1
|
Luan Z, Wang F, Tian Y. Enhanced Near-infrared Phosphorescent Emission Modulated by Clipping of Metallotweezers in Aqueous Media. Chemistry 2024; 30:e202401022. [PMID: 38747055 DOI: 10.1002/chem.202401022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Indexed: 06/28/2024]
Abstract
Near-infrared phosphorescent materials have received significant attention due to their potential applications in bioimaging and diagnostics. Although, many types of organic phosphors with near-infrared emission have been developed, the low phosphorescence efficiency in aqueous solution hampers their practical applications in biological systems. Hence, there is an urgent need to develop near-infrared phosphorescent materials with high emission efficiency in aqueous media. Metallotweezers, based on d8 transition metal complexes, emerge as the potential candidates for realizing this objective. Specifically, metallotweezers, featuring two positively charged platinum(II) terpyridine and neutral gold(III) diphenylpyridine pincers on diphenylpyridine spacer, have been designed and synthesized, respectively. The pre-organization effect, rendered by the rigid spacer, enables the resulting metallotweezers to complex with each other, resulting in the formation of clipping complex. The synergistic rigidifying and shielding effects of clipping structure results in enhanced phosphorescent emission intensity. Concurrently, due to phase segregation between the clipping units and the polyethylene glycol tail, the clipping complex undergoes self-assembly in aqueous solution, resulting in phosphorescent emission in the near-infrared region. Overall, non-covalent clipping of metallotweezers illustrated in this study presents a new and effective approach toward near-infrared phosphorescent materials.
Collapse
Affiliation(s)
- Zilei Luan
- Key Laboratory of Environment-Friendly Polymeric Materials of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, 111 Jiulong Road, Hefei, Anhui, China
| | - Feng Wang
- Department of Polymer Science and Engineering, University of Science and Technology of China, No. 96 Jinzhai Road, Hefei City, Anhui Province
| | - Yukui Tian
- Key Laboratory of Environment-Friendly Polymeric Materials of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, 111 Jiulong Road, Hefei, Anhui, China
- School of Materials Science and Engineering, Anhui University, 111 Jiulong Road, Hefei, Anhui, China
| |
Collapse
|
2
|
Han T, Ren J, Jiang S, Wang F, Tian Y. Achieving Circularly Polarized Phosphorescence through Noncovalent Clipping of Metallotweezers. Inorg Chem 2024; 63:11523-11530. [PMID: 38860921 DOI: 10.1021/acs.inorgchem.3c04269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
Circularly polarized phosphorescent materials, based on host-guest complexation, have received significant attention due to their outstanding emission performance in solutions. Recent studies have primarily focused on macrocyclic host-guest complexes. To broaden the scope of this research, there is a keen pursuit of developing novel chiral phosphorescent host-guest systems. Metallotweezers with square-planar d8 transition metal complexes emerge as promising candidates for achieving this objective. Specifically, metallotweezers, comprising platinum(II) terpyridine and gold(III) diphenylpyridine pincers on a diphenylpyridine scaffold, have been designed and synthesized. Due to the preorganization effect rendered by the diphenylpyridine scaffold, the resulting metallotweezers are capable of complexing with each other and forming quadruple stacking structures. The phosphorescent emission is enhanced owing to the synergistic rigidifying and shielding effects. Meanwhile, the steric effect of chiral (1R) pinene units on the platinum(II) terpyridine pincers results in a stereospecific twist for the quadruple stacking structures. Thus, the chirality transfers from the molecular to the supramolecular level. By a combination of phosphorescent enhancement and supramolecular chirality for the clipping complex, circularly polarized phosphorescent emission is achieved. Overall, noncovalent clipping of metallotweezers exemplified in the current study presents a novel and effective approach toward solution-processable circularly polarized phosphorescent materials.
Collapse
Affiliation(s)
- Tingting Han
- Key Laboratory of Environment-Friendly Polymeric Materials of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui 230601, China
| | - Jie Ren
- Key Laboratory of Environment-Friendly Polymeric Materials of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui 230601, China
| | - Sixun Jiang
- Key Laboratory of Precision and Intelligent Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Feng Wang
- Key Laboratory of Precision and Intelligent Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Yukui Tian
- Key Laboratory of Environment-Friendly Polymeric Materials of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui 230601, China
- School of Materials Science and Engineering, Anhui University, Hefei 230601, China
| |
Collapse
|
3
|
Ibáñez S, Peris E. "Lock and Key" and "Induced-Fit" Host-Guest Models in Two Digold(I)-Based Metallotweezers. Inorg Chem 2023; 62:1820-1826. [PMID: 35360901 PMCID: PMC9974064 DOI: 10.1021/acs.inorgchem.2c00677] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Two different metallotweezers, each with two pyrene-imidazolylidene-gold(I) arms, were used as hosts for a series of planar aromatic guests. The metallotweezer with a dibenzoacridinebis(alkynyl) spacer (1) orients the two pyrene-imidazolylidene-gold(I) arms in a parallel disposition, with an interpanel distance of about 7 Å. The second metallotweezer (2) contains a carbazolylbis(alkynyl) spacer that directs the two pyrene panels in a diverging orientation. Determination of the association constants via 1H NMR titrations demonstrates that the binding strength shown by 1 is significantly larger than that found by 2, with binding affinities as large as 104 M-1 (in CDCl3), for the encapsulation of N,N'-dimethylnaphthalenetetracarboxydiimide with 1. The differences in the binding affinities are due to binding models associated with formation of the related host-guest complexes. While 1 operates via a "lock and key" model, in which the host does not suffer distortions upon formation of the inclusion complex, 2 operates via a guest-induced fit model. The large association constants shown by 1 with two planar guests were used for promotion of the template-directed synthesis of 1, which in the absence of an external template is produced in an equimolecular mixture with its self-aggregated congener, clippane [12]. This observation strongly suggests that the mechanically interlocked clippane is formed through a self-template-directed mechanism, while bonds are broken/formed during the synthetic protocol.
