717, USA
| | - Emily D Entz
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana, 59717, USA
| | - Sharon R Neufeldt
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana, 59717, USA
| |
Collapse
|
30
|
Desaintjean A, Haupt T, Bole LJ, Judge NR, Hevia E, Knochel P. Regioselective Bromine/Magnesium Exchange for the Selective Functionalization of Polyhalogenated Arenes and Heterocycles. Angew Chem Int Ed Engl 2021; 60:1513-1518. [PMID: 33079466 PMCID: PMC7839478 DOI: 10.1002/anie.202012496] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Indexed: 12/20/2022]
Abstract
Using the bimetallic combination sBu2 Mg⋅2 LiOR (R=2-ethylhexyl) in toluene enables efficient and regioselective Br/Mg exchanges with various dibromo-arenes and -heteroarenes under mild reaction conditions and provides bromo-substituted magnesium reagents. Assessing the role of Lewis donor additives in these reactions revealed that N,N,N',N'',N''-pentamethyldiethylenetriamine (PMDTA) finely tunes the regioselectivity of the Br/Mg exchange on dibromo-pyridines and quinolines. Combining spectroscopic with X-ray crystallographic studies, light has been shed on the mixed Li/Mg constitution of the organometallic intermediates accomplishing these transformations. These systems reacted effectively with a broad range of electrophiles, including allyl bromides, ketones, aldehydes, and Weinreb amides in good yields.
Collapse
Affiliation(s)
- Alexandre Desaintjean
- Ludwig-Maximilians-Universität MünchenDepartment ChemieButenandtstrasse 5–13, Haus F81377MünchenGermany
| | - Tobias Haupt
- Ludwig-Maximilians-Universität MünchenDepartment ChemieButenandtstrasse 5–13, Haus F81377MünchenGermany
| | - Leonie J. Bole
- Department für Chemie und BiochemieUniversität Bern3012BernSwitzerland
| | - Neil R. Judge
- Department für Chemie und BiochemieUniversität Bern3012BernSwitzerland
| | - Eva Hevia
- Department für Chemie und BiochemieUniversität Bern3012BernSwitzerland
| | - Paul Knochel
- Ludwig-Maximilians-Universität MünchenDepartment ChemieButenandtstrasse 5–13, Haus F81377MünchenGermany
| |
Collapse
|
31
|
Au-Yeung KC, Xiao D, Shih WC, Yang HW, Wen YS, Yap GPA, Chen WC, Zhao L, Ong TG. Carbodicarbene: geminal-Bimetallic Coordination in Selective Manner. Chemistry 2020; 26:17350-17355. [PMID: 32537790 DOI: 10.1002/chem.202002795] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 06/12/2020] [Indexed: 01/07/2023]
Abstract
The reaction of Pd(OAc)2 with free carbodicarbene (CDC) generates a Pd acetate trinuclear complex 1 via intramolecular C(sp3 )-H bond activation at one of the CDC methyl side arms. The solid structure of 1 reveals the capability of CDC to facilitate a double dative bond with two palladium centers in geminal fashion. This is attributed to the chelating mode of CDC, which can frustrate π-conjugation within the CDC framework. Such effect maybe also amplified by ligand-ligand interaction. The formation of other gem-bimetallic Pd-Pd, Pd-Au, and Ni-Au provides further structural evidence for this proof-of-concept in selective installation. Structural analysis is supported by computational calculations based on state-of-the-art energy decomposition analysis (EDA) in conjunction with natural orbitals for chemical valence (NOCV) method.
