1
|
Li JJ, Zeng XX, Kuang X, Shen HC, Wang P, Yu JQ. Atroposelective Diverse Remote meta-C-H Functionalization via Kinetic Resolution. J Am Chem Soc 2025; 147:6594-6603. [PMID: 39951151 DOI: 10.1021/jacs.4c15491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2025]
Abstract
A diverse range of Pd(II)-catalyzed enantioselective C-H activation reactions have been developed to construct point, axial, and planar chirality. Despite the importance of chiral biaryl scaffolds in bioactive molecules and chiral ligands, atroposelective functionalization at the meta-position remains a significant challenge. Here, we realized a rare atroposelective remote meta-C-H functionalization with a chiral monoprotected amino acid (MPAA) ligand and a racemic transient norbornene mediator. The reaction starts with enantioselective ortho-C-H activation via kinetic resolution to give a chiral biaryl-palladium intermediate, which subsequently undergoes a Catellani relay to afford chiral meta-functionalized biaryl products (S-factors up to 458). The obtained diverse enantioenriched quinoline-based atropisomers are ubiquitous in natural products, pharmaceuticals, chiral ligands, and functional materials. Moreover, unprecedented enantioselective meta-alkenylation and alkynylation have also been developed using this approach. A wide range of synthetic applications of the chiral 8-aryl quinolines, including the synthesis of novel P,N-ligand and chiral functional materials with CPL activity, have been demonstrated.
Collapse
Affiliation(s)
- Jian-Jun Li
- State Key Laboratory of Organometallic Chemistry and Shanghai-Hong Kong Joint Laboratory in Chemical Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, CAS 345 Lingling Road, Shanghai 200032, P. R. China
| | - Xiao-Xuan Zeng
- State Key Laboratory of Organometallic Chemistry and Shanghai-Hong Kong Joint Laboratory in Chemical Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, CAS 345 Lingling Road, Shanghai 200032, P. R. China
| | - Xin Kuang
- State Key Laboratory of Organometallic Chemistry and Shanghai-Hong Kong Joint Laboratory in Chemical Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, CAS 345 Lingling Road, Shanghai 200032, P. R. China
| | - Hua-Chen Shen
- State Key Laboratory of Organometallic Chemistry and Shanghai-Hong Kong Joint Laboratory in Chemical Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, CAS 345 Lingling Road, Shanghai 200032, P. R. China
| | - Peng Wang
- State Key Laboratory of Organometallic Chemistry and Shanghai-Hong Kong Joint Laboratory in Chemical Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, CAS 345 Lingling Road, Shanghai 200032, P. R. China
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou 310024, P. R. China
- College of Material Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry, and Material Technology of Ministry of Education, Hangzhou Normal University, Hangzhou 311121, P. R. China
| | - Jin-Quan Yu
- The Scripps Research Institute (TSRI), 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| |
Collapse
|
2
|
Khuntia R, Maity D, Chandra Pan S. Catalytic Asymmetric De Novo Synthesis of Chiral Pyrroles Through Desymmetrizing Oxidative [3+2]-Cycloaddition and the Van Leusen Reaction. Chemistry 2025; 31:e202404511. [PMID: 39910876 DOI: 10.1002/chem.202404511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Indexed: 02/07/2025]
Abstract
Central chirality in heteroarene derivatives arising from unsymmetrically substituted heteroarene rings is an intriguing but underexplored topic. Herein, we reported the first catalytic enantioselective de novo construction of centrally chiral pyrroles through desymmetrizing oxidative [3+2]-cycloaddition by employing silver catalysis. This judicious desymmetrization can produce at least four continuous stereogenic centers without creating any additional stereocenter. Furthermore, to introduce a more diverse set of substituents, we developed the first catalytic asymmetric Van Leusen reaction with α-substituted TosMIC for the synthesis of centrally chiral pyrroles. A wide range of polycyclic 2-substituted, 3,4-fused pyrroles were obtained in high yields and with good to high enantioselectivities. This report includes the elaboration of methanobenzo[f]isoindole to synthetically challenging building block chiral isoindole compounds, which are synthesized enantioselectively for the first time.
Collapse
Affiliation(s)
- Rupkumar Khuntia
- Department of Chemistry, Indian Institute of Technology Guwahati, Assam, 781039, India
| | - Diptendu Maity
- Department of Chemistry, Indian Institute of Technology Guwahati, Assam, 781039, India
| | - Subhas Chandra Pan
- Department of Chemistry, Indian Institute of Technology Guwahati, Assam, 781039, India
| |
Collapse
|
3
|
Fei Y, Zhou Z, Ni Z, Peng X, Cui L, Zhou Z, Li X, Li C, Jia X, Li J. Chemoselective Construction of Polycyclic Heterocycles Containing a [6-6-5] or [7-6-5] Tricyclic Core Skeleton from a 2-Isocyanophenyl Propargylic Ester. Angew Chem Int Ed Engl 2025; 64:e202414726. [PMID: 39215589 DOI: 10.1002/anie.202414726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 08/23/2024] [Accepted: 08/30/2024] [Indexed: 09/04/2024]
Abstract
Functionalized isocyanide chemistry represents an important research area in organic synthesis. A structurally unique 2-isocyanophenyl propargylic ester has been designed to incorporate the reactivity of isocyanide and propargylic ester functionalities. Thus, the reaction of 2-isocyanophenyl propargylic ester and 2-aminoaromatic aldimine facilitates the synthesis of a wide range of polycyclic benzo[b] indolo [3,2-h][1,6] naphthyridine derivatives. Furthermore, reaction with 2-hydroxyaromatic aldimine enables the divergent synthesis of both the aforementioned scaffolds and structurally distinct diazabenzo [f] naphtho[2,3,4-ij] azulenes featuring a [7-6-5] core skeleton. Experimental results and DFT calculations suggest that these transformations likely proceed by the in situ generation of a strained cyclopropenimine species followed by [3+2] cycloaddition. Next, switchable nucleophilic attack/ring expansion/aromatization and nucleophilic addition/ring expansion/elimination account for the observed selectivity.
Collapse
Affiliation(s)
- Youwen Fei
- Department of Chemistry, College of Sciences, Shanghai University, Shanghai, 200444, China
| | - Zihao Zhou
- Department of Chemistry, College of Sciences, Shanghai University, Shanghai, 200444, China
| | - Zihan Ni
- Department of Chemistry, College of Sciences, Shanghai University, Shanghai, 200444, China
| | - Xin Peng
- Department of Chemistry, College of Sciences, Shanghai University, Shanghai, 200444, China
| | - Lei Cui
- Department of Chemistry, College of Sciences, Shanghai University, Shanghai, 200444, China
| | - Zijun Zhou
- Department of Chemistry, College of Sciences, Shanghai University, Shanghai, 200444, China
| | - Xinyao Li
- Department of Chemistry, College of Sciences, Shanghai University, Shanghai, 200444, China
| | - Chunju Li
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin, 300387, China
| | - Xueshun Jia
- Department of Chemistry, College of Sciences, Shanghai University, Shanghai, 200444, China
| | - Jian Li
- Department of Chemistry, College of Sciences, Shanghai University, Shanghai, 200444, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, 453007, China
| |
Collapse
|
4
|
Zhan W, Hu J, Chen X, Luo G, Song X. Atroposelective synthesis of axially chiral indolizinylpyrroles by catalytic asymmetric Paal-Knorr reaction. Chem Commun (Camb) 2024; 60:14984-14987. [PMID: 39589073 DOI: 10.1039/d4cc04678a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2024]
Abstract
We present herein a highly efficient atroposelective synthesis of five/five-membered N-indolizinylpyrrole through the chiral phosphoric acid (CPA) catalyzed Paal-Knorr reaction of 3-aminoindolizines and 1,4-diketones. The reaction features mild reaction conditions, broad substrate scope and excellent enantioselectivity. Moreover, this method provides a facile approach to a novel axially chiral indolizine-pyrrole framework.
Collapse
Affiliation(s)
- Wenyan Zhan
- College of Chemistry and Materials Science, Key Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, Anhui Normal University, Wuhu, Anhui 241002, P. R. China.
| | - Jiameng Hu
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, China.
| | - Xiaoyun Chen
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, P. R. China
| | - Gen Luo
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, China.
| | - Xiaoxiao Song
- College of Chemistry and Materials Science, Key Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, Anhui Normal University, Wuhu, Anhui 241002, P. R. China.
| |
Collapse
|
5
|
Campbell JW, Cotnam MJ, Annan FR, Hilborn JW, Thompson A. Synthesis of chiral systems featuring the pyrrole unit: a review. Chem Commun (Camb) 2024; 60:11385-11414. [PMID: 39292192 DOI: 10.1039/d4cc03601h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Synthetic strategies towards pyrroles within chiral frameworks are summarised, focussing on reports published 2010-2023. The synthesis of pyrroles featuring substituents bearing chiral centres are summarised, as are those whereby pyrroles are located within axially chiral systems courtesy of restricted bond rotation.