Collapse
Affiliation(s)
- Susana Ibáñez
- Institute
of Advanced Materials, Centro de Innovación en Química
Avanzada, Universitat Jaume I, Avenida Vicente Sos Baynat s/n, Castellón E-12071, Spain
| | - Eduardo Peris
- Institute
of Advanced Materials, Centro de Innovación en Química
Avanzada, Universitat Jaume I, Avenida Vicente Sos Baynat s/n, Castellón E-12071, Spain
| |
Collapse
|
4
|
Ren J, Jiang S, Han T, Wu S, Tian Y, Wang F. Dual supramolecular chirogenesis based on platinum(II) metallotweezers. Chem Commun (Camb) 2023; 59:744-747. [PMID: 36541365 DOI: 10.1039/d2cc05787e] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Optically active platinum(II) metallotweezers demonstrate both self-complexation and host-guest complexation capabilities, leading to two distinct supramolecular chirogenic signals in the visible region.
Collapse
Affiliation(s)
- Jie Ren
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui, 230601, China.
| | - Sixun Jiang
- Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China.
| | - Tingting Han
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui, 230601, China.
| | - Shuai Wu
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui, 230601, China.
| | - Yukui Tian
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui, 230601, China. .,School of Materials Science and Engineering, Anhui University, Hefei, 230601, China
| | - Feng Wang
- Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China.
| |
Collapse
|
5
|
Chu A, Wan HC, Yan L, Leung M, Yam VW. Synthesis, structural characterization, and photophysical studies of decanuclear gold(I) sulfido complexes with carbazole‐derived ligands. Z Anorg Allg Chem 2022. [DOI: 10.1002/zaac.202200144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Anlea Chu
- Institute of Molecular Functional Materials and Department of Chemistry The University of Hong Kong Pokfulam Road Hong Kong P. R. China
| | - Ho Chuen Wan
- Institute of Molecular Functional Materials and Department of Chemistry The University of Hong Kong Pokfulam Road Hong Kong P. R. China
| | - Liang‐Liang Yan
- Institute of Molecular Functional Materials and Department of Chemistry The University of Hong Kong Pokfulam Road Hong Kong P. R. China
| | - Ming‐Yi Leung
- Institute of Molecular Functional Materials and Department of Chemistry The University of Hong Kong Pokfulam Road Hong Kong P. R. China
| | - Vivian Wing‐Wah Yam
- Institute of Molecular Functional Materials and Department of Chemistry The University of Hong Kong Pokfulam Road Hong Kong P. R. China
| |
Collapse
|
6
|
Ibáñez S. The New Di-Gold Metallotweezer Based on an Alkynylpyridine System. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27123699. [PMID: 35744825 PMCID: PMC9227567 DOI: 10.3390/molecules27123699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/06/2022] [Accepted: 06/07/2022] [Indexed: 11/16/2022]
Abstract
We developed a simple method to prepare one gold-based metallotweezer with two planar Au-pyrene-NHC arms bound by a 2,6-bis(3-ethynyl-5-tert-butylphenyl)pyridine unit. This metallotweezer is able to bind a series of polycyclic aromatic hydrocarbons through the π-stacking interactions between the polyaromatic guests and the pyrene moieties of the NHC ligands. The metallotweezer was also used as a host for the encapsulation of planar metal complexes, such as the Au(III) complex [Au(C^N^C)(C≡CC6H4-OCH3-p)], for which there is a large binding constant of 946 M−1.
Collapse
Affiliation(s)
- Susana Ibáñez
- Institute of Advanced Materials (INAM), Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universitat Jaume I, Av. Vicente Sos Baynat s/n, 12071 Castellón, Spain
| |
Collapse
|
7
|
Zhong H, Jiang S, Ao L, Wang F, Wang F. Phosphorescent Host-Guest Complexes on the Basis of Polyhedral Oligomeric Silsesquioxane-Functionalized Metallotweezers. Inorg Chem 2022; 61:7111-7119. [PMID: 35482062 DOI: 10.1021/acs.inorgchem.2c00340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Phosphorescent host-guest systems have attracted considerable attention because of their intriguing properties and diverse applications. In this study, a polyhedral oligomeric silsesquioxane-functionalized gold(III) tweezer receptor has been designed and synthesized. It is capable of sandwiching platinum(II) terpyridine compounds into its cavity with a high noncovalent binding affinity (association constants: ∼105 M-1 in chloroform). The resulting heterometallic host-guest complexes exhibit enhanced phosphorescent emission compared with those of the individual species in chloroform, thanks to the prevention of vibration and rotation upon noncovalent complexation. They can further assemble into nanospheres in chloroform/diethyl ether (1:9, v/v) owing to phase segregation between the metallotweezer/guest motif and the peripheral polyhedral oligomeric silsesquioxane unit. When terpyridine platinum(II) chloride serves as the complementary guest, the resulting noncovalent system displays an intraligand emission at the individual host-guest complexed state yet excimeric emission at the supramolecular assembled state, yielding the phosphorescent solvatochromic behaviors. Overall, the polyhedral oligomeric silsesquioxane-functionalized metallotweezer combines guest encapsulation and supramolecular assembly capabilities, which provides new avenues for color-tunable phosphorescent materials.
