1
|
Salzmann H, LeMessurier N, Eaves JD, Weber JM. Formation of Water Networks on Anionic Perylene. J Phys Chem A 2025; 129:4384-4393. [PMID: 40334062 DOI: 10.1021/acs.jpca.5c00569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2025]
Abstract
We present infrared photodissociation spectra of hydrated perylene anion clusters with up to four water molecules, as well as electronic structure calculations based on density functional theory. Water molecules form weak hydrogen bonds to the π system of the perylene anion. For clusters with more than one water molecule, water-water hydrogen bonds are formed, which generally appear to be stronger than water-π hydrogen bonds, especially for the trihydrate and tetrahydrate. The resulting water networks exist as water subclusters on the surface of the carbon frame of perylene. We observe temperature-dependent dynamic effects, which highlight large amplitude motions of the water network and the shallowness of the potential energy surfaces governing the structures of these clusters.
Collapse
Affiliation(s)
- Heinrich Salzmann
- JILA, University of Colorado, Boulder, Colorado 80309-0440, United States
- Department of Chemistry, University of Colorado, Boulder, Colorado 80309-0215, United States
| | - Natalie LeMessurier
- Department of Chemistry, University of Colorado, Boulder, Colorado 80309-0215, United States
| | - Joel D Eaves
- Department of Chemistry, University of Colorado, Boulder, Colorado 80309-0215, United States
| | - J Mathias Weber
- JILA, University of Colorado, Boulder, Colorado 80309-0440, United States
- Department of Chemistry, University of Colorado, Boulder, Colorado 80309-0215, United States
| |
Collapse
|
2
|
Tian X, Lei J, Gao T, Zou S, Wang X, Li M, Wang C, Chen J, Grabow JU, Jäger W, Gou Q. Complex Dance of Molecules in the Sky: Choreography of Intermolecular Structure and Dynamics in the Cyclopentene-CO 2-H 2O Hetero Ternary Cluster. Angew Chem Int Ed Engl 2024; 63:e202412406. [PMID: 39175182 DOI: 10.1002/anie.202412406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/08/2024] [Accepted: 08/09/2024] [Indexed: 08/24/2024]
Abstract
This study delves into driving forces behind the formation of a hetero ternary cluster consisting of volatile organic compounds from industrial or combustion sources, specifically cyclopentene, alongside greenhouse gases like carbon dioxide, and water vapor. While substantial progress has been made in understanding binary complexes, the structural intricacies of hetero ternary clusters remain largely uncharted. Our research characterized the cyclopentene-CO2-H2O hetero ternary cluster utilizing Fourier transform microwave spectroscopy. The observed isomer in the pulsed jet has CO2 and H2O aligning above the cyclopentene ring, with water undergoing an internal rotation approximately about its C2 symmetry axis. Theoretical analyses support these observations, identifying an O-H⋅⋅⋅π hydrogen bond and a secondary C⋅⋅⋅O tetrel bond within this cluster. This study marks a critical step towards comprehending the molecular dynamics and interactions of VOCs, greenhouse gases, and water in the atmosphere, paving the way for further investigations into their roles in climate dynamics and air quality.