Collapse
Affiliation(s)
| | - Dengmengfei Xiao
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, P.R. China
| | - Wei-Chih Shih
- Institute of Chemistry, Academia Sinica, Taipei, Taiwan
| | - Hsiu-Wen Yang
- Institute of Chemistry, Academia Sinica, Taipei, Taiwan
| | - Yuh-Sheng Wen
- Institute of Chemistry, Academia Sinica, Taipei, Taiwan
| | - Glenn P A Yap
- Department of Chemistry & Biochemistry, University of Delaware, USA
| | | | - Lili Zhao
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, P.R. China
| | - Tiow-Gan Ong
- Institute of Chemistry, Academia Sinica, Taipei, Taiwan.,Department of Applied Chemistry, National Chiao Tung University, Taipei, Taiwan.,Department of Chemistry, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
32
|
Golding WA, Schmitt HL, Phipps RJ. Systematic Variation of Ligand and Cation Parameters Enables Site-Selective C-C and C-N Cross-Coupling of Multiply Chlorinated Arenes through Substrate-Ligand Electrostatic Interactions. J Am Chem Soc 2020; 142:21891-21898. [PMID: 33332114 DOI: 10.1021/jacs.0c11056] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Use of attractive noncovalent interactions between ligand and substrate is an emerging strategy for controlling positional selectivity. A key question relates to whether fine control on molecules with multiple, closely spaced reactive positions is achievable using typically less directional electrostatic interactions. Herein, we apply a 10-piece "toolkit" comprising of two closely related sulfonated phosphine ligands and five bases, each possessing varying cation size, to the challenge of site-selective cross-coupling of multiply chlorinated arenes. The fine tuning provided by these ligand/base combinations is effective for Suzuki-Miyaura coupling and Buchwald-Hartwig coupling on a range of isomeric dichlorinated and trichlorinated arenes, substrates that would produce intractable mixtures when typical ligands are used. This study develops a practical solution for site-selective cross-coupling to generate complex, highly substituted arenes.
Collapse
Affiliation(s)
- William A Golding
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Hendrik L Schmitt
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Robert J Phipps
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| |
Collapse
|
33
|
Liu Q, Zhao L. Low Valent Palladium Clusters: Synthesis, Structures and Catalytic Applications. CHINESE J CHEM 2020. [DOI: 10.1002/cjoc.202000378] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Qian Liu
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry Tsinghua University Beijing 100084 China
| | | |
Collapse
|
34
|
Desaintjean A, Haupt T, Bole LJ, Judge NR, Hevia E, Knochel P. Regioselektiver Brom/Magnesium‐Austausch für die selektive Funktionalisierung von polyhalogenierten Arenen und Heterozyklen. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202012496] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Alexandre Desaintjean
- Ludwig-Maximilians-Universität München Department Chemie Butenandtstraße 5–13, Haus F 81377 München Deutschland
| | - Tobias Haupt
- Ludwig-Maximilians-Universität München Department Chemie Butenandtstraße 5–13, Haus F 81377 München Deutschland
| | - Leonie J. Bole
- Department für Chemie und Biochemie Universität Bern 3012 Bern Schweiz
| | - Neil R. Judge
- Department für Chemie und Biochemie Universität Bern 3012 Bern Schweiz
| | - Eva Hevia
- Department für Chemie und Biochemie Universität Bern 3012 Bern Schweiz
| | - Paul Knochel
- Ludwig-Maximilians-Universität München Department Chemie Butenandtstraße 5–13, Haus F 81377 München Deutschland
| |
Collapse
|
35
|
Yanagisawa C, Yamazoe S, Sunada Y. Silylene‐Bridged Tetranuclear Palladium Cluster as a Catalyst for Hydrogenation of Alkenes and Alkynes. ChemCatChem 2020. [DOI: 10.1002/cctc.202001387] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Chikako Yanagisawa
- Department of Applied Chemistry School of Engineering The University of Tokyo 4-6-1 Meguro-ku Komaba, Tokyo Japan
| | - Seiji Yamazoe
- Department of Chemistry Graduate School of Science Tokyo Metropolitan University 1-1 Minami-Osawa Hachioji-shi, Tokyo 192-0397 Japan
| | - Yusuke Sunada
- Department of Applied Chemistry School of Engineering The University of Tokyo 4-6-1 Meguro-ku Komaba, Tokyo Japan
- Institute of Industrial Science The University of Tokyo 4-6-1 Meguro-ku Komaba, Tokyo Japan
| |
Collapse
|
36
|
Huang G, Li J, Li J, Li J, Sun M, Zhou P, Chen L, Huang Y, Jiang S, Li Y. Access to Substituted Thiophenes through Xanthate-Mediated Vinyl C(sp 2)-Br Bond Cleavage and Heterocyclization of Bromoenynes. J Org Chem 2020; 85:13037-13049. [PMID: 32909752 DOI: 10.1021/acs.joc.0c01733] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
An environmentally sustainable strategy for the chemoselective heterocyclization of bromoenynes through a transition-metal-free sulfuration/cyclization process is reported. Using inexpensive and safe EtOCS2K as a thiol surrogate and tetrabutylphosphonium bromide and H2O as a mixed solvent, the reaction provided a range of substituted thiophenes in moderate to good yields. In addition, 2,3,4,5-tetrasubstituted thiophenes were able to be prepared under mild reaction conditions by electrophilic heterocyclization with NH4I and EtOCS2K in good yields.