Collapse
Affiliation(s)
- Jacob W Campbell
- Department of Chemistry, Dalhousie University, P. O. Box 15000, Halifax, Nova Scotia, B3H 4R2, Canada.
| | - Michael J Cotnam
- Department of Chemistry, Dalhousie University, P. O. Box 15000, Halifax, Nova Scotia, B3H 4R2, Canada.
| | - Francisca R Annan
- Department of Chemistry, Dalhousie University, P. O. Box 15000, Halifax, Nova Scotia, B3H 4R2, Canada.
| | - James W Hilborn
- Department of Chemistry, Dalhousie University, P. O. Box 15000, Halifax, Nova Scotia, B3H 4R2, Canada.
| | - Alison Thompson
- Department of Chemistry, Dalhousie University, P. O. Box 15000, Halifax, Nova Scotia, B3H 4R2, Canada.
| |
Collapse
|
6
|
Yuan S, Sun JC, Zhao XM, Zhu J, Zheng SC. Design and Synthesis of C 4-Symmetric Axially Chiral β-Aryl Porphyrins and Application for Supporting Ir(III)-Catalyzed Enantioselective C-H Alkylation. Angew Chem Int Ed Engl 2024; 63:e202404329. [PMID: 38683742 DOI: 10.1002/anie.202404329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/28/2024] [Accepted: 04/29/2024] [Indexed: 05/02/2024]
Abstract
A hitherto unknown class of C4-symmetric Caryl-Cβ (C3, C8, C13, C18) axially chiral porphyrins has been synthesized and the application of their iridium (Ir) complexes in catalytic asymmetric C(sp3)-H functionalization is documented. Cyclotetramerization of enantioenriched axially chiral 2-hydroxymethyl-3-naphthyl pyrroles under mild acidic conditions affords, after oxidation with 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ), the C4-symmetric α,α,α,α-atropenantiomer as an only isolable diastereomer. Both regioisomeric Ir(Por*)(CO)(Cl) complexes catalyze the carbene C-H insertion reaction affording the same enantiomer, albeit with slight difference in enantioselectivity. With the optimum Ir-complex 3 e, the 2-substituted arylacetic acid derivatives were generated from diazo compounds and cyclohexadiene in excellent yields and enantioselectivities.
Collapse
Affiliation(s)
- Shanshan Yuan
- School of Chemical Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, P.R. China
| | - Jun-Chao Sun
- School of Chemical Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, P.R. China
| | - Xiao-Ming Zhao
- School of Chemical Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, P.R. China
| | - Jieping Zhu
- Laboratory of Synthesis and Natural Products (LSPN), Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, EPFL-SB-ISIC-LSPN, BCH 5304, 1015, Lausanne, Switzerland
| | - Sheng-Cai Zheng
- School of Chemical Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, P.R. China
| |
Collapse
|
7
|
Liu J, Wei X, Wang Y, Qu J, Wang B. Asymmetric synthesis of atropisomeric arylpyrazoles via direct arylation of 5-aminopyrazoles with naphthoquinones. Org Biomol Chem 2024; 22:4254-4263. [PMID: 38738921 DOI: 10.1039/d4ob00514g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2024]
Abstract
Construction of axially chiral arylpyrazoles represents an attractive challenge due to the relatively low rotational barrier of biaryl structures containing five-membered heterocycles. This work describes the catalytic asymmetric construction of axially chiral arylpyrazoles using 5-aminopyrazoles and naphthoquinone derivatives. The chiral axis could be formed through a central-to-axial chirality relay step of the chiral phosphoric acid-catalyzed arylation reaction, which features excellent yields and enantioselectivities with a broad substrate scope under mild reaction conditions.
Collapse
Affiliation(s)
- Jiamin Liu
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Engineering, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China.
| | - Xingfu Wei
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Engineering, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China.
| | - Yue Wang
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Engineering, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China.
| | - Jingping Qu
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Engineering, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China.
| | - Baomin Wang
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Engineering, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China.
| |
Collapse
|
8
|
Maclean I, Gallent E, Orozco O, Molina A, Rodríguez N, Adrio J, Carretero JC. Atroposelective Synthesis of Axially Chiral Naphthylpyrroles by a Catalytic Asymmetric 1,3-Dipolar Cycloaddition/Aromatization Sequence. Org Lett 2024; 26:922-927. [PMID: 38266629 PMCID: PMC10845160 DOI: 10.1021/acs.orglett.3c04261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/13/2024] [Accepted: 01/19/2024] [Indexed: 01/26/2024]
Abstract
A straightforward methodology for the enantioselective preparation of axially chiral 2-naphthylpyrroles has been developed. This protocol is based on a CuI/Fesulphos-catalyzed highly enantioselective 1,3-dipolar cycloaddition of an azomethine ylide followed by pyrrolidine alkylation and pyrrolidine to pyrrole oxidation. The mild conditions employed in the DDQ/blue light-mediated aromatization process facilitate an effective central-to-axial chirality transfer affording the corresponding pyrroles with high atroposelectivity.
Collapse
Affiliation(s)
- Ian Maclean
- Departamento
de Química Orgánica, Facultad de Ciencias, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Enrique Gallent
- Departamento
de Química Orgánica, Facultad de Ciencias, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Oscar Orozco
- Departamento
de Química Orgánica, Facultad de Ciencias, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Alba Molina
- Departamento
de Química Orgánica, Facultad de Ciencias, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Nuria Rodríguez
- Departamento
de Química Orgánica, Facultad de Ciencias, Universidad Autónoma de Madrid, 28049 Madrid, Spain
- Institute
for Advanced Research in Chemical Sciences (IAdChem) and Center for
Innovation in Advanced Chemistry (ORFEO-CINQA), Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Javier Adrio
- Departamento
de Química Orgánica, Facultad de Ciencias, Universidad Autónoma de Madrid, 28049 Madrid, Spain
- Institute
for Advanced Research in Chemical Sciences (IAdChem) and Center for
Innovation in Advanced Chemistry (ORFEO-CINQA), Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Juan C. Carretero
- Departamento
de Química Orgánica, Facultad de Ciencias, Universidad Autónoma de Madrid, 28049 Madrid, Spain
- Institute
for Advanced Research in Chemical Sciences (IAdChem) and Center for
Innovation in Advanced Chemistry (ORFEO-CINQA), Universidad Autónoma de Madrid, 28049 Madrid, Spain
| |
Collapse
|
9
|
Hu P, Hu L, Li XX, Pan M, Lu G, Li X. Rhodium(I)-Catalyzed Asymmetric Hydroarylative Cyclization of 1,6-Diynes to Access Atropisomerically Labile Chiral Dienes. Angew Chem Int Ed Engl 2024; 63:e202312923. [PMID: 37971168 DOI: 10.1002/anie.202312923] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/13/2023] [Accepted: 11/16/2023] [Indexed: 11/19/2023]
Abstract
Axially chiral open-chained olefins are an underexplored class of atropisomers, whose enantioselective synthesis represents a daunting challenge due to their relatively low racemization barrier. We herein report rhodium(I)-catalyzed hydroarylative cyclization of 1,6-diynes with three distinct classes of arenes, enabling highly enantioselective synthesis of a broad range of axially chiral 1,3-dienes that are conformationally labile (ΔG≠ (rac)=26.6-28.0 kcal/mol). The coupling reactions in each category proceeded with excellent enantioselectivity, regioselectivity, and Z/E selectivity under mild reaction conditions. Computational studies of the coupling of quinoline N-oxide system reveal that the reaction proceeds via initial oxidative cyclization of the 1,6-diyne to give a rhodacyclic intermediate, followed by σ-bond metathesis between the arene C-H bond and the Rh-C(vinyl) bond, with subsequent C-C reductive elimination being enantio-determining and turnover-limiting. The DFT-established mechanism is consistent with the experimental studies. The coupled products of quinoline N-oxides undergo facile visible light-induced intramolecular oxygen-atom transfer, affording chiral epoxides with complete axial-to-central chirality transfer.