Collapse
Affiliation(s)
- Hua Zhong
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Sixun Jiang
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Lei Ao
- Department of Pharmacy, College of Medicine, Jiaxing University, Jiaxing, Zhejiang 314001, P. R. China
| | - Fan Wang
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Feng Wang
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| |
Collapse
|
8
|
Ibáñez S, Vicent C, Peris E. Clippane: A Mechanically Interlocked Molecule (MIM) Based on Molecular Tweezers. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202112513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Susana Ibáñez
- Institute of Advanced Materials (INAM) Universitat Jaume I Av. Vicente Sos Baynat s/n 12071 Castellón Spain
| | - Cristian Vicent
- Servei Central d'Instrumentació Científica (SCIC) Universitat, Jaume I Avda. Sos Baynat s/n 12006 Castellón Spain
| | - Eduardo Peris
- Institute of Advanced Materials (INAM) Universitat Jaume I Av. Vicente Sos Baynat s/n 12071 Castellón Spain
| |
Collapse
|
9
|
Ibáñez S, Vicent C, Peris E. Clippane: A Mechanically Interlocked Molecule (MIM) Based on Molecular Tweezers. Angew Chem Int Ed Engl 2021; 61:e202112513. [PMID: 34633757 DOI: 10.1002/anie.202112513] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Indexed: 12/15/2022]
Abstract
In this study we report the preparation of a new mechanically interlocked molecule formed by the self-aggregation of two metallotweezers composed by two pyrene-imidazolylidene gold(I) arms and a pyridine-centered pentacyclic bis-alkynyl linker. The mechanically interlocked nature of this molecule arises from the presence of the bulky tert-butyl groups attached to the sides of the pyrene moieties of the arms of the tweezer, which act as stoppers avoiding the dissociation of the self-aggregated metallotweezer dimer once it is formed. By combining experimental techniques, we were able to confirm the mechanically interlocked nature of this molecule in solution, in the gas phase and in the solid state. The behavior of the tert-butyl substituted tweezer differs greatly form that shown by the tweezer lacking of these bulky groups, whose dimeric structure is in equilibrium with the monomeric structure, therefore not showing any mechanical coercion that avoids the disassembly of the self-aggregated structure.
Collapse
Affiliation(s)
- Susana Ibáñez
- Institute of Advanced Materials (INAM), Universitat Jaume I, Av. Vicente Sos Baynat s/n, 12071, Castellón, Spain
| | - Cristian Vicent
- Servei Central d'Instrumentació Científica (SCIC), Universitat, Jaume I, Avda. Sos Baynat s/n, 12006, Castellón, Spain
| | - Eduardo Peris
- Institute of Advanced Materials (INAM), Universitat Jaume I, Av. Vicente Sos Baynat s/n, 12071, Castellón, Spain
| |
Collapse
|
10
|
Ibáñez S, Peris E. Shape-Adaptability and Redox-Switching Properties of a Di-Gold Metallotweezer. Chemistry 2021; 27:9661-9665. [PMID: 33844341 PMCID: PMC8362111 DOI: 10.1002/chem.202100794] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Indexed: 12/24/2022]
Abstract
The use of a carbazolyl-connected di-gold(I) metallotweezer for the encapsulation of several electron-poor organic substrates, and a planar Au(III) complex containing a CNC pincer ligand, is described. The binding affinity of the receptor depends on the electron-deficient character of the planar guest, with larger association constants found for the more electron-poor guests. The X-ray diffraction molecular structures of two host:guest adducts show that the host approaches its arms in order to facilitate the optimum interaction with the surface of the planar guests, in a clear example of an guest-induced fit conformational arrangement. The electrochemical studies of the encapsulation of N,N'-dimethyl-naphthalenetetracarboxy diimide (NTCDI) show that the redox active guest is released from the receptor upon one electron reduction, thus constituting an example of redox-switchable binding.
Collapse
Affiliation(s)
- Susana Ibáñez
- Institute of Advanced Materials (INAM), Centro de Innovación en Química Avanzada (ORFEO-CINQA).Universitat Jaume I.Av. Vicente Sos Baynat s/nCastellón1271Spain
| | - Eduardo Peris
- Institute of Advanced Materials (INAM), Centro de Innovación en Química Avanzada (ORFEO-CINQA).Universitat Jaume I.Av. Vicente Sos Baynat s/nCastellón1271Spain
| |
Collapse
|
11
|
Han Y, Yin Y, Wang F, Wang F. Single-Photon Near-Infrared-Responsiveness from the Molecular to the Supramolecular Level via Platination of Pentacenes. Angew Chem Int Ed Engl 2021; 60:14076-14082. [PMID: 33829624 DOI: 10.1002/anie.202103125] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Indexed: 12/22/2022]
Abstract
Near-infrared (NIR) responsiveness is important for various applications. Currently, single-photon NIR-responsive systems are rare compared to systems that display two-photon absorption and triplet-triplet annihilation processes. Supramolecular stacking of photo-responsive chromophores results in decreased efficiency due to space-confinement effects. Herein we show that σ-platination of pentacenes is a feasible protocol to build single-photon NIR-responsive systems, with advantages including a low HOMO-LUMO energy gap, high photochemical efficiency, and pathway specificity. The pentacene-to-endoperoxidation transformation is accompanied by color and absorbance changes. The high photo-oxygenation efficiency of σ-platinated pentacenes facilitates NIR responsiveness in one-dimensional supramolecular polymers, resulting in the disappearance of supramolecular chirality signals and disruption of self-assembled nanofibers. Overall, the σ-platination strategy opens up new avenues toward NIR photo-responsive materials at the molecular and supramolecular levels.
