1
|
Wu Y, Zhu B, Fan H, Bernard H, Hutton CA. Late-Stage Pd(II)-Catalyzed C(sp 3)-H Functionalization of Peptides Directed by a Removable, Backbone-Inserted Amidoxime Ether. Angew Chem Int Ed Engl 2025; 64:e202423979. [PMID: 39757129 DOI: 10.1002/anie.202423979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Revised: 01/02/2025] [Accepted: 01/03/2025] [Indexed: 01/07/2025]
Abstract
Palladium(II)-catalyzed C-H functionalization has attracted considerable attention as a pathway to late-stage modification of peptides. Herein, we report the Pd-catalyzed C(sp3)-H arylation of peptides directed by an amidoxime ether, which can be easily incorporated into peptides at any amide bond. Site- and stereoselective arylation of peptides has been achieved, including unprecedented functionalization of internal residues of native peptides. Removal of the amidoxime ether was achieved to generate the parent amide and facilitate a traceless C-H functionalization process.
Collapse
Affiliation(s)
- Yuezhou Wu
- School of Chemistry, The University of Melbourne, Victoria, 3010, Australia
| | - Beichen Zhu
- School of Chemistry, The University of Melbourne, Victoria, 3010, Australia
| | - Haoyang Fan
- School of Chemistry, The University of Melbourne, Victoria, 3010, Australia
| | - Hugo Bernard
- School of Chemistry, The University of Melbourne, Victoria, 3010, Australia
| | - Craig A Hutton
- School of Chemistry, The University of Melbourne, Victoria, 3010, Australia
| |
Collapse
|
2
|
Thombare VJ, Charron CL, Hutton CA. Ag(I)-promoted fragment coupling of peptide thioamides. Org Biomol Chem 2025; 23:1995-1999. [PMID: 39836097 DOI: 10.1039/d4ob01906g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Despite advances in solid phase peptide synthesis and peptide ligation, challenges remain in the assembly of polypeptides through coupling of peptide fragments. Herein we describe a new method for peptide fragment coupling employing the Ag(I)-promoted transformation of peptide thioamides. This process proceeds via an isoimide-tethered intermediate, which undergoes an O-N acyl transfer to generate the polypeptide. This method is applicable to both solution- and solid-phase coupling.
Collapse
Affiliation(s)
- Varsha J Thombare
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, 3010, Victoria, Australia.
- RTI International, 27709, NC, USA
| | - Carlie L Charron
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, 3010, Victoria, Australia.
- Department of Chemistry, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Craig A Hutton
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, 3010, Victoria, Australia.
| |
Collapse
|
3
|
Byerly-Duke J, Donovan A, O’Brien EA, Sharma KK, Ibrahim R, Stanley LM, VanVeller B. Complementary Strategies for Installation of Thioimidates into Peptide Backbones. J Org Chem 2024; 89:14755-14761. [PMID: 39364858 PMCID: PMC11894813 DOI: 10.1021/acs.joc.4c01386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
Thioimidates are a precursor and synthetic branch point to access either thioamide or amidine isosteres of the native amide (peptide bond). Previous syntheses of thioimidate-containing peptides were prone to side reactivity and required slow, cumbersome steps that were difficult to monitor. We describe a more efficient approach to directly couple thioimidates onto the growing peptide chain. This work also outlines optimal conditions for thioimidate formation on solid support and identifies potential off-target sites for alkylation that impact the choice of protecting group.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Brett VanVeller
- Department of Chemistry, Iowa State University, Ames, IA 50011, USA
| |
Collapse
|
4
|
Saunders GJ, Spring SA, Jayawant E, Wilkening I, Roesner S, Clarkson GJ, Dixon AM, Notman R, Shipman M. Synthesis and Functionalization of Azetidine-Containing Small Macrocyclic Peptides. Chemistry 2024; 30:e202400308. [PMID: 38488326 DOI: 10.1002/chem.202400308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Indexed: 04/11/2024]
Abstract
Cyclic peptides are increasingly important structures in drugs but their development can be impeded by difficulties associated with their synthesis. Here, we introduce the 3-aminoazetidine (3-AAz) subunit as a new turn-inducing element for the efficient synthesis of small head-to-tail cyclic peptides. Greatly improved cyclizations of tetra-, penta- and hexapeptides (28 examples) under standard reaction conditions are achieved by introduction of this element within the linear peptide precursor. Post-cyclization deprotection of the amino acid side chains with strong acid is realized without degradation of the strained four-membered azetidine. A special feature of this chemistry is that further late-stage modification of the resultant macrocyclic peptides can be achieved via the 3-AAz unit. This is done by: (i) chemoselective deprotection and substitution at the azetidine nitrogen, or by (ii) a click-based approach employing a 2-propynyl carbamate on the azetidine nitrogen. In this way, a range of dye and biotin tagged macrocycles are readily produced. Structural insights gained by XRD analysis of a cyclic tetrapeptide indicate that the azetidine ring encourages access to the less stable, all-trans conformation. Moreover, introduction of a 3-AAz into a representative cyclohexapeptide improves stability towards proteases compared to the homodetic macrocycle.