Collapse
Affiliation(s)
- Xiao Tian
- School of Chemistry and Chemical Engineering, Chongqing University, Daxuecheng South Rd. 55, 401331, Chongqing, China
| | - Juncheng Lei
- School of Chemistry and Chemical Engineering, Chongqing University, Daxuecheng South Rd. 55, 401331, Chongqing, China
| | - Tianyue Gao
- School of Chemistry and Chemical Engineering, Chongqing University, Daxuecheng South Rd. 55, 401331, Chongqing, China
| | - Siyu Zou
- School of Chemistry and Chemical Engineering, Chongqing University, Daxuecheng South Rd. 55, 401331, Chongqing, China
| | - Xiujuan Wang
- Institut für Physikalische Chemie & Elektrochemie, Leibniz Universität Hannover, Callinstraβe 3A, 30167, Hannover, Germany
| | - Meiyue Li
- School of Chemistry and Chemical Engineering, Chongqing University, Daxuecheng South Rd. 55, 401331, Chongqing, China
| | - Chenxu Wang
- School of Chemistry and Chemical Engineering, Chongqing University, Daxuecheng South Rd. 55, 401331, Chongqing, China
| | - Junhua Chen
- School of Pharmacy, Guizhou Medical University, 561113, Guiyang, Guizhou, China
| | - Jens-Uwe Grabow
- Institut für Physikalische Chemie & Elektrochemie, Leibniz Universität Hannover, Callinstraβe 3A, 30167, Hannover, Germany
| | - Wolfgang Jäger
- Department of Chemistry, University of Alberta, T6G 2G2, Edmonton, AB, Canada
| | - Qian Gou
- School of Chemistry and Chemical Engineering, Chongqing University, Daxuecheng South Rd. 55, 401331, Chongqing, China
| |
Collapse
|
3
|
Sun W, Schnell M. Microwave Three-Wave Mixing Spectroscopy of Chiral Molecules in Weakly Bound Complexes. J Phys Chem Lett 2023; 14:7389-7394. [PMID: 37566689 PMCID: PMC10461301 DOI: 10.1021/acs.jpclett.3c01900] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 08/09/2023] [Indexed: 08/13/2023]
Abstract
Since the first experimental implementation in 2013, microwave three-wave mixing has emerged as a robust spectroscopic approach for analyzing and controlling chiral molecules in the gas phase. This resonant, coherent, and nonlinear technique is based on the three-dimensional light-matter interaction in the electric dipole approximation, allowing for isomer- and conformer-selective chiral analysis with high resolution. Here we demonstrate the utility of microwave three-wave mixing for analyzing a molecular complex, limonene-H2O, which serves as a compelling example of addressing its potential to improve the chiral sensitivity for only weakly polar chiral molecules. The use of molecular complexes can also extend the applicability of microwave three-wave mixing to chiral systems that are not in the C1 point group.
Collapse
Affiliation(s)
- Wenhao Sun
- Deutsches
Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - Melanie Schnell
- Deutsches
Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
- Institute
of Physical Chemistry, Christian-Albrechts-Universität
zu Kiel, Max-Eyth-Strasse
1, 24118 Kiel, Germany
| |
Collapse
|
4
|
Loru D, Steber AL, Pérez C, Obenchain DA, Temelso B, López JC, Schnell M. Quantum Tunneling Facilitates Water Motion across the Surface of Phenanthrene. J Am Chem Soc 2023; 145:17201-17210. [PMID: 37494139 PMCID: PMC10416304 DOI: 10.1021/jacs.3c04281] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Indexed: 07/28/2023]
Abstract
Quantum tunneling is a fundamental phenomenon that plays a pivotal role in the motion and interaction of atoms and molecules. In particular, its influence in the interaction between water molecules and carbon surfaces can have significant implications for a multitude of fields ranging from atmospheric chemistry to separation technologies. Here, we unveil at the molecular level the complex motion dynamics of a single water molecule on the planar surface of the polycyclic aromatic hydrocarbon phenanthrene, which was used as a small-scale carbon surface-like model. In this system, the water molecule interacts with the substrate through weak O-H···π hydrogen bonds, in which phenanthrene acts as the hydrogen-bond acceptor via the high electron density of its aromatic cloud. The rotational spectrum, which was recorded using chirped-pulse Fourier transform microwave spectroscopy, exhibits characteristic line splittings as dynamical features. The nature of the internal dynamics was elucidated in great detail with the investigation of the isotope-substitution effect on the line splittings in the rotational spectra of the H218O, D2O, and HDO isotopologues of the phenanthrene-H2O complex. The spectral analysis revealed a complex internal dynamic showing a concerted tunneling motion of water involving its internal rotation and its translation between the two equivalent peripheral rings of phenanthrene. This high-resolution spectroscopy study presents the observation of a tunneling motion exhibited by the water monomer when interacting with a planar carbon surface with an unprecedented level of detail. This can serve as a small-scale analogue for water motions on large aromatic surfaces, i.e., large polycyclic aromatic hydrocarbons and graphene.