Collapse
Affiliation(s)
- Yifei Han
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Yueru Yin
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Fan Wang
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Feng Wang
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| |
Collapse
|
12
|
Single‐Photon Near‐Infrared‐Responsiveness from the Molecular to the Supramolecular Level via Platination of Pentacenes. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202103125] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
13
|
Li Z, Han Y, Nie F, Liu M, Zhong H, Wang F. Bright and Robust Phosphorescence Achieved by Non‐Covalent Clipping. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202015846] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Zijian Li
- CAS Key Laboratory of Soft Matter Chemistry Department of Polymer Science and Engineering University of Science and Technology of China Hefei Anhui 230026 P. R. China
| | - Yifei Han
- CAS Key Laboratory of Soft Matter Chemistry Department of Polymer Science and Engineering University of Science and Technology of China Hefei Anhui 230026 P. R. China
| | - Fude Nie
- Institute of Chemical Materials China Academy of Engineering Physics Mianyang 621900 P. R. China
| | - Mingyang Liu
- CAS Key Laboratory of Soft Matter Chemistry Department of Polymer Science and Engineering University of Science and Technology of China Hefei Anhui 230026 P. R. China
| | - Hua Zhong
- CAS Key Laboratory of Soft Matter Chemistry Department of Polymer Science and Engineering University of Science and Technology of China Hefei Anhui 230026 P. R. China
| | - Feng Wang
- CAS Key Laboratory of Soft Matter Chemistry Department of Polymer Science and Engineering University of Science and Technology of China Hefei Anhui 230026 P. R. China
| |
Collapse
|
14
|
Li Z, Han Y, Nie F, Liu M, Zhong H, Wang F. Bright and Robust Phosphorescence Achieved by Non-Covalent Clipping. Angew Chem Int Ed Engl 2021; 60:8212-8219. [PMID: 33450117 DOI: 10.1002/anie.202015846] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 01/05/2021] [Indexed: 12/18/2022]
Abstract
Phosphorescent materials with bright emission in versatile media are important for their practical applications, which require to lower the susceptibility of triplet excitons to surroundings. Herein a non-covalent clipping strategy has been developed to attain this objective, by designing a tweezer receptor to encapsulate PtII -based triplet emitters through two-fold π-stacking interactions. The PtII emitters display robust phosphorescence by virtue of synergistic rigidifying and shielding effects, which are hardly influenced by emitter concentration, oxygen content, and solvent polarity changes. The phosphorescent colors are elaborately modulated by varying ligand substitutes on PtII emitters. Circularly polarized phosphorescence is further amplified for chiral PtII emitters, by taking advantage of dual phosphorescence and chirality enhancement upon non-covalent tweezer complexation. Overall, the clipping approach paves the way for the development of high-performance phosphorescent materials with bright emission, environmental robustness, and facile color tunability.
Collapse
Affiliation(s)
- Zijian Li
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Yifei Han
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Fude Nie
- Institute of Chemical Materials, China Academy of Engineering Physics, Mianyang, 621900, P. R. China
| | - Mingyang Liu
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Hua Zhong
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Feng Wang
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| |
Collapse
|
15
|
Liu M, Han Y, Zhong H, Zhang X, Wang F. Supramolecular Chirogenesis Induced by Platinum(II) Tweezers with Excellent Environmental Tolerance. Angew Chem Int Ed Engl 2020; 60:3498-3503. [PMID: 33118695 DOI: 10.1002/anie.202012901] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 10/17/2020] [Indexed: 11/06/2022]
Abstract
Supramolecular chirogenesis has emerged as an effective strategy to access symmetry breaking in artificial systems. However, the chirogenic signals suffer from high susceptibility toward environmental variations. An effective strategy has been developed to address this issue by constructing platinum(II)-based tweezer/guest complexes stabilized by two-fold donor-acceptor and PtII -PtII metal-metal interactions. Upon guest encapsulation, the two pincers on the achiral PtII tweezer undergo a stereospecific twist to minimize steric repulsion, thus locking tweezer/guest complexes into the preferred chiral conformations. The induced chiroptical effects display outstanding solvent and temperature tolerance, ascribed to the balance between electrostatic and desolvation effects for the involved non-covalent interactions. Moreover, hierarchical and multi-component supramolecular assembly of tweezer/guest complexes provide a convenient way to modulate chirogeneic signals for their intensities.