Collapse
Affiliation(s)
- George J Saunders
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, U.K
| | - Sam A Spring
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, U.K
| | - Eleanor Jayawant
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, U.K
| | - Ina Wilkening
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, U.K
| | - Stefan Roesner
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, U.K
| | - Guy J Clarkson
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, U.K
| | - Ann M Dixon
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, U.K
| | - Rebecca Notman
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, U.K
| | - Michael Shipman
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, U.K
- The Palatine Centre, Stockton Road, Durham, DH1 3LE, U.K
| |
Collapse
|
5
|
Byerly-Duke J, O'Brien EA, Wall BJ, VanVeller B. Thioimidates provide general access to thioamide, amidine, and imidazolone peptide-bond isosteres. Methods Enzymol 2024; 698:27-55. [PMID: 38886036 DOI: 10.1016/bs.mie.2024.04.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Thioamides, amidines, and heterocycles are three classes of modifications that can act as peptide-bond isosteres to alter the peptide backbone. Thioimidate protecting groups can address many of the problematic synthetic issues surrounding installation of these groups. Historically, amidines have received little attention in peptides due to limitations in methods to access them. The first robust and general procedure for the introduction of amidines into peptide backbones exploits the utility of thioimidate protecting groups as a means to side-step reactivity that ultimately renders existing methods unsuitable for the installation of amidines along the main-chain of peptides. Further, amidines formed on-resin can be reacted to form (4H)-imidazolone heteorcycles which have recently been shown to act as cis-amide isosteres. General methods for heterocyclic installation capable of geometrically restricting peptide conformation are also under-developed. This work is significant because it describes a generally applicable and divergent approach to access unexplored peptide designs and architectures.
Collapse
Affiliation(s)
- Jacob Byerly-Duke
- Department of Chemistry, Iowa State University, Ames, IA, United States
| | - Emily A O'Brien
- Department of Chemistry, Iowa State University, Ames, IA, United States
| | - Brendan J Wall
- Department of Chemistry, Iowa State University, Ames, IA, United States
| | - Brett VanVeller
- Department of Chemistry, Iowa State University, Ames, IA, United States.
| |
Collapse
|
6
|
Byerly-Duke J, VanVeller B. Thioimidate Solutions to Thioamide Problems during Thionopeptide Deprotection. Org Lett 2024; 26:1452-1457. [PMID: 38341867 PMCID: PMC11031844 DOI: 10.1021/acs.orglett.4c00035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2024]
Abstract
Thioamides have structural and chemical similarity to peptide bonds, offering valuable insights when probing peptide backbone interactions, but are prone to side reactions during solid-phase peptide synthesis (SPPS). Thioimidates have been demonstrated to be effective protecting groups for thioamides during peptide elongation. We further demonstrate how thioimidates can assist thioamides through the most yield-crippling step of thionopeptide deprotection, allowing for the first isolation of an important benchmark α-helical peptide that had previously eluded synthesis and isolation.
Collapse
Affiliation(s)
- Jacob Byerly-Duke
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States
| | - Brett VanVeller
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States
| |
Collapse
|
7
|
Hansen TN, Olsen CA. Contemporary Applications of Thioamides and Methods for Their Synthesis. Chemistry 2024; 30:e202303770. [PMID: 38088462 DOI: 10.1002/chem.202303770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Indexed: 12/23/2023]
Abstract
Thioamides are naturally occurring isosteres of amide bonds in which the chalcogen atom of the carbonyl is changed from oxygen to sulfur. This substitution gives rise to altered nucleophilicity and hydrogen bonding properties with importance for both chemical reactivity and non-covalent interactions. As such, thioamides have been introduced into biologically active compounds to achieve improved target affinity and/or stability towards hydrolytic enzymes but have also been applied as probes of protein and peptide folding and dynamics. Recently, a series of new methods have been developed for the synthesis of thioamides as well as their utilization in peptide chemistry. Further, novel strategies for the incorporation of thioamides into proteins have been developed, enabling both structural and functional studies to be performed. In this Review, we highlight the recent developments in the preparation of thioamides and their applications for peptide modification and study of protein function.