Collapse
Affiliation(s)
- Donatella Loru
- Deutsches
Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - Amanda L. Steber
- Deutsches
Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - Cristóbal Pérez
- Deutsches
Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | | | - Berhane Temelso
- Division
of Information Technology, College of Charleston, Charleston, South Carolina 29424, United States
| | - Juan C. López
- Departamento
de Química Física y Química Inorgánica,
Facultad de Ciencias, Universidad de Valladolid, 47011 Valladolid, Spain
| | - Melanie Schnell
- Deutsches
Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
- Institut
für Physikalische Chemie, Christian-Albrechts-Universität
zu Kiel, Max-Eyth-Straße
1, D-24118 Kiel, Germany
| |
Collapse
|
5
|
Li J, Wang X, Zhang X, Chen J, Wang H, Tian X, Xu X, Gou Q. Stepwise hydrations of anhydride tuned by hydrogen bonds: rotational study on maleic anhydride-(H 2O) 1-3. Phys Chem Chem Phys 2023; 25:4611-4616. [PMID: 36723184 DOI: 10.1039/d2cp05861h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The rotational spectra of maleic anhydride-(H2O)1-3 have been investigated for the first time by using pulsed jet Fourier transform microwave spectroscopy with complementary computational analyses. The experimental evidence points out that water tends to self-aggregate with hydrogen bonds and form homodromic cycles. Differences in bond lengths and charge distribution between the two carbonyl sites have been observed upon stepwise hydrations, which might further introduce a selectivity on the nucleophilic attack sites of hydrolysis. This study provides an important insight into the incipient solvation process (microsolvation) of maleic anhydride in water by understanding the cooperation and rearrangement of intermolecular hydrogen bonds in its stepwise hydrates.
Collapse
Affiliation(s)
- Jiayi Li
- Department of Chemistry, School of Chemistry and Chemical Engineering, Chongqing University, Daxuecheng South Rd. 55, 401331, Chongqing, China.
| | - Xiujuan Wang
- Department of Chemistry, School of Chemistry and Chemical Engineering, Chongqing University, Daxuecheng South Rd. 55, 401331, Chongqing, China.
| | - Xinyue Zhang
- Department of Chemistry, School of Chemistry and Chemical Engineering, Chongqing University, Daxuecheng South Rd. 55, 401331, Chongqing, China.
| | - Junhua Chen
- Department of Chemistry, School of Chemistry and Chemical Engineering, Chongqing University, Daxuecheng South Rd. 55, 401331, Chongqing, China. .,School of Pharmacy, Guizhou Medical University, Guiyang, 550000, Guizhou, China
| | - Hao Wang
- Department of Chemistry, School of Chemistry and Chemical Engineering, Chongqing University, Daxuecheng South Rd. 55, 401331, Chongqing, China.
| | - Xiao Tian
- Department of Chemistry, School of Chemistry and Chemical Engineering, Chongqing University, Daxuecheng South Rd. 55, 401331, Chongqing, China.
| | - Xuefang Xu
- Department of Chemistry, School of Chemistry and Chemical Engineering, Chongqing University, Daxuecheng South Rd. 55, 401331, Chongqing, China.
| | - Qian Gou
- Department of Chemistry, School of Chemistry and Chemical Engineering, Chongqing University, Daxuecheng South Rd. 55, 401331, Chongqing, China.
