1
|
Solano-Altamirano JM, Hernández-Pérez JM, Sandoval-Lira J, Barroso-Flores J. DensToolKit2: A comprehensive open-source package for analyzing the electron density and its derivative scalar and vector fields. J Chem Phys 2024; 161:232501. [PMID: 39679615 DOI: 10.1063/5.0239835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Accepted: 11/27/2024] [Indexed: 12/17/2024] Open
Abstract
In this article, we provide details of the suite DensToolKit-v2, which consists of a set of cross-platform, optionally parallelized programs for analyzing the molecular electron density (ρ), as well as different fields and chemical indices derived from it. Notably, with this version, the user can compute the Non-Covalent Interaction index, the Density Overlap Regions Index, and fields related to single-spin-type molecular orbitals, such as the spin density. In addition, DensToolKit-v2 includes several programs for analyzing other less-known fields, such as the Density Matrix of order 1, the two-electron pair density function, and the Fourier transforms of these fields, that is, functionals in momentum space. A new sub-program to compute integrated properties of each of the fields released in the suite is included. A simple graphical user interface is released, which eases the visualization of ρ critical points topology. Most interestingly, this version includes a program that renders estimations of pKa's of carboxylic acids and pKb's of amines (primary, secondary, and tertiary) through refined relations between experimental data and the molecular electrostatic potential computed at isosurfaces of ρ. Details related to the speed of the programs and a few examples of how to use the program in workflows are discussed, and the source code is released through a git repository under the GPLv3 terms.
Collapse
Affiliation(s)
- J M Solano-Altamirano
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, 14 sur y Av. San Claudio, C.P. 72570 Puebla, Pue., Mexico
| | - Julio M Hernández-Pérez
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, 14 sur y Av. San Claudio, C.P. 72570 Puebla, Pue., Mexico
| | - J Sandoval-Lira
- Ingeniería en Alimentos, Universidad Tecnológica de Huejotzingo, Camino, Real San Mateo S/N, C.P. 74169 Santa Ana Xalmimilulco, Huejotzingo, Pue., Mexico
| | - J Barroso-Flores
- Centro Conjunto de Investigación en Química Sustentable UAEM-UNAM, Toluca de Lerdo 50200, Mexico
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, CDMX 04510, Mexico
| |
Collapse
|
2
|
Kim S, Park I, Kim M, Lee GS, Kim CS, Han S. Synthesis and Structure Revision of Securingine E. Org Lett 2024; 26:7166-7169. [PMID: 39159400 DOI: 10.1021/acs.orglett.4c02556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
Chemical synthesis plays a crucial role in confirming and revising the structures of natural products. Through meticulous synthetic efforts, NMR spectroscopic and single-crystal X-ray diffraction analyses, DFT calculations, and mass spectrometric investigations, we revised the structure of securingine E. The revised structure of securingine E was unambiguously confirmed by its chemical synthesis.
Collapse
Affiliation(s)
- Seoyoung Kim
- Department of Chemistry, Korea Advanced Institute of Science & Technology (KAIST), Daejeon 34141, Republic of Korea
| | - InWha Park
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Minji Kim
- Department of Biopharmaceutical Convergence, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Gyu Sung Lee
- Department of Biopharmaceutical Convergence, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Chung Sub Kim
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
- Department of Biopharmaceutical Convergence, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Sunkyu Han
- Department of Chemistry, Korea Advanced Institute of Science & Technology (KAIST), Daejeon 34141, Republic of Korea
| |
Collapse
|
3
|
Kim S, Lee HS, Han S. Transformation of (allo)securinine to (allo)norsecurinine via a molecular editing strategy. Front Chem 2024; 12:1355636. [PMID: 38318111 PMCID: PMC10839145 DOI: 10.3389/fchem.2024.1355636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 01/08/2024] [Indexed: 02/07/2024] Open
Abstract
Securinega alkaloids have intrigued chemists since the isolation of securinine in 1956. This family of natural products comprises a securinane subfamily with a piperidine substructure and norsecurinane alkaloids featuring a pyrrolidine core. From a biosynthetic perspective, the piperidine moiety in securinane alkaloids derives from lysine, whereas the pyrrolidine moiety in norsecurinane natural products originates from ornithine, marking an early biogenetic divergence. Herein, we introduce a single-atom deletion strategy that enables the late-stage conversion of securinane to norsecurinane alkaloids. Notably, for the first time, this method enabled the transformation of piperidine-based (allo)securinine into pyrrolidine-based (allo)norsecurinine. Straightforward access to norsecurinine from securinine, which can be readily extracted from the plant Flueggea suffruticosa, abundant across the Korean peninsula, holds promise for synthetic studies of norsecurinine-based oligomeric securinega alkaloids.