Collapse
Affiliation(s)
- Tobias N Hansen
- Center for Biopharmaceuticals & Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Jagtvej 160, 2100, Copenhagen, Denmark
| | - Christian A Olsen
- Center for Biopharmaceuticals & Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Jagtvej 160, 2100, Copenhagen, Denmark
| |
Collapse
|
8
|
Diaz DB, Rowshanpour R, Saunders GJ, Dudding T, Yudin AK. The Role of Attractive Non-Covalent Interactions in Peptide Macrocyclization. J Org Chem 2024; 89:1483-1491. [PMID: 38217516 DOI: 10.1021/acs.joc.3c02084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2024]
Abstract
The efficiency of macrocyclization reactions relies on the appropriate conformational preorganization of a linear precursor, ensuring that reactive ends are in spatial proximity prior to ring closure. Traditional peptide cyclization approaches that reduce the extent of terminal ion pairing often disfavor cyclization-conducive conformations and can lead to undesired cyclodimerization or oligomerization side reactions, particularly when they are performed without high dilution. To address this challenge, synthetic strategies that leverage attractive noncovalent interactions, such as zwitterionic attraction between chain termini during macrocyclization, offer a potential solution by reducing the entropic penalty associated with linear peptides adopting precyclization conformations. In this study, we investigate the role of (N-isocyanoimino)triphenylphosphorane (Pinc) in facilitating the cyclization of linear peptides into conformationally rigid macrocycles. The observed moderate diastereoselectivity is consistent with the preferential Si-facial addition of Pinc, where the isocyanide adds to the E-iminium ion on the same face as the l-proline amide group. The resulting peptide chain reveals that the activated phosphonium ylide of Pinc brings the reactive ends close together, promoting cyclization by enclosing the carboxylate within the interior of the pentapeptide and preventing the formation of byproducts. For shorter peptides with modified peptide backbones, the cyclization mechanism and outcome are redirected, as nucleophilic motifs such as thiazole and imidazole can covalently trap nitrilium intermediates. The isolation of the intermediate in the unproductive macrocyclization pathway, along with nuclear magnetic resonance and density functional theory studies, provides insights into heterocycle-dependent selectivity. The Pinc-driven macrocyclization process has generated diverse collections of cyclic molecules, and our models offer a comprehensive understanding of observed trends, facilitating the development of other heterocycle-forming macrocyclization reactions.
Collapse
Affiliation(s)
- Diego B Diaz
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Rozhin Rowshanpour
- Department of Chemistry, Brock University, St. Catharines, Ontario L2S 3A1, Canada
| | - George J Saunders
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Travis Dudding
- Department of Chemistry, Brock University, St. Catharines, Ontario L2S 3A1, Canada
| | - Andrei K Yudin
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| |
Collapse
|
9
|
Liu Z, Zhou L, Liu WH. Amide Skeletal Elongation via Amino Acid Insertion. Chemistry 2023; 29:e202301729. [PMID: 37259820 DOI: 10.1002/chem.202301729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 05/31/2023] [Accepted: 06/01/2023] [Indexed: 06/02/2023]
Abstract
Amide derivatization is useful to access valuable organic compounds considering the ready availability of molecules containing amide functionality. Current methods to derivatize amide mainly focus on the synthesis of carbonyl-containing compounds and amines. Incorporating both parts of the initial amide into the new derivatives is rare. Herein, we describe a simple and practical amide derivatization through amino acid insertion to prepare more complex amides. This insertion is applicable to a wide range of amino acids and more importantly, the chiral information is completely conserved during the insertion. Comparison of this insertion strategy with conventional amide synthesis demonstrates the synthetic advantages of this new protocol.