Collapse
Affiliation(s)
- Mingyang Liu
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Yifei Han
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Hua Zhong
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Xiaolong Zhang
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Feng Wang
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| |
Collapse
|
16
|
Liu M, Han Y, Zhong H, Zhang X, Wang F. Supramolecular Chirogenesis Induced by Platinum(II) Tweezers with Excellent Environmental Tolerance. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202012901] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Mingyang Liu
- CAS Key Laboratory of Soft Matter Chemistry Department of Polymer Science and Engineering University of Science and Technology of China Hefei Anhui 230026 P. R. China
| | - Yifei Han
- CAS Key Laboratory of Soft Matter Chemistry Department of Polymer Science and Engineering University of Science and Technology of China Hefei Anhui 230026 P. R. China
| | - Hua Zhong
- CAS Key Laboratory of Soft Matter Chemistry Department of Polymer Science and Engineering University of Science and Technology of China Hefei Anhui 230026 P. R. China
| | - Xiaolong Zhang
- CAS Key Laboratory of Soft Matter Chemistry Department of Polymer Science and Engineering University of Science and Technology of China Hefei Anhui 230026 P. R. China
| | - Feng Wang
- CAS Key Laboratory of Soft Matter Chemistry Department of Polymer Science and Engineering University of Science and Technology of China Hefei Anhui 230026 P. R. China
| |
Collapse
|
17
|
|
18
|
Yuan M, Zhang X, Han Y, Wang F, Wang F. Organoplatinum(II)-Based Self-Complementary Molecular Tweezers with Guest-Induced Fluorochromic Behaviors. Inorg Chem 2020; 59:14134-14140. [PMID: 32921054 DOI: 10.1021/acs.inorgchem.0c01899] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Cyclometalated organoplatinum(II) complexes have aroused tremendous interests due to their square-planar geometry and intriguing photophysics. To access multiplatinum systems with more than three cyclometalated organoplatinum(II) units, the traditional covalent synthetic approach suffers from tedious multistep reactions with low overall yield. In comparison, supramolecular assembly can be regarded as an effective strategy toward multiplatinum(II) architectures. Despite the progresses achieved, it is still challenging to fabricate well-ordered supramolecular assemblies with precise numbers of organoplatinum(II) units. Herein, self-complementary dimerized molecular tweezers with four cyclometalated platinum(II) units have been successfully constructed by taking advantage of dual roles of the incorporated 2,2':6',2''-terpyridine unit (serving as the rigid spacer and encapsulated guest). Furthermore, addition of electron-rich carbazoles leads to conversion of the self-complementary structure to molecular tweezer/guest complexes. Such a structural transformation gives rise to the concomitant luminescent color change. The unique guest-induced fluorochromic phenomena, which are seldom reported in the previous host-guest systems, would be promising as tunable luminescent and ratiometric sensing materials.
Collapse
Affiliation(s)
- Ming Yuan
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China.,Department of Chemistry, BengBu Medical College, Bengbu 233030, P.R. China
| | - Xiaolong Zhang
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Yifei Han
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Fan Wang
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Feng Wang
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| |
Collapse
|
19
|
Ibáñez S, Poyatos M, Peris E. N-Heterocyclic Carbenes: A Door Open to Supramolecular Organometallic Chemistry. Acc Chem Res 2020; 53:1401-1413. [PMID: 32644769 DOI: 10.1021/acs.accounts.0c00312] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The field of metallosupramolecular chemistry is clearly dominated by the use of O-, N-, and P-donor Werner-type polydentate ligands. These molecular architectures are of high interest because of their wide range of applications, which include molecular encapsulation, stabilization of reactive species, supramolecular catalysis, and drug delivery, among others. Only recently, organometallic ligands have allowed the preparation of a variety of supramolecular coordination complexes, and the term supramolecular organometallic complexes (SOCs) is gaining space within the field of metallosupramolecular chemistry. While the early examples of SOCs referred to supramolecular architectures mostly containing bisalkenyl, diphenyl, or bisalkynyl linkers, the development of SOCs during the past decade has been boosted by the parallel development of multidentate N-heterocyclic carbene (NHC) ligands. The first examples of NHC-based SOCs referred to supramolecular assemblies based on polydentate NHC ligands bound to group 11 metals. However, during the last 10 years, several planar poly-NHC ligands containing extended π-conjugated systems have facilitated the formation of a large variety of architectures in which the supramolecular assemblies can contain metals other than Cu, Ag, and Au. Such ligands are Janus di-NHCs and trigonal-planar tris-NHCs-most of them prepared by our research group-which have allowed the preparation of a vast range of NHC-based metallosupramolecular compounds with interesting host-guest chemistry properties. Although the number of SOCs has increased in the past few years, their use for host-guest chemistry purposes is still in its earliest infancy. In this Account, we describe the achievements that we have made during the last 4 years toward broadening the applications of planar extended π-conjugated NHC ligands for the preparation of organometallic-based supramolecular structures, including their use as hosts for some selected organic and inorganic guests, together with the catalytic properties displayed by some selected host-guest inclusion complexes. Our contribution describes the design of several Ni-, Pd-, and Au-based metallorectangles and metalloprisms, which we used for the encapsulation of several organic substrates, such as polycyclic aromatic hydrocarbons (PAHs) and fullerenes. The large binding affinities found are ascribed to the incorporation of two cofacial panels with large π-conjugated systems, which provide the optimum conditions for guest recognition by π-π-stacking interactions. We also describe a series of digold(I) metallotweezers for the recognition of organic and inorganic substrates. These metallotweezers were used for the recognition of "naked" metal cations and polycyclic aromatic hydrocarbons. The recognition properties of these metallotweezers are highly dependent on the nature of the rigid connector and of the ancillary ligands that constitute the arms of the tweezer. A peculiar balance between the self-aggregation properties of the tweezer and its ability to encapsulate organic guests is observed.