Collapse
Affiliation(s)
- Panjie Hu
- School of Chemistry and Chemical Engineering, Shaanxi Normal University (SNNU), Xi'an, 710062, China
| | - Lingfei Hu
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, China
| | - Xiao-Xi Li
- Institute of Molecular Science and Engineering, Institute of Frontier and Interdisciplinary Sciences, Shandong University, Qingdao, 266237, China
| | - Mengxiao Pan
- School of Chemistry and Chemical Engineering, Shaanxi Normal University (SNNU), Xi'an, 710062, China
| | - Gang Lu
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, China
| | - Xingwei Li
- School of Chemistry and Chemical Engineering, Shaanxi Normal University (SNNU), Xi'an, 710062, China
- Institute of Molecular Science and Engineering, Institute of Frontier and Interdisciplinary Sciences, Shandong University, Qingdao, 266237, China
| |
Collapse
|
10
|
Wu JH, Tan JP, Zheng JY, He J, Song Z, Su Z, Wang T. Towards Axially Chiral Pyrazole-Based Phosphorus Scaffolds by Dipeptide-Phosphonium Salt Catalysis. Angew Chem Int Ed Engl 2023; 62:e202215720. [PMID: 36694276 DOI: 10.1002/anie.202215720] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 01/23/2023] [Accepted: 01/24/2023] [Indexed: 01/26/2023]
Abstract
Given the comparatively lower rotational barriers, the catalytic asymmetric construction of axially chiral biaryl structures, especially those containing a five-membered heterocycle, still remains a challenge. Herein, we described a general and modular protocol to access atropisomeric arylpyrazole scaffolds containing a phosphorus unit by a dipeptide phosphonium salt catalyzed reaction involving an oxidative central-to-axial chirality conversion. This reaction features excellent yields and enantioselectivities, broad substrate scope, and a low catalyst loading, delivering axially chiral phosphine compounds.
Collapse
Affiliation(s)
- Jia-Hong Wu
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, P. R. China
| | - Jian-Ping Tan
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, P. R. China.,Hunan Province Key Laboratory of Environmental Catalysis and Waste Recycling, College of Materials and Chemical Engineering, Hunan Institute of Engineering, Xiangtan, 411104, P. R. China
| | - Jia-Yan Zheng
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, P. R. China
| | - Jiajia He
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, P. R. China
| | - Zhenlei Song
- West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Zhishan Su
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, P. R. China
| | - Tianli Wang
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, P. R. China.,Beijing National Laboratory for Molecular Sciences, Beijing, 100190, P. R. China
| |
Collapse
|
11
|
Wu P, Yu L, Gao CH, Cheng Q, Deng S, Jiao Y, Tan W, Shi F. Design and synthesis of axially chiral aryl-pyrroloindoles via the strategy of organocatalytic asymmetric (2 + 3) cyclization. FUNDAMENTAL RESEARCH 2023; 3:237-248. [PMID: 38932922 PMCID: PMC11197731 DOI: 10.1016/j.fmre.2022.01.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 01/02/2022] [Accepted: 01/09/2022] [Indexed: 01/10/2023] Open
Abstract
The catalytic asymmetric construction of axially chiral indole-based frameworks is an important area of research due to the unique characteristics of such frameworks. Nevertheless, research in this area is still in its infancy and has some challenges, such as designing and constructing new classes of axially chiral indole-based scaffolds and developing their applications in chiral catalysts, ligands, etc. To overcome these challenges, we present herein the design and atroposelective synthesis of aryl-pyrroloindoles as a new class of axially chiral indole-based scaffolds via the strategy of organocatalytic asymmetric (2 + 3) cyclization between 3-arylindoles and propargylic alcohols. More importantly, this new class of axially chiral scaffolds was derived into phosphines, which served as efficient chiral ligands in palladium-catalyzed asymmetric reactions. Moreover, theoretical calculations provided an in-depth understanding of the reaction mechanism. This work offers a new strategy for constructing axially chiral indole-based scaffolds, which are promising for finding more applications in asymmetric catalysis.
Collapse
Affiliation(s)
- Ping Wu
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, China
| | - Lei Yu
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, China
| | - Cong-Hui Gao
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, China
| | - Qi Cheng
- School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Shuang Deng
- School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Yinchun Jiao
- School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Wei Tan
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, China
| | - Feng Shi
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, China
| |
Collapse
|
12
|
Li X, Wang GW, Liu LX, Yu CB, Zhou YG. Palladium-Catalyzed Asymmetric Hydrogenolysis of Aryl Triflates for Construction of Axially Chiral Biaryls. Angew Chem Int Ed Engl 2023; 62:e202301337. [PMID: 36802127 DOI: 10.1002/anie.202301337] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/17/2023] [Accepted: 02/17/2023] [Indexed: 02/20/2023]
Abstract
Here we report the first palladium-catalyzed asymmetric hydrogenolysis of readily available aryl triflates via desymmetrization and kinetic resolution for facile construction of axially chiral biaryl scaffolds with excellent enantioselectivities and s selectivity factors. The axially chiral monophosphine ligands could be prepared from these chiral biaryl compounds and were further applied to palladium-catalyzed asymmetric allylic alkylation with excellent ee values and high branched and linear ratio, which demonstrated the potential utility of this methodology.
Collapse
Affiliation(s)
- Xiang Li
- Zhang Dayu School of Chemistry, Dalian University of Technology, 2 Linggong Road, 116024, Dalian, P. R. China.,State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023, Dalian, P. R. China
| | - Gao-Wei Wang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023, Dalian, P. R. China
| | - Li-Xia Liu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023, Dalian, P. R. China
| | - Chang-Bin Yu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023, Dalian, P. R. China
| | - Yong-Gui Zhou
- Zhang Dayu School of Chemistry, Dalian University of Technology, 2 Linggong Road, 116024, Dalian, P. R. China.,State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023, Dalian, P. R. China
| |
Collapse
|
13
|
Zhang SC, Liu S, Wang X, Wang SJ, Yang H, Li L, Yang B, Wong MW, Zhao Y, Lu S. Enantioselective Access to Triaryl-2-pyrones with Monoaxial or Contiguous C–C Diaxes via Oxidative NHC Catalysis. ACS Catal 2023. [DOI: 10.1021/acscatal.2c05570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Si-Chen Zhang
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE) & Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi’an 710072, China
| | - Shengping Liu
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE) & Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi’an 710072, China
| | - Xia Wang
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE) & Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi’an 710072, China
| | - Shao-Jie Wang
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE) & Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi’an 710072, China
| | - Hui Yang
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Republic of Singapore 117543
| | - Lin Li
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE) & Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi’an 710072, China
| | - Binmiao Yang
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Republic of Singapore 117543
| | - Ming Wah Wong
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Republic of Singapore 117543
| | - Yu Zhao
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Republic of Singapore 117543
| | - Shenci Lu
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE) & Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi’an 710072, China
| |
Collapse
|
14
|
Li Y, Song GT, Tang DY, Xu ZG, Chen ZZ. Acid-Promoted Direct C-H Carbamoylation at the C-3 Position of Quinoxalin-2(1 H)-ones with Isocyanide in Water. ACS OMEGA 2023; 8:1577-1587. [PMID: 36643431 PMCID: PMC9835787 DOI: 10.1021/acsomega.2c06946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 12/07/2022] [Indexed: 06/17/2023]
Abstract
Described herein is a concise and practical direct amidation at the C-3 position of quinoxalin-2(1H)-ones through an acid-promoted carbamoylation with isocyanide in water. In this conversion, environmentally friendly water and commercial inexpensive isocyanide were used as a solvent and carbamoylation reagent, respectively. This study not only provides a green and efficient strategy for the construction of 3-carbamoylquinoxalin-2(1H)-one derivatives that can be applied to the synthesis of druglike structures but also expands the application of isocyanide in organic chemistry.
Collapse
|
15
|
Yan Y, Li M, Shi Q, Huang M, Li W, Cao L, Zhang X. Atropoenantioselective Arylation of 5‐Amino‐Isothiazoles with Methyl
p
‐Quinone Carboxylate. ASIAN J ORG CHEM 2023. [DOI: 10.1002/ajoc.202200578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Yingkun Yan
- Department of Chemistry Xihua University Chengdu 610039 P. R. China
- Asymmetric Synthesis and Chiraltechnology Key Laboratory of Sichuan Province Chengdu Institute of Organic Chemistry Chinese Academy of Sciences Chengdu 610041 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Min Li
- Department of Chemistry Xihua University Chengdu 610039 P. R. China
- Asymmetric Synthesis and Chiraltechnology Key Laboratory of Sichuan Province Chengdu Institute of Organic Chemistry Chinese Academy of Sciences Chengdu 610041 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Quan Shi
- Department of Chemistry Xihua University Chengdu 610039 P. R. China
| | - Min Huang
- Department of Chemistry Xihua University Chengdu 610039 P. R. China
- Asymmetric Synthesis and Chiraltechnology Key Laboratory of Sichuan Province Chengdu Institute of Organic Chemistry Chinese Academy of Sciences Chengdu 610041 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Wenzhe Li
- Department of Chemistry Xihua University Chengdu 610039 P. R. China
- Asymmetric Synthesis and Chiraltechnology Key Laboratory of Sichuan Province Chengdu Institute of Organic Chemistry Chinese Academy of Sciences Chengdu 610041 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Lianyi Cao
- Department of Chemistry Xihua University Chengdu 610039 P. R. China
- Asymmetric Synthesis and Chiraltechnology Key Laboratory of Sichuan Province Chengdu Institute of Organic Chemistry Chinese Academy of Sciences Chengdu 610041 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Xiaomei Zhang
- Department of Chemistry Xihua University Chengdu 610039 P. R. China
- Asymmetric Synthesis and Chiraltechnology Key Laboratory of Sichuan Province Chengdu Institute of Organic Chemistry Chinese Academy of Sciences Chengdu 610041 P. R. China
| |
Collapse
|
16
|
Zhang X, Liu YZ, Shao H, Ma X. Advances in Atroposelectively De Novo Synthesis of Axially Chiral Heterobiaryl Scaffolds. Molecules 2022; 27:8517. [PMID: 36500610 PMCID: PMC9739056 DOI: 10.3390/molecules27238517] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 11/25/2022] [Accepted: 11/27/2022] [Indexed: 12/12/2022] Open
Abstract
Axially chiral heterobiaryl frameworks are privileged structures in many natural products, pharmaceutically active molecules, and chiral ligands. Therefore, a variety of approaches for constructing these skeletons have been developed. Among them, de novo synthesis, due to its highly convergent and superior atom economy, serves as a promising strategy to access these challenging scaffolds including C-N, C-C, and N-N chiral axes. So far, several elegant reviews on the synthesis of axially chiral heterobiaryl skeletons have been disclosed, however, atroposelective construction of the heterobiaryl subunits by de novo synthesis was rarely covered. Herein, we summarized the recent advances in the catalytic asymmetric synthesis of the axially chiral heterobiaryl scaffold via de novo synthetic strategies. The related mechanism, scope, and applications were also included.