Collapse
Affiliation(s)
- Zhengqiang Liu
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510006, China
| | - Lei Zhou
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510006, China
| | - Wenbo H Liu
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510006, China
| |
Collapse
|
10
|
O’Brien EA, Sharma KK, Byerly-Duke J, Camacho LA, VanVeller B. A General Strategy to Install Amidine Functional Groups Along the Peptide Backbone. J Am Chem Soc 2022; 144:22397-22402. [PMID: 36469014 PMCID: PMC9886086 DOI: 10.1021/jacs.2c09085] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Amidines are a structural surrogate for peptide bonds, yet have received considerably little attention in peptides due to limitations in existing methods to access them. The synthetic strategy developed in this study represents the first robust and general procedure for the introduction of amidines into the peptide backbone. We exploit and further develop the utility and efficiency of thioimidate protecting groups as a means to side-step reactivity that ultimately renders existing methods unsuitable for the installation of amidines along the main-chain of peptides. This work is significant because it describes a generally applicable path to access unexplored peptide designs and architectures for new therapeutics made possible by the unique properties of amidines.
Collapse
|
11
|
Taresh AB, Hutton CA. Site Specific Preparation of N-Glycosylated Peptides: Thioamide-Directed Activation of Aspartate. Angew Chem Int Ed Engl 2022; 61:e202210367. [PMID: 36068172 PMCID: PMC9826000 DOI: 10.1002/anie.202210367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Indexed: 01/11/2023]
Abstract
A site-specific method for the preparation of N-glycosylated peptides is described. Incorporation of a peptide backbone thioamide linkage adjacent to an Asp residue facilitates a AgI -promoted, site-specific conversion to N-glycosylated Asn residues in peptides.
Collapse
Affiliation(s)
- Ameer B. Taresh
- School of Chemistry and Bio21 Molecular Science and Biotechnology InstituteThe University of MelbourneMelbourneVictoria 3010Australia
| | - Craig A. Hutton
- School of Chemistry and Bio21 Molecular Science and Biotechnology InstituteThe University of MelbourneMelbourneVictoria 3010Australia
| |
Collapse
|
12
|
Tosi E, Campagne JM, de Figueiredo RM. Amine Activation: "Inverse" Dipeptide Synthesis and Amide Function Formation through Activated Amino Compounds. J Org Chem 2022; 87:12148-12163. [PMID: 36069394 DOI: 10.1021/acs.joc.2c01288] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A copper(II)/HOBt-catalyzed procedure for the synthesis of dipeptides and "general" amides has been developed using microwave irradiation to considerably hasten the reaction. As an alternative to using traditional carboxylic acid activation, the method relies on the use of N-acyl imidazoles as activated amino partners. By doing so, a nonconventional way to reach dipeptides and amides has been proposed through the challenging and less studied N → C direction synthesis. A series of dipeptides and "general" amides have been successfully synthesized, and the applicability of the method has been illustrated in gram-scale syntheses. The mild reaction conditions proposed are completely adequate for couplings in the presence of sensitive amino acids, affording the products without detectable racemization. Furthermore, experimental observations prompted us to propose a plausible reaction pathway for the couplings.
Collapse
Affiliation(s)
- Eleonora Tosi
- ICGM, Univ Montpellier, CNRS, ENSCM, Montpellier 34293, France
| | | | | |
Collapse
|
13
|
Taresh AB, Hutton CA. Site Specific Preparation of N‐Glycosylated Peptides: Thioamide‐Directed Activation of Aspartate. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202210367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Ameer B. Taresh
- University of Melbourne School of Chemistry School of Chemistry AUSTRALIA
| | - Craig Anthony Hutton
- University of Melbourne School of Chemistry 30 Flemington Rd. VIC 3095 Parkville AUSTRALIA
| |
Collapse
|
14
|
Li J, Lai W, Pang A, Liu L, Ye L, Xiong XF. On-Resin Synthesis of Linear Aryl Thioether Containing Peptides and in-Solution Cyclization via Cysteine S NAr Reaction. Org Lett 2022; 24:1673-1677. [PMID: 35195423 DOI: 10.1021/acs.orglett.2c00234] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Cyclic peptides represent one of the most promising therapeutic agents in drug discovery due to their good affinity and selectivity. Herein, an on-resin synthesis of aryl thioether containing peptides and a concise cyclization strategy via chemoselective cysteine SNAr reaction was developed. The arylation group could be incorporated into a series of amino acids and used for standard SPPS and peptides cyclization. Constructed cyclic peptides showed increased cellular uptakes compared to their linear peptides.