| |
Collapse
|
6
|
Rossich Molina E, Xu B, Kostko O, Ahmed M, Stein T. A combined theoretical and experimental study of small anthracene-water clusters. Phys Chem Chem Phys 2022; 24:23106-23118. [PMID: 35975620 DOI: 10.1039/d2cp02617a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Water-cluster interactions with polycyclic aromatic hydrocarbons (PAHs) are of paramount interest in many chemical and biological processes. We report a study of anthracene monomers and dimers with water (up to four)-cluster systems utilizing molecular beam vacuum-UV photoionization mass spectrometry and density functional calculations. Structural loss in photoionization efficiency curves when adding water indicates that various isomers are generated, while theory indicates only a slight shift in energy in photoionization states of different isomers. Calculations reveal that the energetic tendency of water is to remain clustered and not to disperse around the PAH. Theoretically, we observe water confinement exclusively in the case of four water clusters and only when the anthracenes are in a cross configuration due to optimal OH⋯π interactions, indicating dependence on the size and structure of the PAH. Furthermore theory sheds light on the structural changes that occur in water upon ionization of anthracene, due to the optimal interactions of the resulting hole and water hydrogen atoms.
Collapse
Affiliation(s)
- Estefania Rossich Molina
- Fritz Haber Research Center for Molecular Dynamics, Hebrew University of Jerusalem, Jerusalem 9190401, Israel.
| | - Bo Xu
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA.
| | - Oleg Kostko
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA.
| | - Musahid Ahmed
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA.
| | - Tamar Stein
- Fritz Haber Research Center for Molecular Dynamics, Hebrew University of Jerusalem, Jerusalem 9190401, Israel.
| |
Collapse
|
7
|
Steiner M, Holzknecht T, Schauperl M, Podewitz M. Quantum Chemical Microsolvation by Automated Water Placement. Molecules 2021; 26:1793. [PMID: 33806731 PMCID: PMC8005176 DOI: 10.3390/molecules26061793] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/13/2021] [Accepted: 03/15/2021] [Indexed: 11/17/2022] Open
Abstract
We developed a quantitative approach to quantum chemical microsolvation. Key in our methodology is the automatic placement of individual solvent molecules based on the free energy solvation thermodynamics derived from molecular dynamics (MD) simulations and grid inhomogeneous solvation theory (GIST). This protocol enabled us to rigorously define the number, position, and orientation of individual solvent molecules and to determine their interaction with the solute based on physical quantities. The generated solute-solvent clusters served as an input for subsequent quantum chemical investigations. We showcased the applicability, scope, and limitations of this computational approach for a number of small molecules, including urea, 2-aminobenzothiazole, (+)-syn-benzotriborneol, benzoic acid, and helicene. Our results show excellent agreement with the available ab initio molecular dynamics data and experimental results.
Collapse
Affiliation(s)
- Miguel Steiner
- Institute of General, Inorganic and Theoretical Chemistry, University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria; (M.S.); (T.H.); (M.S.)
- Laboratorium für Physikalische Chemie, ETH Zürich, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| | - Tanja Holzknecht
- Institute of General, Inorganic and Theoretical Chemistry, University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria; (M.S.); (T.H.); (M.S.)
| | - Michael Schauperl
- Institute of General, Inorganic and Theoretical Chemistry, University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria; (M.S.); (T.H.); (M.S.)
| | - Maren Podewitz
- Institute of General, Inorganic and Theoretical Chemistry, University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria; (M.S.); (T.H.); (M.S.)
| |
Collapse
|
8
|
Domingos SR, Pérez C, Kreienborg NM, Merten C, Schnell M. Dynamic chiral self-recognition in aromatic dimers of styrene oxide revealed by rotational spectroscopy. Commun Chem 2021; 4:32. [PMID: 36697526 PMCID: PMC9814401 DOI: 10.1038/s42004-021-00468-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 02/01/2021] [Indexed: 01/28/2023] Open
Abstract
Chiral molecular recognition is a pivotal phenomenon in biomolecular science, governed by subtle balances of intermolecular forces that are difficult to quantify. Non-covalent interactions involving aromatic moieties are particularly important in this realm, as recurring motifs in biomolecular aggregation. In this work, we use high-resolution broadband rotational spectroscopy to probe the dynamic conformational landscape enclosing the self-pairing topologies of styrene oxide, a chiral aromatic system. We reach a definite assignment of four homochiral and two heterochiral dimers using auxiliary quantum chemistry calculations as well as structure-solving methods based on experimental isotopic information. A complete picture of the dimer conformational space is obtained, and plausible routes for conformational relaxation are derived. Molecular structures are discussed in terms of conformational flexibility, the concerted effort of weak intermolecular interactions, and their role in the expression of the molecular fit.