Collapse
Affiliation(s)
- Susana Ibáñez
- Institute of Advanced Materials (INAM), Centro de Innovación en Química Avanzada (ORFEO−CINQA), Universitat Jaume I, Av. Vicente Sos Baynat s/n, E-12071 Castellón, Spain
| | - Macarena Poyatos
- Institute of Advanced Materials (INAM), Centro de Innovación en Química Avanzada (ORFEO−CINQA), Universitat Jaume I, Av. Vicente Sos Baynat s/n, E-12071 Castellón, Spain
| | - Eduardo Peris
- Institute of Advanced Materials (INAM), Centro de Innovación en Química Avanzada (ORFEO−CINQA), Universitat Jaume I, Av. Vicente Sos Baynat s/n, E-12071 Castellón, Spain
| |
Collapse
|
20
|
Zhang YW, Bai S, Wang YY, Han YF. A Strategy for the Construction of Triply Interlocked Organometallic Cages by Rational Design of Poly-NHC Precursors. J Am Chem Soc 2020; 142:13614-13621. [DOI: 10.1021/jacs.0c06470] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Ya-Wen Zhang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi’an 710127, P. R. China
| | - Sha Bai
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi’an 710127, P. R. China
| | - Yao-Yu Wang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi’an 710127, P. R. China
| | - Ying-Feng Han
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi’an 710127, P. R. China
| |
Collapse
|
21
|
Gutiérrez L, Mondal SS, Bucci A, Kandoth N, Escudero-Adán EC, Shafir A, Lloret-Fillol J. Crystal-to-Crystal Synthesis of Photocatalytic Metal-Organic Frameworks for Visible-Light Reductive Coupling and Mechanistic Investigations. CHEMSUSCHEM 2020; 13:3418-3428. [PMID: 32351031 DOI: 10.1002/cssc.202000465] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 04/03/2020] [Indexed: 06/11/2023]
Abstract
Postmodification of reticular materials with well-defined catalysts is an appealing approach to produce new catalytic functional materials with improved stability and recyclability, but also to study catalysis in confined spaces. A promising strategy to this end is the postfunctionalization of crystalline and robust metal-organic frameworks (MOFs) to exploit the potential of crystal-to-crystal transformations for further characterization of the catalysts. In this regard, two new photocatalytic materials, MOF-520-PC1 and MOF-520-PC2, are straightforwardly obtained by the postfunctionalization of MOF-520 with perylene-3-carboxylic acid (PC1) and perylene-3-butyric acid (PC2). The single crystal-to-crystal transformation yielded the X-ray diffraction structure of catalytic MOF-520-PC2. The well-defined disposition of the perylenes inside the MOF served as suitable model systems to gain insights into the photophysical properties and mechanism by combining steady-state, time-resolved, and transient absorption spectroscopy. The resulting materials are active organophotoredox catalysts in the reductive dimerization of aromatic aldehydes, benzophenones, and imines under mild reaction conditions. Moreover, MOF-520-PC2 can be applied for synthesizing gram-scale quantities of products in continuous-flow conditions under steady-state light irradiation. This work provides an alternative approach for the construction of well-defined, metal-free, MOF-based catalysts.
Collapse
Affiliation(s)
- Luis Gutiérrez
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Avinguda Païos Catalans 16, 43007, Tarragona, Spain
| | - Suvendu Sekhar Mondal
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Avinguda Païos Catalans 16, 43007, Tarragona, Spain
| | - Alberto Bucci
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Avinguda Païos Catalans 16, 43007, Tarragona, Spain
| | - Noufal Kandoth
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Avinguda Païos Catalans 16, 43007, Tarragona, Spain
| | - Eduardo C Escudero-Adán
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Avinguda Païos Catalans 16, 43007, Tarragona, Spain
| | - Alexandr Shafir
- Institute of Advanced Chemistry of Catalonia (IQAC-CSIC), c/Jordi Girona 18-26, 08034, Barcelona, Spain
| | - Julio Lloret-Fillol
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Avinguda Païos Catalans 16, 43007, Tarragona, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Passeig Lluïs Companys, 23, 08010, Barcelona, Spain
| |
Collapse
|
22
|
|
23
|
Preparation and self-aggregation properties of a series of pyrene-imidazolylidene complexes of gold (I). J Organomet Chem 2020. [DOI: 10.1016/j.jorganchem.2020.121284] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
24
|
A. C. A. Bayrakdar T, Scattolin T, Ma X, Nolan SP. Dinuclear gold(i) complexes: from bonding to applications. Chem Soc Rev 2020; 49:7044-7100. [DOI: 10.1039/d0cs00438c] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The last two decades have seen a veritable explosion in the use of gold(i) complexes bearing N-heterocyclic carbene (NHC) and phosphine (PR3) ligands.