Collapse
Affiliation(s)
- Xiaoke Zhang
- Natural Products Research Centre, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
- Central Laboratory, Chongqing University Fu Ling Hospital, Chongqing 408000, China
| | - Ya-Zhou Liu
- Natural Products Research Centre, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Huawu Shao
- Natural Products Research Centre, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Xiaofeng Ma
- Natural Products Research Centre, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| |
Collapse
|
17
|
Wang HQ, Wu SF, Yang JR, Zhang YC, Shi F. Design and Organocatalytic Asymmetric Synthesis of Indolyl-Pyrroloindoles Bearing Both Axial and Central Chirality. J Org Chem 2022. [DOI: 10.1021/acs.joc.2c02303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- Hai-Qing Wang
- Research Center of Chiral Functional Heterocycles, School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, 221116, China
| | - Shu-Fang Wu
- Research Center of Chiral Functional Heterocycles, School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, 221116, China
| | - Jun-Ru Yang
- Research Center of Chiral Functional Heterocycles, School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, 221116, China
| | - Yu-Chen Zhang
- Research Center of Chiral Functional Heterocycles, School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, 221116, China
| | - Feng Shi
- Research Center of Chiral Functional Heterocycles, School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, 221116, China
- School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| |
Collapse
|
18
|
Xiang Alvin Tan C, Li R, Zhang F, Dai L, Ullah N, Lu Y. Synthesis of Axially Chiral CF
3
‐Substituted 2‐Arylpyrroles by Sequential Phosphine‐Catalyzed Asymmetric [3+2] Annulation and Oxidative Central‐to‐Axial Chirality Transfer. Angew Chem Int Ed Engl 2022; 61:e202209494. [DOI: 10.1002/anie.202209494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Indexed: 11/16/2022]
Affiliation(s)
- Chuan Xiang Alvin Tan
- Department of Chemistry National University of Singapore 3 Science Drive 3 Singapore 117543 Singapore
- Integrative Sciences & Engineering Programme (ISEP) National University of Singapore 28 Medical Drive Singapore 117456 Singapore
| | - Rui Li
- Department of Chemistry National University of Singapore 3 Science Drive 3 Singapore 117543 Singapore
- Joint School of National University of Singapore and Tianjin University International Campus of Tianjin University Binhai New City, Fuzhou Fujian 350207 China
| | - Fuhao Zhang
- Department of Chemistry National University of Singapore 3 Science Drive 3 Singapore 117543 Singapore
| | - Lei Dai
- Department of Chemistry National University of Singapore 3 Science Drive 3 Singapore 117543 Singapore
| | - Nisar Ullah
- Chemistry Department King Fahd University of Petroleum & Minerals Dhahran 31261 Saudi Arabia
| | - Yixin Lu
- Department of Chemistry National University of Singapore 3 Science Drive 3 Singapore 117543 Singapore
- Integrative Sciences & Engineering Programme (ISEP) National University of Singapore 28 Medical Drive Singapore 117456 Singapore
- Joint School of National University of Singapore and Tianjin University International Campus of Tianjin University Binhai New City, Fuzhou Fujian 350207 China
| |
Collapse
|
19
|
Gou B, Tang Y, Lin Y, Yu L, Jian Q, Sun H, Chen J, Zhou L. Modular Construction of Heterobiaryl Atropisomers and Axially Chiral Styrenes via All‐Carbon Tetrasubstituted VQMs. Angew Chem Int Ed Engl 2022; 61:e202208174. [DOI: 10.1002/anie.202208174] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Indexed: 02/06/2023]
Affiliation(s)
- Bo‐Bo Gou
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education College of Chemistry & Materials Science National Demonstration Center for Experimental Chemistry Education Northwest University Xi'an 710127 P. R. China
| | - Yue Tang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education College of Chemistry & Materials Science National Demonstration Center for Experimental Chemistry Education Northwest University Xi'an 710127 P. R. China
| | - Yan‐Hong Lin
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education College of Chemistry & Materials Science National Demonstration Center for Experimental Chemistry Education Northwest University Xi'an 710127 P. R. China
| | - Le Yu
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education College of Chemistry & Materials Science National Demonstration Center for Experimental Chemistry Education Northwest University Xi'an 710127 P. R. China
| | - Qing‐Song Jian
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education College of Chemistry & Materials Science National Demonstration Center for Experimental Chemistry Education Northwest University Xi'an 710127 P. R. China
| | - Huai‐Ri Sun
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education College of Chemistry & Materials Science National Demonstration Center for Experimental Chemistry Education Northwest University Xi'an 710127 P. R. China
| | - Jie Chen
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education College of Chemistry & Materials Science National Demonstration Center for Experimental Chemistry Education Northwest University Xi'an 710127 P. R. China
| | - Ling Zhou
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education College of Chemistry & Materials Science National Demonstration Center for Experimental Chemistry Education Northwest University Xi'an 710127 P. R. China
| |
Collapse
|
20
|
Han T, Zhang Z, Wang M, Xu L, Mei G. The Rational Design and Atroposelective Synthesis of Axially Chiral C2‐Arylpyrrole‐Derived Amino Alcohols. Angew Chem Int Ed Engl 2022; 61:e202207517. [DOI: 10.1002/anie.202207517] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Indexed: 12/15/2022]
Affiliation(s)
- Tian‐Jiao Han
- Green Catalysis Center College of Chemistry Zhengzhou University Zhengzhou 450001 China
| | - Zheng‐Xu Zhang
- School of Chemistry and Chemical Engineering Shandong University of Technology Zibo 255000 Shandong China
| | - Min‐Can Wang
- Green Catalysis Center College of Chemistry Zhengzhou University Zhengzhou 450001 China
| | - Li‐Ping Xu
- School of Chemistry and Chemical Engineering Shandong University of Technology Zibo 255000 Shandong China
| | - Guang‐Jian Mei
- Green Catalysis Center College of Chemistry Zhengzhou University Zhengzhou 450001 China
| |
Collapse
|
21
|
Xiao Y, Peng X, Shen J, Cui L, Lu S, Jia X, Li C, Li J. Cascade reaction of o-enoyl arylisocyanide and o-hydroxy aromatic aldimine: diastereoselective access to a polycyclic spirobenzoxazine chromeno[4,3- b]pyrrole derivative. Chem Commun (Camb) 2022; 58:10528-10531. [PMID: 36043872 DOI: 10.1039/d2cc02454c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A series of structurally unusual spirobenzoxazine chromeno[4,3-b]pyrrole derivatives have been efficiently constructed in a single operation from readily available starting materials. This domino transformation forms successively three new rings and provides a fast and economic strategy with excellent diastereoselectivity.
