1
|
Saak CM, Backus EHG. The Role of Sum-Frequency Generation Spectroscopy in Understanding On-Surface Reactions and Dynamics in Atmospheric Model-Systems. J Phys Chem Lett 2024; 15:4546-4559. [PMID: 38636165 PMCID: PMC11071071 DOI: 10.1021/acs.jpclett.4c00392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/09/2024] [Accepted: 04/10/2024] [Indexed: 04/20/2024]
Abstract
Surfaces, both water/air and solid/water, play an important role in mediating a multitude of processes central to atmospheric chemistry, particularly in the aerosol phase. However, the study of both static and dynamic properties of surfaces is highly challenging from an experimental standpoint, leading to a lack of molecular level information about the processes that take place at these systems and how they differ from bulk. One of the few techniques that has been able to capture ultrafast surface phenomena is time-resolved sum-frequency generation (SFG) spectroscopy. Since it is both surface-specific and chemically sensitive, the extension of this spectroscopic technique to the time domain makes it possible to study dynamic processes on the femtosecond time scale. In this Perspective, we will explore recent advances made in the field both in terms of studying energy dissipation as well as chemical reactions and the role the surface geometry plays in these processes.
Collapse
Affiliation(s)
- Clara-Magdalena Saak
- University of Vienna, Faculty of Chemistry, Institute of Physical Chemistry, Währingerstrasse 42, 1090 Vienna, Austria
| | - Ellen H. G. Backus
- University of Vienna, Faculty of Chemistry, Institute of Physical Chemistry, Währingerstrasse 42, 1090 Vienna, Austria
| |
Collapse
|
2
|
Li H, Wang W, Xu J, Wang A, Wan X, Yang L, Zhao H, Shan Q, Zhao C, Sun S, Wang W. Mn-Based Mullites for Environmental and Energy Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2312685. [PMID: 38618925 DOI: 10.1002/adma.202312685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 03/26/2024] [Indexed: 04/16/2024]
Abstract
Mn-based mullite oxides AMn2O5 (A = lanthanide, Y, Bi) is a novel type of ternary catalyst in terms of their electronic and geometric structures. The coexistence of pyramid Mn3+-O and octahedral Mn4+-O makes the d-orbital selectively active toward various catalytic reactions. The alternative edge- and corner-sharing stacking configuration constructs the confined active sites and abundant active oxygen species. As a result, they tend to show superior catalytic behaviors and thus gain great attention in environmental treatment and energy conversion and storage. In environmental applications, Mn-based mullites have been demonstrated to be highly active toward low-temperature oxidization of CO, NO, volatile organic compounds (VOCs), etc. Recent research further shows that mullites decompose O3 and ozonize VOCs from -20 °C to room temperature. Moreover, mullites enhance oxygen reduction reactions (ORR) and sulfur reduction reactions (SRR), critical kinetic steps in air-battery and Li-S batteries, respectively. Their distinctive structures also facilitate applications in gas-sensitive sensing, ionic conduction, high mobility dielectrics, oxygen storage, piezoelectricity, dehydration, H2O2 decomposition, and beyond. A comprehensive review from basic physicochemical properties to application certainly not only gains a full picture of mullite oxides but also provides new insights into designing heterogeneous catalysts.