Collapse
Affiliation(s)
- Guoling Huang
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong Province 529090, China
| | - Jian Li
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong Province 529090, China
| | - Jianrong Li
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong Province 529090, China
| | - Jiaming Li
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong Province 529090, China
| | - Minghua Sun
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong Province 529090, China
| | - Peng Zhou
- College of Chemistry, Guangdong University of Petrochemical Technology, Guangdu 2nd road, Maoming, Guangdong Province 525000, China
| | - Lu Chen
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong Province 529090, China
| | - Yubing Huang
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong Province 529090, China
| | - Shaohua Jiang
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong Province 529090, China
| | - Yibiao Li
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong Province 529090, China
| |
Collapse
|
37
|
Fricke C, Deckers K, Schoenebeck F. Orthogonal Stability and Reactivity of Aryl Germanes Enables Rapid and Selective (Multi)Halogenations. Angew Chem Int Ed Engl 2020; 59:18717-18722. [PMID: 32656881 PMCID: PMC7590071 DOI: 10.1002/anie.202008372] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 07/08/2020] [Indexed: 01/07/2023]
Abstract
While halogenation is of key importance in synthesis and radioimaging, the currently available repertoire is largely designed to introduce a single halogen per molecule. This report makes the selective introduction of several different halogens accessible. Showcased here is the privileged stability of nontoxic aryl germanes under harsh fluorination conditions (that allow selective fluorination in their presence), while displaying superior reactivity and functional-group tolerance in electrophilic iodinations and brominations, outcompeting silanes or boronic esters under rapid and additive-free conditions. Mechanistic experiments and computational studies suggest a concerted electrophilic aromatic substitution as the underlying mechanism.
Collapse
Affiliation(s)
- Christoph Fricke
- Institute of Organic ChemistryRWTH Aachen UniversityLandoltweg 152074AachenGermany
| | - Kristina Deckers
- Institute of Organic ChemistryRWTH Aachen UniversityLandoltweg 152074AachenGermany
| | | |
Collapse
|
38
|
Fricke C, Deckers K, Schoenebeck F. Orthogonal Stability and Reactivity of Aryl Germanes Enables Rapid and Selective (Multi)Halogenations. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202008372] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Christoph Fricke
- Institute of Organic Chemistry RWTH Aachen University Landoltweg 1 52074 Aachen Germany
| | - Kristina Deckers
- Institute of Organic Chemistry RWTH Aachen University Landoltweg 1 52074 Aachen Germany
| | - Franziska Schoenebeck
- Institute of Organic Chemistry RWTH Aachen University Landoltweg 1 52074 Aachen Germany
| |
Collapse
|
39
|
Selmani A, Darses S. Construction of 1-Tetralols Bearing Two Contiguous Quaternary Chiral Centers through a Rhodium-Catalyzed Enantioselective Desymmetrization Cascade Reaction. Org Lett 2020; 22:2681-2686. [PMID: 32167309 DOI: 10.1021/acs.orglett.0c00638] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A novel and efficient access to polyfunctionnalized chiral 1-tetralols, bearing two contiguous quaternary carbon stereocenters, has been developed from various and easily accessible alkynyl-1,3-diketones, through a cascade process including a regioselective alkyne insertion, a 1,4-Rh shift, and a nucleophilic addition step via the desymmetrization of the 1,3-diketone moiety thanks to an appropriate rhodium-chiral diene complex in the presence of arylboronic acids.
Collapse
Affiliation(s)
- Aymane Selmani
- PSL Université Paris, Chimie ParisTech - CNRS, Institute of Chemistry for Life and Health Sciences (i-CLeHS), 11 rue Pierre et Marie Curie, 75005, Paris, France
| | - Sylvain Darses
- PSL Université Paris, Chimie ParisTech - CNRS, Institute of Chemistry for Life and Health Sciences (i-CLeHS), 11 rue Pierre et Marie Curie, 75005, Paris, France
| |
Collapse
|
40
|
Xu W, Li M, Qiao L, Xie J. Recent advances of dinuclear nickel- and palladium-complexes in homogeneous catalysis. Chem Commun (Camb) 2020; 56:8524-8536. [PMID: 32613965 DOI: 10.1039/d0cc02542a] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
In this highlight, we provide a current perspective of synthetic methodology development catalyzed by dinuclear Ni- and Pd-complexes in the past decade. The new catalytic reactivities of dinuclear Ni- and Pd-complexes are discussed.