Collapse
Affiliation(s)
- Jian Li
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, 510006 Guangzhou, Guangdong, P. R. China
| | - Weihong Lai
- School of Pharmacy, Guangdong Pharmaceutical University, 510006 Guangzhou, Guangdong, P. R. China
| | - Ao Pang
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, 510006 Guangzhou, Guangdong, P. R. China
| | - Lu Liu
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, 510006 Guangzhou, Guangdong, P. R. China
| | - Lianbao Ye
- School of Pharmacy, Guangdong Pharmaceutical University, 510006 Guangzhou, Guangdong, P. R. China
| | - Xiao-Feng Xiong
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, 510006 Guangzhou, Guangdong, P. R. China
| |
Collapse
|
15
|
Taresh AB, Hutton CA. Backbone thioamide directed macrocyclisation: lactam stapling of peptides. Org Biomol Chem 2022; 20:1488-1492. [PMID: 35103273 DOI: 10.1039/d1ob02461b] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A novel method for lactam stapling of Asp/Lys-containing peptides has been developed that does not require coupling agents. A backbone thioamide is incorporated at the N-terminal side of the aspartate residue. Ag(I)-promoted activation of the thioamide in the vicinity of the Asp carboxylate generates a cyclic isoimide intermediate that is trapped by the Lys amine to generate the macrolactam. This method is suitable for generation of i,i+2, i,i+3, and i,i+4-spaced lactam-bridged peptides.
Collapse
Affiliation(s)
- Ameer B Taresh
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria 3010, Australia.
| | - Craig A Hutton
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria 3010, Australia.
| |
Collapse
|
16
|
Shang J, Thombare VJ, Charron CL, Wille U, Hutton CA. Ring Expansion of Thiolactams via Imide Intermediates: An Amino Acid Insertion Strategy. Chemistry 2021; 27:1620-1625. [PMID: 33289186 DOI: 10.1002/chem.202005035] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Indexed: 12/22/2022]
Abstract
The AgI -promoted reaction of thiolactams with N-Boc amino acids yields an N-(α-aminoacyl) lactam that can rearrange through an acyl transfer process. Boc-deprotection results in convergence to the ring-expanded adduct, thereby facilitating an overall insertion of an amino acid into the thioamide bond to generate medium-sized heterocycles. Application to the site-specific insertion of amino acids into cyclic peptides is demonstrated.
Collapse
Affiliation(s)
- Jing Shang
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Vic 3010, Australia
| | - Varsha J Thombare
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Vic 3010, Australia
| | - Carlie L Charron
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Vic 3010, Australia
| | - Uta Wille
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Vic 3010, Australia
| | - Craig A Hutton
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Vic 3010, Australia
| |
Collapse
|
17
|
Shabani S, Hutton CA. Depsipeptide synthesis using a late-stage Ag(i)-promoted macrolactonisation of peptide thioamides. Chem Commun (Camb) 2021; 57:2081-2084. [DOI: 10.1039/d0cc07747j] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Ag(i)-Triggered activation of the thioamide and attack by the C-terminal carboxylate generates an isoimide intermediate that undergoes an intramolecular acyl transfer to furnish the cyclic depsipeptide.
Collapse
Affiliation(s)
- Sadegh Shabani
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute
- The University of Melbourne
- Victoria
- Australia
| | - Craig A. Hutton
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute
- The University of Melbourne
- Victoria
- Australia
| |
Collapse
|
18
|
Rivera DG, Ojeda-Carralero GM, Reguera L, Van der Eycken EV. Peptide macrocyclization by transition metal catalysis. Chem Soc Rev 2020; 49:2039-2059. [PMID: 32142086 DOI: 10.1039/c9cs00366e] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Peptide macrocyclization has traditionally relied on lactam, lactone and disulfide bond-forming reactions that aim at introducing conformational constraints into small peptide sequences. With the advent of ruthenium-catalyzed ring-closing metathesis and copper-catalyzed alkyne-azide cycloaddition, peptide chemists embraced transition metal catalysis as a powerful macrocyclization tool with relevant applications in chemical biological and peptide drug discovery. This article provides a comprehensive overview of the reactivity and methodological diversification of metal-catalyzed peptide macrocyclization as a special class of late-stage peptide derivatization method. We report the evolution from classic palladium-catalyzed cross-coupling approaches to more modern oxidative versions based on C-H activation, heteroatom alkylation/arylation and annulation processes, in which aspects such as chemoselectivity and diversity generation at the ring-closing moiety became dominant over the last years. The transit from early cycloadditions and alkyne couplings as ring-closing steps to very recent 3d metal-catalyzed macrocyclization methods is highlighted. Similarly, the new trends in decarboxylative radical macrocyclizations and the interplay between photoredox and transition metal catalysis are included. This review charts future perspectives in the field hoping to encourage further progress and applications, while bringing attention to the countless possibilities available by diversifying not only the metal, but also the reactivity modes and tactics to bring peptide functional groups together and produce structurally diverse macrocycles.