Collapse
Affiliation(s)
- Huan Li
- Tianjin Key Laboratory of Photo-Electronic Thin Film Device and Technology, College of Electronic Information and Optical Engineering, Nankai University, Tianjin, 300071, China
| | - Wanying Wang
- Tianjin Key Laboratory of Photo-Electronic Thin Film Device and Technology, College of Electronic Information and Optical Engineering, Nankai University, Tianjin, 300071, China
| | - Jinchao Xu
- Tianjin Key Laboratory of Photo-Electronic Thin Film Device and Technology, College of Electronic Information and Optical Engineering, Nankai University, Tianjin, 300071, China
| | - Ansheng Wang
- Tianjin Key Laboratory of Photo-Electronic Thin Film Device and Technology, College of Electronic Information and Optical Engineering, Nankai University, Tianjin, 300071, China
| | - Xiang Wan
- Tianjin Key Laboratory of Photo-Electronic Thin Film Device and Technology, College of Electronic Information and Optical Engineering, Nankai University, Tianjin, 300071, China
| | - Liyuan Yang
- Tianjin Key Laboratory of Photo-Electronic Thin Film Device and Technology, College of Electronic Information and Optical Engineering, Nankai University, Tianjin, 300071, China
| | - Haojun Zhao
- Tianjin Key Laboratory of Photo-Electronic Thin Film Device and Technology, College of Electronic Information and Optical Engineering, Nankai University, Tianjin, 300071, China
| | - Qingyu Shan
- Tianjin Key Laboratory of Photo-Electronic Thin Film Device and Technology, College of Electronic Information and Optical Engineering, Nankai University, Tianjin, 300071, China
| | - Chunning Zhao
- Tianjin Key Laboratory of Photo-Electronic Thin Film Device and Technology, College of Electronic Information and Optical Engineering, Nankai University, Tianjin, 300071, China
| | - Shuhui Sun
- Institute National de la Recherche Scientifique (INRS), Centre Énergie Matériaux Télécommunications, Québec J3×1P7, Varennes, Canada
| | - Weichao Wang
- Tianjin Key Laboratory of Photo-Electronic Thin Film Device and Technology, College of Electronic Information and Optical Engineering, Nankai University, Tianjin, 300071, China
| |
Collapse
|
3
|
Sivells T, Viswanathan P, Cyran JD. Quantification of anion and cation uptake in ice Ih crystals. J Chem Phys 2023; 158:134507. [PMID: 37031133 DOI: 10.1063/5.0141057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023] Open
Abstract
While ice has very low solubility for salts compared to water, small amounts of ions are doped into ice crystals. These small ion dopants can alter the fundamental physical and chemical properties of ice, such as its structure and electrical conductivity. Therefore, these results could have a direct impact on the chemical reactivity of ice and ice surfaces. Here, we examine the influence of the uptake of three salts—ammonium chloride (NH4Cl), sodium chloride (NaCl), and ammonium sulfate [(NH4)2SO4]—on ice Ih formation using capillary electrophoresis. Using both cation and anion modes, we observed and quantified the uptake of individual ions into the ice. Our results indicate that anions have a higher propensity for uptake into ice Ih crystals.
Collapse
Affiliation(s)
- Tiara Sivells
- Department of Chemistry and Biochemistry, Baylor University, Waco, Texas 76706, USA
| | - Pranav Viswanathan
- Department of Chemistry and Biochemistry, Baylor University, Waco, Texas 76706, USA
| | - Jenée D. Cyran
- Department of Chemistry and Biochemistry, Baylor University, Waco, Texas 76706, USA
- Department of Chemistry and Biochemistry, Boise State University, Boise, Idaho 83725, USA
| |
Collapse
|
4
|
Kim JS, Byeon JH, Kang S, Kim JY. A high sensitivity acetone gas sensor based on polyaniline-hydroxypropyl methylcellulose core-shell-shaped nanoparticles. NANOSCALE ADVANCES 2022; 4:5312-5319. [PMID: 36540124 PMCID: PMC9724688 DOI: 10.1039/d2na00647b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 10/22/2022] [Indexed: 06/17/2023]
Abstract
Core-shell-shaped nanoparticles (CSS-NPs) with polyaniline emeraldine salts (PANi) in the core and hydroxypropyl methylcellulose (HPMC) and heptadecafluorooctanesulfonic acid (C8F) shells, i.e., C8F-doped PANi@HPMC CSS-NPs, were synthesized as a gaseous acetone sensing material with high sensitivity and humidity stability. The HPMC was chemically combined on the positively charged PANi NPs' outer surface, allowing it to efficiently detect acetone gas at concentrations as low as 50 ppb at 25 °C. To impart humidity stability, C8F was employed as a hydrophobic dopant, and a valid signal could be reliably detected even in the range of 0-80% relative humidity. The sensing material's structural analysis was conducted using scanning electron microscopy, transmission electron microscopy, energy-dispersive X-ray spectroscopy, and infrared spectroscopy, and in particular, the reaction mechanism with acetone gas was detected through a spectroscopic method. Thus, these findings illustrate the potential as a novel sensing material to detect acetone gas at a trace level of less than 1 ppm in human respiratory gas.