Collapse
Affiliation(s)
- Wentao Xu
- State Key Laboratory of Coordination Chemistry
- Jiangsu Key Laboratory of Advanced Organic Materials
- Chemistry and Biomedicine Innovation Center (ChemBIC)
- School of Chemistry and Chemical Engineering
- Nanjing University
| | - Muzi Li
- State Key Laboratory of Coordination Chemistry
- Jiangsu Key Laboratory of Advanced Organic Materials
- Chemistry and Biomedicine Innovation Center (ChemBIC)
- School of Chemistry and Chemical Engineering
- Nanjing University
| | - Liancheng Qiao
- State Key Laboratory of Coordination Chemistry
- Jiangsu Key Laboratory of Advanced Organic Materials
- Chemistry and Biomedicine Innovation Center (ChemBIC)
- School of Chemistry and Chemical Engineering
- Nanjing University
| | - Jin Xie
- State Key Laboratory of Coordination Chemistry
- Jiangsu Key Laboratory of Advanced Organic Materials
- Chemistry and Biomedicine Innovation Center (ChemBIC)
- School of Chemistry and Chemical Engineering
- Nanjing University
| |
Collapse
|
41
|
Tang J, Zhao L. Polynuclear organometallic clusters: synthesis, structure, and reactivity studies. Chem Commun (Camb) 2020; 56:1915-1925. [DOI: 10.1039/c9cc09354k] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This feature article highlights our recent advances in the controllable synthesis of carbon-centered polynuclear organometallic clusters: from synthesis to transformation, reactivity and mechanism.
Collapse
Affiliation(s)
- Jian Tang
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University
- Beijing
- China
| | - Liang Zhao
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University
- Beijing
- China
| |
Collapse
|
42
|
Fricke C, Sherborne GJ, Funes‐Ardoiz I, Senol E, Guven S, Schoenebeck F. Orthogonal Nanoparticle Catalysis with Organogermanes. Angew Chem Int Ed Engl 2019; 58:17788-17795. [PMID: 31562670 PMCID: PMC6899604 DOI: 10.1002/anie.201910060] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Indexed: 11/12/2022]
Abstract
Although nanoparticles are widely used as catalysts, little is known about their potential ability to trigger privileged transformations as compared to homogeneous molecular or bulk heterogeneous catalysts. We herein demonstrate (and rationalize) that nanoparticles display orthogonal reactivity to molecular catalysts in the cross-coupling of aryl halides with aryl germanes. While the aryl germanes are unreactive in Ln Pd0 /Ln PdII catalysis and allow selective functionalization of established coupling partners in their presence, they display superior reactivity under Pd nanoparticle conditions, outcompeting established coupling partners (such as ArBPin and ArBMIDA) and allowing air-tolerant, base-free, and orthogonal access to valuable and challenging biaryl motifs. As opposed to the notoriously unstable polyfluoroaryl- and 2-pyridylboronic acids, the corresponding germanes are highly stable and readily coupled. Our mechanistic and computational studies provide unambiguous support of nanoparticle catalysis and suggest that owing to the electron richness of aryl germanes, they preferentially react by electrophilic aromatic substitution, and in turn are preferentially activated by the more electrophilic nanoparticles.