Collapse
Affiliation(s)
- Yao Xiao
- Department of Chemistry, College of Sciences & Institute for Sustainable Energy, Shanghai University, 99 Shangda Road, Shanghai 200444, P. R. China.
| | - Xin Peng
- Department of Chemistry, College of Sciences & Institute for Sustainable Energy, Shanghai University, 99 Shangda Road, Shanghai 200444, P. R. China.
| | - Jie Shen
- Department of Chemistry, College of Sciences & Institute for Sustainable Energy, Shanghai University, 99 Shangda Road, Shanghai 200444, P. R. China.
| | - Lei Cui
- Department of Chemistry, College of Sciences & Institute for Sustainable Energy, Shanghai University, 99 Shangda Road, Shanghai 200444, P. R. China.
| | - Shanya Lu
- Department of Chemistry, College of Sciences & Institute for Sustainable Energy, Shanghai University, 99 Shangda Road, Shanghai 200444, P. R. China.
| | - Xueshun Jia
- Department of Chemistry, College of Sciences & Institute for Sustainable Energy, Shanghai University, 99 Shangda Road, Shanghai 200444, P. R. China.
| | - Chunju Li
- Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry, Ministry of Education, Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, P. R. China
| | - Jian Li
- Department of Chemistry, College of Sciences & Institute for Sustainable Energy, Shanghai University, 99 Shangda Road, Shanghai 200444, P. R. China. .,School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| |
Collapse
|
22
|
Gou BB, Tang Y, Lin YH, Yu L, Jian QS, Sun HR, Chen J, Zhou L. Modular Construction of Heterobiaryl Atropisomers and Axially Chiral Styrenes via All‐Carbon Tetrasubstituted VQMs. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202208174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Bo-Bo Gou
- Northwest University College of Chemistry & Materials Science CHINA
| | - Yue Tang
- Northwest University College of Chemistry & Materials Science CHINA
| | - Yan-Hong Lin
- Northwest University College of Chemistry & Materials Science CHINA
| | - Le Yu
- Northwest University College of Chemistry & Materials Science CHINA
| | - Qing-Song Jian
- Northwest University College of Chemistry & Materials Science CHINA
| | - Huai-Ri Sun
- Northwest University College of Chemistry & Materials Science CHINA
| | - Jie Chen
- Northwest University College of Chemistry & Materials Science CHINA
| | - Ling Zhou
- Northwest University College of Chemistry & Materials Science 1 Xuefu Ave., Chang’an District 710127 Xi'an CHINA
| |
Collapse
|
23
|
Li J, Li D, Wang Z, Zhang H, Lu N, Cui L, Wu N, Li C. Diastereoselective Synthesis of Chromenopyrrole Derivative Enabled by Multicomponent Reaction of Isocyanide, Allenoate, and Phenol. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
24
|
Zhang S, Luo ZH, Wang WT, Qian L, Liao JY. Simultaneous Construction of C-N Axial and Central Chirality via Silver-Catalyzed Desymmetrizative [3 + 2] Cycloaddition of Prochiral N-Aryl Maleimides with Activated Isocyanides. Org Lett 2022; 24:4645-4649. [PMID: 35724978 DOI: 10.1021/acs.orglett.2c01761] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Herein, we report an unprecedented strategy for the simultaneous construction of a remote C-N stereogenic axis and three contiguous stereogenic carbon centers via silver-catalyzed desymmetrizative [3 + 2] cycloaddition of prochiral N-aryl maleimides with activated isocyanides. This method features operational simplicity, wide substrate scope, high efficiency, and good to excellent stereoselectivity. Notably, it represents the first example of catalytic enantioselective synthesis of C-N atropisomers with the use of activated isocyanides.
Collapse
Affiliation(s)
- Sen Zhang
- College of Pharmaceutical Sciences, and Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou, China, 310058
| | - Zhang-Hong Luo
- College of Pharmaceutical Sciences, and Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou, China, 310058
| | - Wen-Tao Wang
- College of Pharmaceutical Sciences, and Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou, China, 310058
| | - Linghui Qian
- College of Pharmaceutical Sciences, and Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou, China, 310058
| | - Jia-Yu Liao
- College of Pharmaceutical Sciences, and Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou, China, 310058.,Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou, China, 310018
| |
Collapse
|
25
|
Han TJ, Zhang ZX, Wang MC, Xu LP, Mei GJ. The Rational Design and Atroposelective Synthesis of Axially Chiral C2‐Arylpyrrole‐Derived Amino Alcohols. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202207517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
| | - Zheng-Xu Zhang
- Shandong University of Technology College of Chemistry CHINA
| | | | - Li-Ping Xu
- Shandong University of Technology College of Chemistry CHINA
| | - Guang-Jian Mei
- Zhengzhou University Chemistry Zhengzhou 450001 450001 Zhengzhou CHINA
| |
Collapse
|
26
|
Tao LF, Zhang S, Huang F, Wang WT, Luo ZH, Qian L, Liao JY. Diastereo- and Enantioselective Silver-Catalyzed [3+3] Cycloaddition and Kinetic Resolution of Azomethine Imines with Activated Isocyanides. Angew Chem Int Ed Engl 2022; 61:e202202679. [PMID: 35289973 DOI: 10.1002/anie.202202679] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Indexed: 12/15/2022]
Abstract
In contrast to the well-established [3+2] cycloaddition reactions, the catalytic enantioselective [3+n] (n≥3) cycloaddition reaction of activated isocyanides for the preparation of six-membered or larger ring systems has remained underdeveloped. Herein, we report the first example of highly diastereo- and enantioselective [3+3] cycloaddition of activated isocyanides with azomethine imines. By employing silver catalysis, a wide range of biologically important bicyclic 1,2,4-triazines were obtained in high yields (up to 99 %) with good to excellent stereoselectivities (up to >20 : 1 dr, 99 % ee). In addition, the same catalytic system could be applied to both the late-stage functionalization of complex bioactive molecules and the kinetic resolution of racemic azomethine imines, further highlighting its versatility and synthetic utility.
Collapse
Affiliation(s)
- Ling-Fei Tao
- College of Pharmaceutical Sciences, and Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Sen Zhang
- College of Pharmaceutical Sciences, and Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Fen Huang
- College of Pharmaceutical Sciences, and Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Wen-Tao Wang
- College of Pharmaceutical Sciences, and Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Zhang-Hong Luo
- College of Pharmaceutical Sciences, and Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Linghui Qian
- College of Pharmaceutical Sciences, and Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Jia-Yu Liao
- College of Pharmaceutical Sciences, and Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou, 310058, China.,Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou, 310018, China
| |
Collapse
|
27
|
Catalytic Asymmetric Synthesis of Axially Chiral 3,3'‐Bisindoles by Direct Coupling of Indole Rings. CHINESE J CHEM 2022. [DOI: 10.1002/cjoc.202200327] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
28
|
Xu Q, Zhang H, Ge FB, Wang XM, Zhang P, Lu CJ, Liu RR. Cu(I)-Catalyzed Asymmetric Arylation of Pyrroles with Diaryliodonium Salts toward the Synthesis of N-N Atropisomers. Org Lett 2022; 24:3138-3143. [PMID: 35452582 DOI: 10.1021/acs.orglett.2c00812] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
We report herein that copper(I) catalysis using a bis(phosphine) dioxide ligand can catalyze the desymmetric C-H arylation of prochiral bipyrroles. More than 50 nitrogen-nitrogen atropisomers were achieved in good to excellent yields with excellent enantioselectivities (≤97% yield, ≤98% ee). The reaction proceeds under mild conditions with good functional group compatibility on arenes and diaryliodonium salts. Moreover, this principle enables iterative arylation of the bipyrroles to enantioselectively arylate different positions during the catalysis of copper.
Collapse
Affiliation(s)
- Qi Xu
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, P. R. China
| | - Huan Zhang
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, P. R. China
| | - Fang-Bei Ge
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, P. R. China
| | - Xiao-Mei Wang
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, P. R. China
| | - Peng Zhang
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, P. R. China
| | - Chuan-Jun Lu
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, P. R. China
| | - Ren-Rong Liu
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, P. R. China
| |
Collapse
|
29
|
Chen KW, Chen ZH, Yang S, Wu SF, Zhang YC, Shi F. Organocatalytic Atroposelective Synthesis of N-N Axially Chiral Indoles and Pyrroles by De Novo Ring Formation. Angew Chem Int Ed Engl 2022; 61:e202116829. [PMID: 35080808 DOI: 10.1002/anie.202116829] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Indexed: 12/16/2022]
Abstract
The first highly atroposelective construction of N-N axially chiral indole scaffolds was established via a new strategy of de novo ring formation. This strategy makes use of the organocatalytic asymmetric Paal-Knorr reaction of well-designed N-aminoindoles with 1,4-diketones, thus affording N-pyrrolylindoles in high yields and with excellent atroposelectivities (up to 98 % yield, 96 % ee). In addition, this strategy is applicable for the atroposelective synthesis of N-N axially chiral bispyrroles (up to 98 % yield, 97 % ee). More importantly, such N-N axially chiral heterocycles can be converted into chiral organocatalysts with applications in asymmetric catalysis, and some molecules display potent anticancer activity. This work not only provides a new strategy for the atroposelective synthesis of N-N axially chiral molecules but also offers new members of the N-N atropisomer family with promising applications in synthetic and medicinal chemistry.