Collapse
Affiliation(s)
- Sérgio R. Domingos
- grid.7683.a0000 0004 0492 0453Deutsches Elektronen-Synchrotron (DESY), Notkestraße 85, Hamburg, 22607 Germany ,grid.8051.c0000 0000 9511 4342Present Address: CFisUC, Department of Physics, University of Coimbra, Coimbra, 3004-516 Portugal
| | - Cristóbal Pérez
- grid.7683.a0000 0004 0492 0453Deutsches Elektronen-Synchrotron (DESY), Notkestraße 85, Hamburg, 22607 Germany
| | - Nora M. Kreienborg
- grid.5570.70000 0004 0490 981XRuhr-Universität Bochum, Fakultät für Chemie und Biochemie, Organische Chemie II, Universitätsstraße 150, Bochum, 44801 Germany
| | - Christian Merten
- grid.5570.70000 0004 0490 981XRuhr-Universität Bochum, Fakultät für Chemie und Biochemie, Organische Chemie II, Universitätsstraße 150, Bochum, 44801 Germany
| | - Melanie Schnell
- grid.7683.a0000 0004 0492 0453Deutsches Elektronen-Synchrotron (DESY), Notkestraße 85, Hamburg, 22607 Germany ,grid.9764.c0000 0001 2153 9986Institut für Physikalische Chemie, Christian-Albrechts-Universität zu Kiel, Max-Eyth-Str. 1, Kiel, 24118 Germany
| |
Collapse
|
9
|
Loru D, Steber AL, Pinacho P, Gruet S, Temelso B, Rijs AM, Pérez C, Schnell M. How does the composition of a PAH influence its microsolvation? A rotational spectroscopy study of the phenanthrene–water and phenanthridine–water clusters. Phys Chem Chem Phys 2021; 23:9721-9732. [DOI: 10.1039/d1cp00898f] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The influence of a nitrogen atom in the backbone of a PAH was revealed by the hydrated clusters of phenanthrene and phenanthridine in a rotational spectroscopy study. Background image credit: NASA, ESA, and the Hubble Heritage Team (STScI/AURA) – ESA/Hubble Collaboration.
Collapse
Affiliation(s)
- Donatella Loru
- Deutsches Elektronen-Synchrotron (DESY)
- 22607 Hamburg
- Germany
| | | | - Pablo Pinacho
- Deutsches Elektronen-Synchrotron (DESY)
- 22607 Hamburg
- Germany
| | | | - Berhane Temelso
- Division of Information Technology
- College of Charleston
- Charleston
- USA
| | - Anouk M. Rijs
- Division of BioAnalytical Chemistry
- AIMMS Amsterdam Institute of Molecular and Life Sciences
- Vrije Universiteit Amsterdam
- 1081 HV Amsterdam
- The Netherlands
| | | | - Melanie Schnell
- Deutsches Elektronen-Synchrotron (DESY)
- 22607 Hamburg
- Germany
- Institute of Physical Chemistry
- Christian-Albrechts-Universität zu Kiel
| |
Collapse
|
10
|
Yan L, Ma W, Lan J, Cheng H, Bin Z, Wu D, You J. Molecular engineering enabling reversible transformation between helical and planar conformations by cyclization of alkynes. Chem Sci 2020; 12:2419-2426. [PMID: 34164007 PMCID: PMC8179297 DOI: 10.1039/d0sc05844k] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Molecular engineering enabling reversible transformation between helical and planar conformations is described herein. Starting from easily available 2-(pyridin-2-yl)anilines and alkynes, a one-pot strategy is set up for the synthesis of aza[4]helicenes via two successive rhodium-catalyzed C–H activation/cyclizations. Helical pyrrolophenanthridiziniums can be transformed into planar conformations through the cleavage of acidic pyrrole N–H, leading to turn-off fluorescence. NMR spectra, single crystal X-ray diffraction and DFT calculations demonstrate that the formation of an intramolecular C–H⋯N hydrogen bond is beneficial to stabilize the pyrrole nitrogen anion of the planar molecule and provide increased planarity. The reversible conformation transformations can be finely adjusted by the electron-donating and -withdrawing groups on the π+-fused pyrrole skeleton in the physiological pH range, thus affording an opportunity for pH-controlled intracellular selective