Collapse
Affiliation(s)
- Daniel G Rivera
- Laboratory for Organic & Microwave-Assisted Chemistry (LOMAC), Department of Chemistry, University of Leuven (KU Leuven), Celestijnenlaan 200F, B-3001 Leuven, Belgium. and Center for Natural Product Research, Faculty of Chemistry, University of Havana, Zapata y G, Havana 10400, Cuba.
| | - Gerardo M Ojeda-Carralero
- Laboratory for Organic & Microwave-Assisted Chemistry (LOMAC), Department of Chemistry, University of Leuven (KU Leuven), Celestijnenlaan 200F, B-3001 Leuven, Belgium. and Center for Natural Product Research, Faculty of Chemistry, University of Havana, Zapata y G, Havana 10400, Cuba.
| | - Leslie Reguera
- Center for Natural Product Research, Faculty of Chemistry, University of Havana, Zapata y G, Havana 10400, Cuba.
| | - Erik V Van der Eycken
- Laboratory for Organic & Microwave-Assisted Chemistry (LOMAC), Department of Chemistry, University of Leuven (KU Leuven), Celestijnenlaan 200F, B-3001 Leuven, Belgium. and Peoples' Friendship University of Russia (RUDN University), Miklukho-Maklaya Street 6, 117198 Moscow, Russia
| |
Collapse
|
19
|
Jiang S, Hsieh W, Chen W, Liao J, Chiang P, Lin YA. Synthesis of Thiol‐Containing Oligopeptides via Tandem Activation of γ‐Thiolactones by Silver‐DABCO Pair. ASIAN J ORG CHEM 2020. [DOI: 10.1002/ajoc.202000310] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Sheng‐Yuan Jiang
- Department of Chemistry National Sun Yat-sen University Kaohsiung 804 Taiwan
| | - Wen‐Tsai Hsieh
- Department of Chemistry National Sun Yat-sen University Kaohsiung 804 Taiwan
| | - Wei‐Shuo Chen
- Department of Chemistry National Sun Yat-sen University Kaohsiung 804 Taiwan
| | - Jia‐Shiang Liao
- Department of Chemistry National Sun Yat-sen University Kaohsiung 804 Taiwan
| | - Po‐Yu Chiang
- Department of Chemistry National Sun Yat-sen University Kaohsiung 804 Taiwan
| | - Yuya A. Lin
- Department of Chemistry National Sun Yat-sen University Kaohsiung 804 Taiwan
- Department of Medicinal and Applied Chemistry Kaohsiung Medical University Kaohsiung 807 Taiwan
| |
Collapse
|
20
|
Saito M, Murakami S, Nanjo T, Kobayashi Y, Takemoto Y. Mild and Chemoselective Thioacylation of Amines Enabled by the Nucleophilic Activation of Elemental Sulfur. J Am Chem Soc 2020; 142:8130-8135. [DOI: 10.1021/jacs.0c03256] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Masato Saito
- Graduate School of Pharmaceutical Sciences, Kyoto University, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan
| | - Sho Murakami
- Graduate School of Pharmaceutical Sciences, Kyoto University, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan
| | - Takeshi Nanjo
- Graduate School of Pharmaceutical Sciences, Kyoto University, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan
| | - Yusuke Kobayashi
- Graduate School of Pharmaceutical Sciences, Kyoto University, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan
| | - Yoshiji Takemoto
- Graduate School of Pharmaceutical Sciences, Kyoto University, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan
| |
Collapse
|
21
|
Khatri B, Bhat P, Chatterjee J. Convenient synthesis of thioamidated peptides and proteins. J Pept Sci 2020; 26:e3248. [PMID: 32202029 DOI: 10.1002/psc.3248] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 02/27/2020] [Accepted: 03/03/2020] [Indexed: 12/13/2022]
Abstract
The unique physicochemical properties of a thioamide bond, which is an ideal isostere of an amide bond, have not been fully exploited because of the tedious synthesis of thionated amino acid building blocks. Here, we report a purification-free and highly efficient synthesis of thiobenzotriazolides of Fmoc-protected and orthogonally protected 20 naturally occurring amino acids including asparagine, glutamine, and histidine. The near-quantitative conversion to the respective thioamidated peptides on solid support demonstrates the robustness of the synthetic route. Furthermore, the unaltered incorporation efficiency of thiobenzotriazolides from their stock solution till 48 h suggests their compatibility toward automated peptide synthesis. Finally, utilizing an optimized cocktail of 2% DBU + 5% piperazine for fast Fmoc-deprotection, we report the synthesis of a thioamidated Pin1 WW domain and thioamidated GB1 directly on solid support.