Collapse
Affiliation(s)
- Ke-Wei Chen
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, 221116, China
| | - Zhi-Han Chen
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, 221116, China
| | - Shuang Yang
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, 221116, China
| | - Shu-Fang Wu
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, 221116, China
| | - Yu-Chen Zhang
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, 221116, China
| | - Feng Shi
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, 221116, China
| |
Collapse
|
30
|
Zhang X, Li S, Yu W, Xie Y, Tung CH, Xu Z. Asymmetric Azide-Alkyne Cycloaddition with Ir(I)/Squaramide Cooperative Catalysis: Atroposelective Synthesis of Axially Chiral Aryltriazoles. J Am Chem Soc 2022; 144:6200-6207. [PMID: 35377624 DOI: 10.1021/jacs.2c02563] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
An Ir(I)/squaramide cooperative catalytic strategy for atroposelective synthesis of axially chiral aryltriazoles has been developed for the first time. Diverse structurally novel aryltriazole skeletons that cannot be accessed by traditional click reactions were synthesized in good yields with excellent enantioselectivity. Both enantiomers were easily obtained from a pair of diastereoisomeric natural quinidine- and quinine-derived squaramides. A significant Ir(I)/squaramide coordination activation, but no self-quenching phenomenon was observed in this metal/organo cooperative catalytic system.
Collapse
Affiliation(s)
- Xue Zhang
- Key Lab for Colloid and Interface Chemistry of Education Ministry, Department of Chemistry, Shandong University, No. 27 South Shanda Road, Jinan 250100, China
| | - Shunian Li
- Key Lab for Colloid and Interface Chemistry of Education Ministry, Department of Chemistry, Shandong University, No. 27 South Shanda Road, Jinan 250100, China
| | - Wenjing Yu
- Key Lab for Colloid and Interface Chemistry of Education Ministry, Department of Chemistry, Shandong University, No. 27 South Shanda Road, Jinan 250100, China
| | - Yufang Xie
- Key Lab for Colloid and Interface Chemistry of Education Ministry, Department of Chemistry, Shandong University, No. 27 South Shanda Road, Jinan 250100, China
| | - Chen-Ho Tung
- Key Lab for Colloid and Interface Chemistry of Education Ministry, Department of Chemistry, Shandong University, No. 27 South Shanda Road, Jinan 250100, China
| | - Zhenghu Xu
- Key Lab for Colloid and Interface Chemistry of Education Ministry, Department of Chemistry, Shandong University, No. 27 South Shanda Road, Jinan 250100, China.,State Key Laboratory of Organometallic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China.,Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, School of Science, Westlake University, 18 Shilongshan Road, Hangzhou 310024, Zhejiang, China
| |
Collapse
|
31
|
Shao R, Zhao H, Ding S, Li L, Chen C, Wang J, Shang Y. Silver-promoted dearomative [3+4] cycloaddition of anthranils with α-isocyanoacetates: access to benzodiazepines. Chem Commun (Camb) 2022; 58:4771-4774. [PMID: 35343523 DOI: 10.1039/d2cc00807f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The first example of silver-promoted [3+4] cycloaddition of α-isocyanoacetates with anthranils as aromatic Michael accepters, offering access to benzo[d][1,3]diazepinones, has been developed. Mechanistic studies revealed that an "oxygen migration" rearrangement process was involved in this dearomative cycloaddition reaction. Additionally, benzo[d][1,3]diazepinones were obtained efficiently as well under catalytic conditions. Broad functional groups were well tolerated under mild reaction conditions.
Collapse
Affiliation(s)
- Rui Shao
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, P. R. China.
| | - Haixia Zhao
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, P. R. China.
| | - Shumin Ding
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, P. R. China.
| | - Lianjie Li
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, P. R. China.
| | - Chen Chen
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, P. R. China.
| | - Jian Wang
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, P. R. China.
| | - Yongjia Shang
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, P. R. China.
| |
Collapse
|
32
|
Guo WT, Zhu BH, Chen Y, Yang J, Qian PC, Deng C, Ye LW, Li L. Enantioselective Rh-Catalyzed Azide-Internal-Alkyne Cycloaddition for the Construction of Axially Chiral 1,2,3-Triazoles. J Am Chem Soc 2022; 144:6981-6991. [PMID: 35394289 DOI: 10.1021/jacs.2c01985] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Significant advances have been achieved for the construction of chiral skeletons containing 1,2,3-triazoles via transition-metal-catalyzed asymmetric azide-alkyne cycloaddition; however, most of them have been limited to terminal alkynes in the synthesis of central chirality via desymmetrization and dynamic/dynamic kinetic resolution. Enantioselective transition-metal-catalyzed azide-internal-alkyne cycloaddition is extremely limited. Moreover, the construction of a challenging five-membered (hetero)biaryl axially chiral molecule via transition-metal-catalyzed asymmetric azide-internal-alkyne cycloaddition is still underexplored. Herein, we first report an atroposelective and atom-economical synthesis of axially chiral 1,4,5-trisubstituted 1,2,3-triazoles, directly acting as core chiral units of challenging five-membered atropisomers, via the enantioselective Rh-catalyzed azide-alkyne cycloaddition (E-RhAAC) of internal alkynes and azides. The reaction demonstrates excellent functional group tolerance, forging a variety of C-C axially chiral 1,2,3-triazoles under mild conditions with moderate to excellent yields (up to 99% yield) and generally high to excellent enantioselectivities (up to 99% ee) along with specific regiocontrol. The origin of regio- and enantioselectivity control is disclosed by density functional theory (DFT) calculations, providing new guidance for the facile construction of axially chiral compounds.
Collapse
Affiliation(s)
- Wen-Ting Guo
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Bo-Han Zhu
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Yi Chen
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Jian Yang
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Peng-Cheng Qian
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Chao Deng
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Long-Wu Ye
- State Key Laboratory of Physical Chemistry of Solid Surfaces and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Long Li
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325035, China.,State Key Laboratory of Physical Chemistry of Solid Surfaces and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| |
Collapse
|
33
|
Tao L, Zhang S, Huang F, Wang W, Luo Z, Qian L, Liao J. Diastereo‐ and Enantioselective Silver‐Catalyzed [3+3] Cycloaddition and Kinetic Resolution of Azomethine Imines with Activated Isocyanides. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202202679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Ling‐Fei Tao
- College of Pharmaceutical Sciences and Hangzhou Institute of Innovative Medicine Zhejiang University Hangzhou 310058 China
| | - Sen Zhang
- College of Pharmaceutical Sciences and Hangzhou Institute of Innovative Medicine Zhejiang University Hangzhou 310058 China
| | - Fen Huang
- College of Pharmaceutical Sciences and Hangzhou Institute of Innovative Medicine Zhejiang University Hangzhou 310058 China
| | - Wen‐Tao Wang
- College of Pharmaceutical Sciences and Hangzhou Institute of Innovative Medicine Zhejiang University Hangzhou 310058 China
| | - Zhang‐Hong Luo
- College of Pharmaceutical Sciences and Hangzhou Institute of Innovative Medicine Zhejiang University Hangzhou 310058 China
| | - Linghui Qian
- College of Pharmaceutical Sciences and Hangzhou Institute of Innovative Medicine Zhejiang University Hangzhou 310058 China
| | - Jia‐Yu Liao
- College of Pharmaceutical Sciences and Hangzhou Institute of Innovative Medicine Zhejiang University Hangzhou 310058 China
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University Hangzhou 310018 China
| |
Collapse
|
34
|
Song X, Fan Y, Zhu Z, Ni Q. Chiral Phosphoric Acid-Catalyzed Asymmetric Arylation of Indolizines: Atroposelective Access to Axially Chiral 3-Arylindolizines. Org Lett 2022; 24:2315-2320. [PMID: 35297627 DOI: 10.1021/acs.orglett.2c00461] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
We report herein a highly straightforward strategy for the synthesis of a new axially chiral 3-arylindolizine scaffold via organocatalytic asymmetric arylation reactions of indolizines and p-quinone esters. Using the chiral phosphoric acid catalyst, a series of axially chiral 3-arylindolizines were accessed in good to excellent yields and atropo-enantioselectivities. This approach features a broad substrate scope, mild reaction conditions, good scalability, and facile derivatization. Moreover, preliminary investigations based on nonlinear effects and a thermal racemization study demonstrated the intrinsic pathway for the formation of axial chirality and its potential utility.