fluorescence imaging. Pyrrolophenanthridiziniums show turn-on fluorescence in lysosomes owing to the acidic environment of lysosomes and turn-off fluorescence out of lysosomes, indicating the occurrence of the deprotonation reaction outside lysosomes and the corresponding transformation from helical to planar conformations. One-pot synthesis of aza[4]helicenes is accomplished through two successive C–H activation/cyclizations, which exhibit on/off fluorescence switching through reversible transformation between helical and planar conformations.![]()
Collapse
Affiliation(s)
- Lipeng Yan
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University 29 Wangjiang Road Chengdu 610064 People's Republic of China
| | - Weixin Ma
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University 29 Wangjiang Road Chengdu 610064 People's Republic of China
| | - Jingbo Lan
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University 29 Wangjiang Road Chengdu 610064 People's Republic of China
| | - Hu Cheng
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University 29 Wangjiang Road Chengdu 610064 People's Republic of China
| | - Zhengyang Bin
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University 29 Wangjiang Road Chengdu 610064 People's Republic of China
| | - Di Wu
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University 29 Wangjiang Road Chengdu 610064 People's Republic of China
| | - Jingsong You
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University 29 Wangjiang Road Chengdu 610064 People's Republic of China
| |
Collapse
|
11
|
Heywood VL, Alford TPJ, Roeleveld JJ, Lekanne Deprez SJ, Verhoofstad A, van der Vlugt JI, Domingos SR, Schnell M, Davis AP, Mooibroek TJ. Observations of tetrel bonding between sp 3-carbon and THF. Chem Sci 2020; 11:5289-5293. [PMID: 34122986 PMCID: PMC8159407 DOI: 10.1039/d0sc01559h] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 05/05/2020] [Indexed: 12/15/2022] Open
Abstract
We report the direct observation of tetrel bonding interactions between sp3-carbons of the supramolecular synthon 3,3-dimethyl-tetracyanocyclopropane (1) and tetrahydrofuran in the gas and crystalline phase. The intermolecular contact is established via σ-holes and is driven mainly by electrostatic forces. The complex manifests distinct binding geometries when captured in the crystalline phase and in the gas phase. We elucidate these binding trends using complementary gas phase quantum chemical calculations and find a total binding energy of -11.2 kcal mol-1 for the adduct. Our observations pave the way for novel strategies to engineer sp3-C centred non-covalent bonding schemes for supramolecular chemistry.
Collapse
Affiliation(s)
- Victoria L Heywood
- School of Chemistry, University of Bristol Cantock's Close Bristol BS8 1TS UK
| | - Thomas P J Alford
- School of Chemistry, University of Bristol Cantock's Close Bristol BS8 1TS UK
| | - Julius J Roeleveld
- van 't Hoff Institute for Molecular Sciences, Universiteit van Amsterdam Science Park 904 1098 XH Amsterdam The Netherlands
| | - Siebe J Lekanne Deprez
- van 't Hoff Institute for Molecular Sciences, Universiteit van Amsterdam Science Park 904 1098 XH Amsterdam The Netherlands
| | - Abraham Verhoofstad
- van 't Hoff Institute for Molecular Sciences, Universiteit van Amsterdam Science Park 904 1098 XH Amsterdam The Netherlands
| | - Jarl Ivar van der Vlugt
- van 't Hoff Institute for Molecular Sciences, Universiteit van Amsterdam Science Park 904 1098 XH Amsterdam The Netherlands
- Institute of Chemistry, Carl von Ossietzky University Oldenburg Carl-von-Ossietzky-Straße 9-11 D-12629 Oldenburg Germany
| | - Sérgio R Domingos