Collapse
Affiliation(s)
| | - Thomas Scattolin
- Department of Chemistry and Center for Sustainable Chemistry
- Ghent University
- Ghent
- Belgium
| | - Xinyuan Ma
- Department of Chemistry and Center for Sustainable Chemistry
- Ghent University
- Ghent
- Belgium
| | - Steven P. Nolan
- Department of Chemistry and Center for Sustainable Chemistry
- Ghent University
- Ghent
- Belgium
| |
Collapse
|
25
|
Gutiérrez-Blanco A, Ibáñez S, Hahn FE, Poyatos M, Peris E. A Twisted Tetragold Cyclophane from a Fused Bis-Imidazolindiylidene. Organometallics 2019. [DOI: 10.1021/acs.organomet.9b00719] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Ana Gutiérrez-Blanco
- Institut für Anorganische und Analytische Chemie, Westfälische Wilhelms-Universität Münster, Corrensstraße 28-30, 48149 Münster, Germany
- Institute of Advanced Materials (INAM), Centro de Innovación en Química Avanzada (ORFEO−CINQA), Universitat Jaume I, Avda. Vicente Sos Baynat s/n, Castellón E-12071, Spain
| | - Susana Ibáñez
- Institute of Advanced Materials (INAM), Centro de Innovación en Química Avanzada (ORFEO−CINQA), Universitat Jaume I, Avda. Vicente Sos Baynat s/n, Castellón E-12071, Spain
| | - F. Ekkehardt Hahn
- Institut für Anorganische und Analytische Chemie, Westfälische Wilhelms-Universität Münster, Corrensstraße 28-30, 48149 Münster, Germany
| | - Macarena Poyatos
- Institute of Advanced Materials (INAM), Centro de Innovación en Química Avanzada (ORFEO−CINQA), Universitat Jaume I, Avda. Vicente Sos Baynat s/n, Castellón E-12071, Spain
| | - Eduardo Peris
- Institute of Advanced Materials (INAM), Centro de Innovación en Química Avanzada (ORFEO−CINQA), Universitat Jaume I, Avda. Vicente Sos Baynat s/n, Castellón E-12071, Spain
| |
Collapse
|
26
|
Zhang X, Han Y, Liu G, Wang F. Macrocyclic versus acyclic preorganization in organoplatinum(II)-based host‒guest complexes. CHINESE CHEM LETT 2019. [DOI: 10.1016/j.cclet.2019.05.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
27
|
Elahi SM, Lai QH, Ren M, Bao SS, Kurmoo M, Zheng LM. Two- and Three-Dimensional Heterometallic Ln[Ru2-α-Ammonium Diphosphonate] Nets: Structures, Porosity, Magnetism, and Proton Conductivity. Inorg Chem 2019; 58:14034-14045. [DOI: 10.1021/acs.inorgchem.9b02026] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Syed Meheboob Elahi
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, China
| | - Qing-Heng Lai
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, China
| | - Min Ren
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, China
| | - Song-Song Bao
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, China
| | - Mohamedally Kurmoo
- Institut de Chimie de Strasbourg, Université de Strasbourg, CNRS-UMR7177, 4 rue Blaise Pascal, Strasbourg Cedex 67070, France
| | - Li-Min Zheng
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, China
| |
Collapse
|
28
|
Zhang LLM, Zhou G, Zhou G, Lee HK, Zhao N, Prezhdo OV, Mak TCW. Core-dependent properties of copper nanoclusters: valence-pure nanoclusters as NIR TADF emitters and mixed-valence ones as semiconductors. Chem Sci 2019; 10:10122-10128. [PMID: 32055367 PMCID: PMC7003970 DOI: 10.1039/c9sc03455b] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 09/06/2019] [Indexed: 01/05/2023] Open
Abstract
While valence-pure copper alkynyl nanoclusters show near-infrared TADF, the mixed-valence ones exhibit semiconductivity.
We report herein that copper alkynyl nanoclusters show metal-core dependent properties via a charge-transfer mechanism, which enables new understanding of their structure–property relationship. Initially, nanoclusters 1 and 2 bearing respective Cu(i)15 (C1) and Cu(i)28 (C2) cores were prepared and revealed to display near-infrared (NIR) photoluminescence mainly from the mixed alkynyl → Cu(i) ligand-to-metal charge transfer (LMCT) and cluster-centered transition, and they further exhibit thermally activated delayed fluorescence (TADF). Subsequently, a vanadate-induced oxidative approach to in situ generate a nucleating Cu(ii) cation led to assembly of 3 and 4 featuring respective [Cu(ii)O6]@Cu(i)47 (C3) and {[Cu(ii)O4]·[VO4]2}@Cu(i)46 (C4) cores. While interstitial occupancy of Cu(ii) triggers inter-valence charge-transfer (IVCT) from Cu(i) to Cu(ii) to quench the photoluminescence of 3 and 4, such a process facilitates charge mobility to render them semiconductive. Overall, metal-core modification results in an interplay between charge-transfer processes to switch TADF to semiconductivity, which underpins an unusual structure–property correlation for designed synthesis of metal nanoclusters with unique properties and functions.