Collapse
Affiliation(s)
- Ji-Sun Kim
- School of Advanced Materials Engineering, Kookmin University Seoul 136-702 Korea +82-2-910-4663
| | - Jun-Ho Byeon
- School of Advanced Materials Engineering, Kookmin University Seoul 136-702 Korea +82-2-910-4663
| | - Sungmin Kang
- Advanced Technology Research Department, LG Japan Lab Inc. 413-14, Higashi Shinagawa, Shinagawa-ku Tokyo 140-0002 Japan
- Institute of Innovative Research Laboratory for Future Interdisciplinary Research, Tokyo Institute of Technology Yokohama 226-8503 Japan
| | - Jin-Yeol Kim
- School of Advanced Materials Engineering, Kookmin University Seoul 136-702 Korea +82-2-910-4663
| |
Collapse
|
5
|
Acetone Gas Sensor Based on SWCNT/Polypyrrole/Phenyllactic Acid Nanocomposite with High Sensitivity and Humidity Stability. BIOSENSORS 2022; 12:bios12050354. [PMID: 35624655 PMCID: PMC9139215 DOI: 10.3390/bios12050354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/04/2022] [Accepted: 05/18/2022] [Indexed: 11/25/2022]
Abstract
We synthesized core-shell-shaped nanocomposites composed of a single-walled carbon nanotube (SWCNT) and heptadecafluorooctanesulfonic acid-doped polypyrrole (C8F-doped-PPy)/phenyllatic acid (PLA), i.e., C8F-doped-PPy/PLA@SWCNT, for detecting acetone gas with high sensitivity and humidity stability. The obtained nanocomposites have the structural features of a sensing material as a C8F-doped-PPy layer surrounding a single-stranded SWCNT, and a PLA layer on the outer surface of the PPy as a specific sensing layer for acetone. PLA was chemically combined with the positively charged PPy backbone and provided the ability to reliably detect acetone gas at concentrations as low as 50 ppb even at 25 °C, which is required for medical diagnoses via human breath analysis. When C8F was contained in the pyrrole monomer in a ratio of 0.1 mol, it was able to stably detect an effective signal in a relative humidity (RH) of 0–80% range.
Collapse
|
6
|
Dos and don'ts tutorial for sample alignment in sum frequency generation spectroscopy. Biointerphases 2022; 17:031203. [PMID: 35549393 DOI: 10.1116/6.0001851] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
This Tutorial aims to provide a concise yet practical guideline for different scenarios that one may face in a sum frequency generation (SFG) spectroscopy laboratory, especially when it comes to sample alignment. The effort is made to reconstruct the real and often challenging sample alignment conditions for a broad range of liquid or solid samples interfacing solid, liquid, or gas phases, with a pedagogical approach. Both newcomer operators of an SFG setup without a strong experience in nonlinear spectroscopy and the more experienced SFG users can utilize the approaches that are provided in this Tutorial for an easier and more reliable sample alignment in their SFG laboratories.
Collapse
|
7
|
Wang H, Li X, Zhao X, Li C, Song X, Zhang P, Huo P, Li X. A review on heterogeneous photocatalysis for environmental remediation: From semiconductors to modification strategies. CHINESE JOURNAL OF CATALYSIS 2022. [DOI: 10.1016/s1872-2067(21)63910-4] [Citation(s) in RCA: 108] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
8
|
Sudera P, Cyran JD, Deiseroth M, Backus EHG, Bonn M. Interfacial Vibrational Dynamics of Ice I h and Liquid Water. J Am Chem Soc 2020; 142:12005-12009. [PMID: 32573242 PMCID: PMC7467663 DOI: 10.1021/jacs.0c04526] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
![]()
Insights
into energy flow dynamics at ice surfaces are essential
for understanding chemical dynamics relevant to atmospheric and geographical
sciences. Here, employing ultrafast surface-specific spectroscopy,
we report the interfacial vibrational dynamics of ice Ih. A comparison to liquid water surfaces reveals accelerated vibrational
energy relaxation and dissipation at the ice surface for hydrogen-bonded
OH groups. In contrast, free-OH groups sticking into the vapor phase
exhibit substantially slower vibrational dynamics on ice. The acceleration
and deceleration of vibrational dynamics of these different OH groups
at the ice surface are attributed to enhanced intermolecular coupling
and reduced rotational mobility, respectively. Our results highlight
the unique properties of free-OH groups on ice, putatively linked
to the high catalytic activities of ice surfaces.