- Deutsches Elektronen-Synchrotron (DESY) Notkestraße 85 22607 Hamburg Germany
| | - Melanie Schnell
- Deutsches Elektronen-Synchrotron (DESY) Notkestraße 85 22607 Hamburg Germany
- Institut für Physikalische Chemie, Christian-Albrechts-Universität zu Kiel Max-Eyth-Str. 1 24118 Kiel Germany
| | - Anthony P Davis
- School of Chemistry, University of Bristol Cantock's Close Bristol BS8 1TS UK
| | - Tiddo J Mooibroek
- van 't Hoff Institute for Molecular Sciences, Universiteit van Amsterdam Science Park 904 1098 XH Amsterdam The Netherlands
| |
Collapse
|
12
|
Fischer J, Schlaghaufer F, Lottner EM, Slenczka A, Christiansen L, Stapelfeldt H, Karra M, Friedrich B, Mullan T, Schütz M, Usvyat D. Heterogeneous Clusters of Phthalocyanine and Water Prepared and Probed in Superfluid Helium Nanodroplets. J Phys Chem A 2019; 123:10057-10064. [PMID: 31670512 DOI: 10.1021/acs.jpca.9b07302] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Superfluid helium nanodroplets comprised of thousands to millions of helium atoms can serve as a reactor for the synthesis of heterogeneous molecular clusters at cryogenic conditions. The cluster synthesis occurs via consecutive pick-up of the cluster building blocks by the helium droplet and their subsequent coalescence within the droplet. The effective collision cross section of the building blocks is determined by the helium droplet size and thus exceeds by orders of magnitude that of a reactive collision in the gas phase. Moreover, the cryogenic helium environment (at 0.38 K) as a host promotes the formation of metastable cluster configurations. The question arises as to the extent of the actual involvement of the helium environment in the cluster formation. The present study deals with clusters of single phthalocyanine (Pc) molecules with single water molecules. A large fluorophore such as Pc offers several sites where the water molecule can attach. The resulting isomeric variants of the Pc-H2O complex can be selectively identified by electronic spectroscopy. We compare the experimental electronic spectra of the Pc-H2O complex generated in superfluid helium nanodroplets with the results of quantum-chemical calculations on the same cluster but under gas-phase conditions. The number of isomeric variants observed in the helium droplet experiment comes out the same as that obtained from our gas-phase calculations.
Collapse
Affiliation(s)
- J Fischer
- Institut für Physikalische und Theoretische Chemie , Universität Regensburg , 93053 Regensburg , Germany
| | - F Schlaghaufer
- Institut für Physikalische und Theoretische Chemie , Universität Regensburg , 93053 Regensburg , Germany
| | - E-M Lottner
- Institut für Physikalische und Theoretische Chemie , Universität Regensburg , 93053 Regensburg , Germany
| | - A Slenczka
- Institut für Physikalische und Theoretische Chemie , Universität Regensburg , 93053 Regensburg , Germany
| | - L Christiansen
- Department of Chemistry , Aarhus University , Langelandsgade 140 , 8000 Aarhus C , Denmark
| | - H Stapelfeldt
- Department of Chemistry , Aarhus University , Langelandsgade 140 , 8000 Aarhus C , Denmark
| | - M Karra
- Fritz-Haber-Institut der Max-Planck-Gesellschaft , Faradayweg 4-6 , 14195 Berlin , Germany
| | - B Friedrich
- Fritz-Haber-Institut der Max-Planck-Gesellschaft , Faradayweg 4-6 , 14195 Berlin , Germany
| | - Th Mullan
- Institut für Chemie , Humboldt-Universität zu Berlin , Unter den Linden 6 , 10099 Berlin , Germany
| | - M Schütz
- Institut für Chemie , Humboldt-Universität zu Berlin , Unter den Linden 6 , 10099 Berlin , Germany
| | - D Usvyat
- Institut für Chemie , Humboldt-Universität zu Berlin , Unter den Linden 6 , 10099 Berlin , Germany
| |
Collapse
|