Collapse
Affiliation(s)
- Leon Li-Min Zhang
- Department of Chemistry and Center of Novel Functional Molecules , The Chinese University of Hong Kong , Hong Kong SAR , People's Republic of China .
| | - Guodong Zhou
- Department of Electronic Engineering , The Chinese University of Hong Kong , Hong Kong SAR , People's Republic of China
| | - Guoqing Zhou
- Department of Chemistry , University of Southern California , Los Angeles , California 90089-1062 , USA
| | - Hung-Kay Lee
- Department of Chemistry and Center of Novel Functional Molecules , The Chinese University of Hong Kong , Hong Kong SAR , People's Republic of China .
| | - Ni Zhao
- Department of Electronic Engineering , The Chinese University of Hong Kong , Hong Kong SAR , People's Republic of China
| | - Oleg V Prezhdo
- Department of Chemistry , University of Southern California , Los Angeles , California 90089-1062 , USA
| | - Thomas C W Mak
- Department of Chemistry and Center of Novel Functional Molecules , The Chinese University of Hong Kong , Hong Kong SAR , People's Republic of China .
| |
Collapse
|
29
|
Ibáñez S, Peris E. A Matter of Fidelity: Self‐Sorting Behavior of Di‐Gold Metallotweezers. Chemistry 2019; 25:8254-8258. [DOI: 10.1002/chem.201901880] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Indexed: 12/11/2022]
Affiliation(s)
- Susana Ibáñez
- Institute of Advanced Materials (INAM)Centro de Innovación en Química Avanzada (ORFEO-CINQA)Universitat Jaume I Av. Vicente Sos Baynat s/n Castellón 12071 Spain
| | - Eduardo Peris
- Institute of Advanced Materials (INAM)Centro de Innovación en Química Avanzada (ORFEO-CINQA)Universitat Jaume I Av. Vicente Sos Baynat s/n Castellón 12071 Spain
| |
Collapse
|
30
|
Ibáñez S, Peris E. A Rigid Trigonal‐Prismatic Hexagold Metallocage That Behaves as a Coronene Trap. Angew Chem Int Ed Engl 2019; 58:6693-6697. [DOI: 10.1002/anie.201902568] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 03/15/2019] [Indexed: 12/14/2022]
Affiliation(s)
- Susana Ibáñez
- Institute of Advanced Materials (INAM).Centro de Innovación en Química Avanzada (ORFEO-CINQA).Universitat Jaume I. Av. Vicente Sos Baynat s/n 12071 Castellón Spain
| | - Eduardo Peris
- Institute of Advanced Materials (INAM).Centro de Innovación en Química Avanzada (ORFEO-CINQA).Universitat Jaume I. Av. Vicente Sos Baynat s/n 12071 Castellón Spain
| |
Collapse
|
31
|
Ibáñez S, Peris E. A Rigid Trigonal‐Prismatic Hexagold Metallocage That Behaves as a Coronene Trap. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201902568] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Susana Ibáñez
- Institute of Advanced Materials (INAM).Centro de Innovación en Química Avanzada (ORFEO-CINQA).Universitat Jaume I. Av. Vicente Sos Baynat s/n 12071 Castellón Spain
| | - Eduardo Peris
- Institute of Advanced Materials (INAM).Centro de Innovación en Química Avanzada (ORFEO-CINQA).Universitat Jaume I. Av. Vicente Sos Baynat s/n 12071 Castellón Spain
| |
Collapse
|
32
|
Zhang Y, Das R, Li Y, Wang Y, Han Y. Synthesis, Characterization, and Properties of Organometallic Molecular Cylinders Bearing Bulky Imidazo[1,5‐
a
]pyridine‐Based N‐Heterocyclic Carbene Ligands. Chemistry 2019; 25:5472-5479. [DOI: 10.1002/chem.201806204] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Indexed: 12/17/2022]
Affiliation(s)
- Ya‐Wen Zhang
- Key Laboratory of Synthetic, and Natural Functional Molecule ChemistryCollege of Chemistry and Materials ScienceNorthwest University Xi'an 710127 P. R. China
| | - Rajorshi Das
- Key Laboratory of Synthetic, and Natural Functional Molecule ChemistryCollege of Chemistry and Materials ScienceNorthwest University Xi'an 710127 P. R. China
| | - Yang Li
- Key Laboratory of Synthetic, and Natural Functional Molecule ChemistryCollege of Chemistry and Materials ScienceNorthwest University Xi'an 710127 P. R. China
| | - Yao‐Yu Wang
- Key Laboratory of Synthetic, and Natural Functional Molecule ChemistryCollege of Chemistry and Materials ScienceNorthwest University Xi'an 710127 P. R. China
| | - Ying‐Feng Han
- Key Laboratory of Synthetic, and Natural Functional Molecule ChemistryCollege of Chemistry and Materials ScienceNorthwest University Xi'an 710127 P. R. China
- State Key Laboratory of Structural ChemistryFujian Institute of Research on the Structure of MatterChinese Academy of Sciences Fuzhou 350002 P. R. China
| |
Collapse
|
33
|
Xu X, Zhang Z, Huang S, Cao L, Liu W, Yan X. 4-Halo-1,2,3-triazolylidenes: stable carbenes featuring halogen bonding. Dalton Trans 2019; 48:6931-6941. [PMID: 31038514 DOI: 10.1039/c9dt01018a] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Synthesis and coordination of 4-halo-1,2,3-triazolylidenes have been developed. These novel ligands featured the character with σ-donation at carbon and a σ-hole at the halogen. Halogen bonding was observed by single crystal X-ray diffraction in their coinage metal complexes. The electronic properties of 4-iodo-1,2,3-triazolylidene were studied by both Ir-CO frequencies of the Tolman electronic parameter (TEP) and Huynh's electronic parameter (HEP) method, which suggested similar electronic properties to those of imidazolylidenes. During HEP tests, an interesting tunability was observed when different electron donors were employed.
Collapse
Affiliation(s)
- Xingyu Xu
- Department of Chemistry, Renmin University of China, Beijing 100872, People's Republic of China.
| | | | | | | | | | | |
Collapse
|