Collapse
Affiliation(s)
- Prerna Sudera
- Max Planck Institute for Polymer Research, 55128 Mainz, Germany
| | - Jenée D Cyran
- Max Planck Institute for Polymer Research, 55128 Mainz, Germany.,Baylor University, Waco, Texas 76798, United States
| | - Malte Deiseroth
- Max Planck Institute for Polymer Research, 55128 Mainz, Germany
| | - Ellen H G Backus
- Max Planck Institute for Polymer Research, 55128 Mainz, Germany.,University of Vienna, 1090 Vienna, Austria
| | - Mischa Bonn
- Max Planck Institute for Polymer Research, 55128 Mainz, Germany
| |
Collapse
|
9
|
Moll CJ, Meister K, Versluis J, Bakker HJ. Freezing of Aqueous Carboxylic Acid Solutions on Ice. J Phys Chem B 2020; 124:5201-5208. [PMID: 32414235 PMCID: PMC7322724 DOI: 10.1021/acs.jpcb.9b10462] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
We study the properties of acetic
acid and propionic acid solutions
at the surface of monocrystalline ice with surface-specific vibrational
sum-frequency generation (VSFG) and heterodyne-detected vibrational
sum-frequency generation spectroscopy (HD-VSFG). When we decrease
the temperature toward the eutectic point of the acid solutions, we
observe the formation of a freeze concentrated solution (FCS) of the
carboxylic acids that is brought about by a freeze-induced phase separation
(FIPS). The freeze concentrated solution freezes on top of the ice
surface as we cool the system below the eutectic point. We find that
for freeze concentrated acetic acid solutions the freezing causes
a strong decrease of the VSFG signal, while for propionic acid an
increase and a blue-shift are observed. This different behavior points
at a distinct difference in molecular-scale behavior when cooling
below the eutectic point. We find that cooling of the propionic acid
solution below the eutectic point leads to the formation of hydrogen-bonded
dimers with an opposite alignment of the carboxylic acid O–H
groups.
Collapse
Affiliation(s)
- Carolyn J Moll
- AMOLF, Science Park 104, Amsterdam 1098 XG, The Netherlands
| | - Konrad Meister
- AMOLF, Science Park 104, Amsterdam 1098 XG, The Netherlands.,Max-Planck Institute for Polymer Research, Ackermannweg 10, Mainz D 55128, Germany.,University of Alaska Southeast, Juneau, Alaska 99801, United States
| | - Jan Versluis
- AMOLF, Science Park 104, Amsterdam 1098 XG, The Netherlands
| | - Huib J Bakker
- AMOLF, Science Park 104, Amsterdam 1098 XG, The Netherlands
| |
Collapse
|
10
|
Cyran JD, Backus EHG, van Zadel MJ, Bonn M. Comparative Adsorption of Acetone on Water and Ice Surfaces. Angew Chem Int Ed Engl 2019; 58:3620-3624. [PMID: 30601600 PMCID: PMC6767755 DOI: 10.1002/anie.201813517] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Indexed: 12/05/2022]
Abstract
Small organic molecules on ice and water surfaces are ubiquitous in nature and play a crucial role in many environmentally relevant processes. Herein, we combine surface‐specific vibrational spectroscopy and a controllable flow cell apparatus to investigate the molecular adsorption of acetone onto the basal plane of single‐crystalline hexagonal ice with a large surface area. By comparing the adsorption of acetone on the ice/air and the water/air interface, we observed two different types of acetone adsorption, as apparent from the different responses of both the free O−H and the hydrogen‐bonded network vibrations for ice and liquid water. Adsorption on ice occurs preferentially through interactions with the free OH group, while the interaction of acetone with the surface of liquid water appears less specific.
Collapse
Affiliation(s)
- Jenée D Cyran
- Molecular Spectroscopy Department, Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Ellen H G Backus
- Molecular Spectroscopy Department, Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany.,Department of Physical Chemistry, University of Vienna, Währinger Strasse 42, 1090, Vienna, Austria
| | - Marc-Jan van Zadel
- Molecular Spectroscopy Department, Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Mischa Bonn
- Molecular Spectroscopy Department, Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| |
Collapse
|