Collapse
Affiliation(s)
- Bhavesh Khatri
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, 560012, India
| | - Prabhat Bhat
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, 560012, India
| | - Jayanta Chatterjee
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, 560012, India
| |
Collapse
|
22
|
Hollanders C, Renders E, Gadais C, Masullo D, Van Raemdonck L, Wybon CCD, Martin C, Herrebout WA, Maes BUW, Ballet S. Zn-Catalyzed Nicotinate-Directed Transamidations in Peptide Synthesis. ACS Catal 2020. [DOI: 10.1021/acscatal.9b05074] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Charlie Hollanders
- Organic Chemistry, Departments of Chemistry and Bioengineering Sciences, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium
- Organic Synthesis, Department of Chemistry, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp, Belgium
| | - Evelien Renders
- Organic Synthesis, Department of Chemistry, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp, Belgium
| | - Charlène Gadais
- Organic Chemistry, Departments of Chemistry and Bioengineering Sciences, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium
- Organic Synthesis, Department of Chemistry, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp, Belgium
| | - Dario Masullo
- Organic Synthesis, Department of Chemistry, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp, Belgium
| | - Laurent Van Raemdonck
- Organic Synthesis, Department of Chemistry, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp, Belgium
| | - Clarence C. D. Wybon
- Organic Synthesis, Department of Chemistry, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp, Belgium
| | - Charlotte Martin
- Organic Chemistry, Departments of Chemistry and Bioengineering Sciences, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium
| | - Wouter A. Herrebout
- Molecular Spectroscopy, Department of Chemistry, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp, Belgium
| | - Bert U. W. Maes
- Organic Synthesis, Department of Chemistry, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp, Belgium
| | - Steven Ballet
- Organic Chemistry, Departments of Chemistry and Bioengineering Sciences, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium
| |
Collapse
|
23
|
Thombare VJ, Holden JA, Reynolds EC, O'Brien-Simpson NM, Hutton CA. Celogentin mimetics as inhibitors of tubulin polymerization. J Pept Sci 2019; 26:e3239. [PMID: 31847053 DOI: 10.1002/psc.3239] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 11/19/2019] [Accepted: 11/20/2019] [Indexed: 12/18/2022]
Abstract
Bicyclic analogues of celogentin C have been synthesized in which the side chain-side chain cross-links are replaced by thioether bonds. Several of the simplified bicyclic peptides displayed potent inhibition of tubulin polymerization.
Collapse
Affiliation(s)
- Varsha J Thombare
- School of Chemistry, The University of Melbourne, Victoria, 3010, Australia.,Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Victoria, 3010, Australia
| | - James A Holden
- Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Victoria, 3010, Australia.,Melbourne Dental School and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Victoria, 3010, Australia
| | - Eric C Reynolds
- Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Victoria, 3010, Australia.,Melbourne Dental School and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Victoria, 3010, Australia
| | - Neil M O'Brien-Simpson
- Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Victoria, 3010, Australia.,Melbourne Dental School and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Victoria, 3010, Australia
| | - Craig A Hutton
- School of Chemistry, The University of Melbourne, Victoria, 3010, Australia.,Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Victoria, 3010, Australia
| |
Collapse
|
24
|
Camacho LA, Lampkin BJ, VanVeller B. A Bottom-Up Approach To Preserve Thioamide Residue Stereochemistry during Fmoc Solid-Phase Peptide Synthesis. Org Lett 2019; 21:7015-7018. [DOI: 10.1021/acs.orglett.9b02598] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Luis A. Camacho
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States
| | - Bryan J. Lampkin
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States
| | - Brett VanVeller
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States
| |
Collapse
|