Collapse
Affiliation(s)
- Christoph Fricke
- Institute of Organic ChemistryRWTH Aachen UniversityLandoltweg 152074AachenGermany
| | - Grant J. Sherborne
- Institute of Organic ChemistryRWTH Aachen UniversityLandoltweg 152074AachenGermany
| | - Ignacio Funes‐Ardoiz
- Institute of Organic ChemistryRWTH Aachen UniversityLandoltweg 152074AachenGermany
| | - Erdem Senol
- Institute of Organic ChemistryRWTH Aachen UniversityLandoltweg 152074AachenGermany
| | - Sinem Guven
- Institute of Organic ChemistryRWTH Aachen UniversityLandoltweg 152074AachenGermany
| | | |
Collapse
|
43
|
Fricke C, Sherborne GJ, Funes‐Ardoiz I, Senol E, Guven S, Schoenebeck F. Orthogonal Nanoparticle Catalysis with Organogermanes. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201910060] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Christoph Fricke
- Institute of Organic ChemistryRWTH Aachen University Landoltweg 1 52074 Aachen Germany
| | - Grant J. Sherborne
- Institute of Organic ChemistryRWTH Aachen University Landoltweg 1 52074 Aachen Germany
| | - Ignacio Funes‐Ardoiz
- Institute of Organic ChemistryRWTH Aachen University Landoltweg 1 52074 Aachen Germany
| | - Erdem Senol
- Institute of Organic ChemistryRWTH Aachen University Landoltweg 1 52074 Aachen Germany
| | - Sinem Guven
- Institute of Organic ChemistryRWTH Aachen University Landoltweg 1 52074 Aachen Germany
| | - Franziska Schoenebeck
- Institute of Organic ChemistryRWTH Aachen University Landoltweg 1 52074 Aachen Germany
| |
Collapse
|
44
|
Fricke C, Dahiya A, Reid WB, Schoenebeck F. Gold-Catalyzed C-H Functionalization with Aryl Germanes. ACS Catal 2019; 9:9231-9236. [PMID: 31608162 PMCID: PMC6781487 DOI: 10.1021/acscatal.9b02841] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 08/26/2019] [Indexed: 12/12/2022]
Abstract
The development of orthogonal Csp2 -Csp2 coupling regimes to the omnipresent Pd-catalysis class would enable an additional dimension of modularity in the construction of densely functionalized biaryl motifs. In this context, the identification of potent functional groups for selective transformations is in high demand. Although organogermanium compounds are generally believed to be of low reactivity in homogenous catalysis, this report discloses the highly efficient and orthogonal reactivity of aryl germanes with arenes under gold catalysis. The method is characterized by mildness, the employment of an air- and moisture-stable gold catalyst, and robustness. Our mechanistic studies show that aryl germanes are highly reactive with Au(I) and Au(III). Our computational data suggest that the origin of this reactivity primarily lies in the relatively low bond dissociation energy and as such low distortion energy to reach the key bond activating transition state.
Collapse
Affiliation(s)
- Christoph Fricke
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| | - Amit Dahiya
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| | - William B. Reid
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| | - Franziska Schoenebeck
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| |
Collapse
|
45
|
Pang H, Wu D, Cong H, Yin G. Stereoselective Palladium-Catalyzed 1,3-Arylboration of Unconjugated Dienes for Expedient Synthesis of 1,3-Disubstituted Cyclohexanes. ACS Catal 2019. [DOI: 10.1021/acscatal.9b02747] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Hailiang Pang
- The Institute for Advanced Studies, Wuhan University, Wuhan 430072, China
| | - Dong Wu
- The Institute for Advanced Studies, Wuhan University, Wuhan 430072, China
| | - Hengjiang Cong
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Guoyin Yin
- The Institute for Advanced Studies, Wuhan University, Wuhan 430072, China
| |
Collapse
|
46
|
Scott NWJ, Ford MJ, Schotes C, Parker RR, Whitwood AC, Fairlamb IJS. The ubiquitous cross-coupling catalyst system ‘Pd(OAc)2’/2PPh3 forms a unique dinuclear PdI complex: an important entry point into catalytically competent cyclic Pd3 clusters. Chem Sci 2019. [DOI: 10.1039/c9sc01847f] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Pd3-type clusters generated from Pd(OAc)2/nPPh3, formed via a dinuclear Pd(i) species, exhibit high activity in Suzuki–Miyaura cross-coupling.
Collapse
Affiliation(s)
| | - Mark J. Ford
- Bayer Aktiengesellschaft
- Crop Science Division
- 65926 Frankfurt am Main
- Germany
| | | | | | | | | |
Collapse
|
47
|
Slack ED, Tancini PD, Colacot TJ. Process Economics and Atom Economy for Industrial Cross Coupling Applications via LnPd(0)-Based Catalysts. TOP ORGANOMETAL CHEM 2019. [DOI: 10.1007/3418_2019_28] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|