Collapse
Affiliation(s)
- Xiaoxiao Song
- Key Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241002, P. R. China
| | - Yanjun Fan
- Key Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241002, P. R. China
| | - Zhiming Zhu
- Key Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241002, P. R. China
| | - Qijian Ni
- Key Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241002, P. R. China
| |
Collapse
|
35
|
Chen K, Chen Z, Yang S, Wu S, Zhang Y, Shi F. Organocatalytic Atroposelective Synthesis of N−N Axially Chiral Indoles and Pyrroles by De Novo Ring Formation. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202116829] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Ke‐Wei Chen
- School of Chemistry and Materials Science Jiangsu Normal University Xuzhou 221116 China
| | - Zhi‐Han Chen
- School of Chemistry and Materials Science Jiangsu Normal University Xuzhou 221116 China
| | - Shuang Yang
- School of Chemistry and Materials Science Jiangsu Normal University Xuzhou 221116 China
| | - Shu‐Fang Wu
- School of Chemistry and Materials Science Jiangsu Normal University Xuzhou 221116 China
| | - Yu‐Chen Zhang
- School of Chemistry and Materials Science Jiangsu Normal University Xuzhou 221116 China
| | - Feng Shi
- School of Chemistry and Materials Science Jiangsu Normal University Xuzhou 221116 China
| |
Collapse
|
36
|
Organocatalytic cycloaddition of alkynylindoles with azonaphthalenes for atroposelective construction of indole-based biaryls. Nat Commun 2022; 13:632. [PMID: 35110529 PMCID: PMC8810779 DOI: 10.1038/s41467-022-28211-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 12/14/2021] [Indexed: 12/29/2022] Open
Abstract
The axially chiral indole-aryl motifs are present in natural products and biologically active compounds as well as in chiral ligands. Atroposelective indole formation is an efficient method to construct indole-based biaryls. We report herein the result of a chiral phosphoric acid catalyzed asymmetric cycloaddition of 3-alkynylindoles with azonaphthalenes. A class of indole-based biaryls were prepared efficiently with excellent yields and enantioselectivities (up to 98% yield, 99% ee). Control experiment and DFT calculations illustrate a possible mechanism in which the reaction proceeds via a dearomatization of indole to generate an allene-iminium intermediate, followed by an intramolecular aza-Michael addition. This approach provides a convergent synthetic strategy for enantioselective construction of axially chiral heterobiaryl backbones. There is great interest in methods for catalytic enantioselective construction of axially chiral compounds found in natural products. Here, the authors develop a cycloaddition strategy for atroposelective construction of indole-based biaryls via chiral phosphoric acid-catalysed cycloaddition.
Collapse
|
37
|
Yuan WC, Chen XM, Zhao JQ, Zhang YP, Wang ZH, You Y. Ag-Catalyzed Asymmetric Interrupted Barton-Zard Reaction Enabling the Enantioselective Dearomatization of 2- and 3-Nitroindoles. Org Lett 2022; 24:826-831. [PMID: 35029401 DOI: 10.1021/acs.orglett.1c04036] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
We disclose a Ag-catalyzed asymmetric interrupted Barton-Zard reaction of α-aryl-substituted isocyanoacetates with 2- and 3-nitroindoles, which enables the dearomatization of nitroindoles and hence offers rapid access to an array of optically active tetrahydropyrrolo[3,4-b]indole derivatives bearing three contiguous stereogenic centers, including two tetrasubstituted chiral carbon atoms with pretty outcomes (up to 99% yield, 91:9 dr, and 96% ee). The synthetic potential of the protocol was showcased by the gram-scale reaction and versatile transformations of the product.
Collapse
Affiliation(s)
- Wei-Cheng Yuan
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, School of Pharmacy, Chengdu University, Chengdu 610106, China
| | - Xin-Meng Chen
- National Engineering Research Center of Chiral Drugs, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, China
| | - Jian-Qiang Zhao
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, School of Pharmacy, Chengdu University, Chengdu 610106, China
| | - Yan-Ping Zhang
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, School of Pharmacy, Chengdu University, Chengdu 610106, China
| | - Zhen-Hua Wang
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, School of Pharmacy, Chengdu University, Chengdu 610106, China
| | - Yong You
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, School of Pharmacy, Chengdu University, Chengdu 610106, China
| |
Collapse
|
38
|
Ag 2O versus Cu 2O in the Catalytic Isomerization of Coordinated Diaminocarbenes to Formamidines: A Theoretical Study. MATERIALS 2022; 15:ma15020491. [PMID: 35057208 PMCID: PMC8778719 DOI: 10.3390/ma15020491] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 12/31/2021] [Accepted: 01/06/2022] [Indexed: 11/17/2022]
Abstract
DFT theoretical calculations for the Ag2O-induced isomerization process of diaminocarbenes to formamidines, coordinated to Mn(I), have been carried out. The reaction mechanism found involves metalation of an N-H residue of the carbene ligand by the catalyst Ag2O and the formation of a key transition state showing a μ-η2:η2 coordination of the formamidinyl ligand between manganese and silver, which allows a translocation process of Mn(I) and silver(I) ions between the carbene carbon atom and the nitrogen atom, before the formation of the formamidine ligand is completed. Calculations carried out using Cu2O as a catalyst instead of Ag2O show a similar reaction mechanism that is thermodynamically possible, but highly unfavorable kinetically and very unlikely to be observed, which fully agrees with experimental results.
Collapse
|
39
|
Li C, Zuo WF, Zhou J, Zhou WJ, Wang M, Li X, Zhan G, Huang W. Catalytic asymmetric synthesis of 3,4'-indole-pyrazole derivatives featuring axially chiral bis-pentatomic heteroaryls. Org Chem Front 2022. [DOI: 10.1039/d2qo00021k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The atroposelective synthesis of bis-pentatomic heteroaryl systems is challenging due to the low rotation barrier and configurational instability of the 5,5-ring system. 3,4'-Indole-pyrazole is a bis-pentatomic heteroaryl scaffold existing in...
Collapse
|
40
|
Li J, Hu J, Xiao Y, Yin K, Dan W, Fan S, Jin F, Wu H, Zhang R, Li J. Direct C3-H carbamoylation of quinoxalin-2(1H)-ones with isocyanides enabled by selectfluor II under mild conditions. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2021.153511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
41
|
Zhang L, Zhang L, Chen Q, Li L, Jiang J, Sun H, Zhao C, Yang Y, Li C. Cinchona-Alkaloid-Derived NNP Ligand for Iridium-Catalyzed Asymmetric Hydrogenation of Ketones. Org Lett 2021; 24:415-419. [PMID: 34941269 DOI: 10.1021/acs.orglett.1c04101] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Most ligands applied for asymmetric hydrogenation are synthesized via multistep reactions with expensive chemical reagents. Herein, a series of novel and easily accessed cinchona-alkaloid-based NNP ligands have been developed in two steps. By combining [Ir(COD)Cl]2, 39 ketones including aromatic, heteroaryl, and alkyl ketones have been hydrogenated, all affording valuable chiral alcohols with 96.0-99.9% ee. A plausible reaction mechanism was discussed by NMR, HRMS, and DFT, and an activating model involving trihydride was verified.
Collapse
Affiliation(s)
- Lin Zhang
- State Key Laboratory of Functions and Applications of Medicinal Plants & School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, 550004, People's Republic of China
| | - Ling Zhang
- State Key Laboratory of Functions and Applications of Medicinal Plants & School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, 550004, People's Republic of China
| | - Qian Chen
- State Key Laboratory of Functions and Applications of Medicinal Plants & School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, 550004, People's Republic of China
| | - Linlin Li
- State Key Laboratory of Functions and Applications of Medicinal Plants & School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, 550004, People's Republic of China
| | - Jian Jiang
- State Key Laboratory of Functions and Applications of Medicinal Plants & School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, 550004, People's Republic of China
| | - Hao Sun
- State Key Laboratory of Functions and Applications of Medicinal Plants & School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, 550004, People's Republic of China
| | - Chong Zhao
- State Key Laboratory of Functions and Applications of Medicinal Plants & School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, 550004, People's Republic of China
| | - Yuanyong Yang
- State Key Laboratory of Functions and Applications of Medicinal Plants & School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, 550004, People's Republic of China
| | - Chun Li
- State Key Laboratory of Functions and Applications of Medicinal Plants & School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, 550004, People's Republic of China
| |
Collapse
|
42
|
Efimov IV, Kulikova LN, Miftyakhova AR, Matveeva MD, Voskressensky LG. Recent Advances for the Synthesis of N‐Unsubstituted Pyrroles. ChemistrySelect 2021. [DOI: 10.1002/slct.202103486] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Ilya V. Efimov
- Research Center: Molecular Design and Synthesis of Innovative Compounds for Medicine Peoples' Friendship University of Russia (RUDN University) Miklukho-Maklaya st, 6 117198 Moscow Russia
| | - Larisa N. Kulikova
- Research Center: Molecular Design and Synthesis of Innovative Compounds for Medicine Peoples' Friendship University of Russia (RUDN University) Miklukho-Maklaya st, 6 117198 Moscow Russia
| | - Almira R. Miftyakhova
- Research Center: Molecular Design and Synthesis of Innovative Compounds for Medicine Peoples' Friendship University of Russia (RUDN University) Miklukho-Maklaya st, 6 117198 Moscow Russia
| | - Maria D. Matveeva
- A.V. Topchiev Institute of Petrochemical Synthesis Russian Academy of Sciences Leninsky pr. 29 119991 Moscow Russia
| | - Leonid G. Voskressensky
- Research Center: Molecular Design and Synthesis of Innovative Compounds for Medicine Peoples' Friendship University of Russia (RUDN University) Miklukho-Maklaya st, 6 117198 Moscow Russia
| |
Collapse
|
43
|
Shen J, Xiao Y, Zhao P, Li D, Jia X, Peng X, Li J. Cascade Reaction of
o
‐Haloaryl Ynone and 2‐Hydroxy‐2‐Methylchromene: Synthesis of Chromone Derivative Enabled by Oxygen‐Migration. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100946] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Jie Shen
- Department of Chemistry College of Sciences Shanghai University 99 Shangda Road Shanghai 200444 People's Republic of China
| | - Yao Xiao
- Department of Chemistry College of Sciences Shanghai University 99 Shangda Road Shanghai 200444 People's Republic of China
| | - Peichao Zhao
- State Key Laboratory of NBC Protection for Civilian Beijing 102205 People's Republic of China
| | - Dong Li
- Department of Chemistry College of Sciences Shanghai University 99 Shangda Road Shanghai 200444 People's Republic of China
| | - Xueshun Jia
- Department of Chemistry College of Sciences Shanghai University 99 Shangda Road Shanghai 200444 People's Republic of China
| | - Xin Peng
- Department of Chemistry College of Sciences Shanghai University 99 Shangda Road Shanghai 200444 People's Republic of China
| | - Jian Li
- Department of Chemistry College of Sciences Shanghai University 99 Shangda Road Shanghai 200444 People's Republic of China
- School of Chemistry and Chemical Engineering Henan Normal University Xinxiang Henan 453007 People's Republic of China
| |
Collapse
|
44
|
Evolution in heterodonor P-N, P-S and P-O chiral ligands for preparing efficient catalysts for asymmetric catalysis. From design to applications. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214120] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
45
|
Wan Q, Xie JH, Zheng C, Yuan YF, You SL. Silver-Catalyzed Asymmetric Dearomatization of Electron-Deficient Heteroarenes via Interrupted Barton-Zard Reaction. Angew Chem Int Ed Engl 2021; 60:19730-19734. [PMID: 34196074 DOI: 10.1002/anie.202107767] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Indexed: 12/15/2022]
Abstract
Herein we report a catalytic asymmetric dearomatization reaction of electron-deficient heteroarenes with α-substituted isocyanoacetates through an interrupted Barton-Zard reaction. A range of optically active pyrrolo[3,4-b]indole derivatives was obtained in good yields (up to 97 %) with high stereoselectivities (up to >20:1 dr and 97 % ee), using a catalytic system consisting of a cinchona-derived amino-phosphine and silver oxide. This reaction features wide substrate scope and mild conditions, and provides a new strategy for developing asymmetric dearomatization reactions.
Collapse
Affiliation(s)
- Qian Wan
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai, 200032, China.,College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Jia-Hao Xie
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai, 200032, China
| | - Chao Zheng
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai, 200032, China
| | - Yao-Feng Yuan
- College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Shu-Li You
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai, 200032, China
| |
Collapse
|
46
|
He X, Wang C, Wen Y, Wang Z, Qian S. Recent Advances in Catalytic Atroposelective Construction of Pentatomic Heterobiaryl Scaffolds. ChemCatChem 2021. [DOI: 10.1002/cctc.202100539] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Xiao‐Long He
- School of Food and Bioengineering Xihua University Chengdu 610039 P. R. China
| | - Cheng Wang
- School of Food and Bioengineering Xihua University Chengdu 610039 P. R. China
| | - You‐Wu Wen
- School of Food and Bioengineering Xihua University Chengdu 610039 P. R. China
| | - Zhouyu Wang
- School of Science Xihua University Chengdu 610039 P. R. China
| | - Shan Qian
- School of Food and Bioengineering Xihua University Chengdu 610039 P. R. China
| |
Collapse
|
47
|
Xiao Y, Shen J, Wang L, Lu S, Li J. Diastereoselective Synthesis of
oxa
‐Bridged Tetracyclic Benzooxazines from the Reaction of 2‐Isocyanophenyloxyacrylates and Propargylic Esters. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100693] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Yao Xiao
- Department of Chemistry, College of Sciences & Institute for Sustainable Energy Shanghai University 99 Shangda Road Shanghai 200444 People's Republic of China
| | - Jie Shen
- Department of Chemistry, College of Sciences & Institute for Sustainable Energy Shanghai University 99 Shangda Road Shanghai 200444 People's Republic of China
| | - Li Wang
- College of Science Hangzhou Normal University, Hangzhou Zhejiang 310036 People's Republic of China
| | - Shanya Lu
- Department of Chemistry, College of Sciences & Institute for Sustainable Energy Shanghai University 99 Shangda Road Shanghai 200444 People's Republic of China
| | - Jian Li
- Department of Chemistry, College of Sciences & Institute for Sustainable Energy Shanghai University 99 Shangda Road Shanghai 200444 People's Republic of China
- School of Chemistry and Chemical Engineering Henan Normal University, Xinxiang Henan 453007 People's Republic of China
| |
Collapse
|
48
|
Li X, Zhao L, Qi Z, Li X. Construction of Atropisomeric 3-Arylindoles via Enantioselective Cacchi Reaction. Org Lett 2021; 23:5901-5905. [PMID: 34236878 DOI: 10.1021/acs.orglett.1c02012] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The de novo construction of axially chiral 3-arylindoles bearing a C(3)-C(aryl) chiral axis has been realized by Pd-catalyzed enantioselective Cacchi reaction between aryl bromides and o-alkynylanilines. The reaction proceeded under mild conditions in high yields and excellent enantioselectivities.
Collapse
Affiliation(s)
- Xiaojiao Li
- School of Chemistry and Chemical Engineering, Shaanxi Normal University (SNNU), Xi'an 710062, China
| | - Liujie Zhao
- School of Chemistry and Chemical Engineering, Shaanxi Normal University (SNNU), Xi'an 710062, China
| | - Zisong Qi
- School of Chemistry and Chemical Engineering, Shaanxi Normal University (SNNU), Xi'an 710062, China
| | - Xingwei Li
- School of Chemistry and Chemical Engineering, Shaanxi Normal University (SNNU), Xi'an 710062, China
| |
Collapse
|
49
|
Wan Q, Xie J, Zheng C, Yuan Y, You S. Silver‐Catalyzed Asymmetric Dearomatization of Electron‐Deficient Heteroarenes via Interrupted Barton–Zard Reaction. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202107767] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Qian Wan
- State Key Laboratory of Organometallic Chemistry Shanghai Institute of Organic Chemistry Chinese Academy of Sciences 345 Lingling Lu Shanghai 200032 China
- College of Chemistry Fuzhou University Fuzhou 350108 China
| | - Jia‐Hao Xie
- State Key Laboratory of Organometallic Chemistry Shanghai Institute of Organic Chemistry Chinese Academy of Sciences 345 Lingling Lu Shanghai 200032 China
| | - Chao Zheng
- State Key Laboratory of Organometallic Chemistry Shanghai Institute of Organic Chemistry Chinese Academy of Sciences 345 Lingling Lu Shanghai 200032 China
| | - Yao‐Feng Yuan
- College of Chemistry Fuzhou University Fuzhou 350108 China
| | - Shu‐Li You
- State Key Laboratory of Organometallic Chemistry Shanghai Institute of Organic Chemistry Chinese Academy of Sciences 345 Lingling Lu Shanghai 200032 China
| |
Collapse
|
50
|
Wang J, Chen H, Kong L, Wang F, Lan Y, Li X. Enantioselective and Diastereoselective C–H Alkylation of Benzamides: Synergized Axial and Central Chirality via a Single Stereodetermining Step. ACS Catal 2021. [DOI: 10.1021/acscatal.1c02450] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Jinlei Wang
- School of Chemistry and Chemical Engineering, Shaanxi Normal University (SNNU), Xi’an 710062, China
| | - Haohua Chen
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400030, China
| | - Lingheng Kong
- School of Chemistry and Chemical Engineering, Shaanxi Normal University (SNNU), Xi’an 710062, China
| | - Fen Wang
- School of Chemistry and Chemical Engineering, Shaanxi Normal University (SNNU), Xi’an 710062, China
| | - Yu Lan
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400030, China
| | - Xingwei Li
- School of Chemistry and Chemical Engineering, Shaanxi Normal University (SNNU), Xi’an 710062, China
| |
Collapse
|