Collapse
Affiliation(s)
| | | | - Sunkyu Han
- Department of Chemistry, Korea Advanced Institute of Science & Technology (KAIST), Daejeon, Republic of Korea
| |
Collapse
|
4
|
Abstract
Nitroxides, also known as nitroxyl radicals, are long-lived or stable radicals with the general structure R1R2N-O•. The spin distribution over the nitroxide N and O atoms contributes to the thermodynamic stability of these radicals. The presence of bulky N-substituents R1 and R2 prevents nitroxide radical dimerization, ensuring their kinetic stability. Despite their reactivity toward various transient C radicals, some nitroxides can be easily stored under air at room temperature. Furthermore, nitroxides can be oxidized to oxoammonium salts (R1R2N═O+) or reduced to anions (R1R2N-O-), enabling them to act as valuable oxidants or reductants depending on their oxidation state. Therefore, they exhibit interesting reactivity across all three oxidation states. Due to these fascinating properties, nitroxides find extensive applications in diverse fields such as biochemistry, medicinal chemistry, materials science, and organic synthesis. This review focuses on the versatile applications of nitroxides in organic synthesis. For their use in other important fields, we will refer to several review articles. The introductory part provides a brief overview of the history of nitroxide chemistry. Subsequently, the key methods for preparing nitroxides are discussed, followed by an examination of their structural diversity and physical properties. The main portion of this review is dedicated to oxidation reactions, wherein parent nitroxides or their corresponding oxoammonium salts serve as active species. It will be demonstrated that various functional groups (such as alcohols, amines, enolates, and alkanes among others) can be efficiently oxidized. These oxidations can be carried out using nitroxides as catalysts in combination with various stoichiometric terminal oxidants. By reducing nitroxides to their corresponding anions, they become effective reducing reagents with intriguing applications in organic synthesis. Nitroxides possess the ability to selectively react with transient radicals, making them useful for terminating radical cascade reactions by forming alkoxyamines. Depending on their structure, alkoxyamines exhibit weak C-O bonds, allowing for the thermal generation of C radicals through reversible C-O bond cleavage. Such thermally generated C radicals can participate in various radical transformations, as discussed toward the end of this review. Furthermore, the application of this strategy in natural product synthesis will be presented.
Collapse
Affiliation(s)
- Dirk Leifert
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität, Corrensstrasse 40, 48149 Münster, Germany
| | - Armido Studer
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität, Corrensstrasse 40, 48149 Münster, Germany
| |
Collapse
|
5
|
He Y, Liu Q, Yang J, Zheng Z, Chai GL, Zhang X, Fan X. Oxoammonium Salt-Promoted Multifunctionalization of Saturated Cyclic Amines Based On β-Oxo Cyclic Iminium Ion Intermediates. Org Lett 2022; 24:7839-7844. [PMID: 36264018 DOI: 10.1021/acs.orglett.2c03253] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Herein we describe a convenient method for multiple C(sp3)-H bond functionalization of saturated cyclic amines through oxoammonium salt-promoted oxidation to afford a β-oxo cyclic iminium ion as a key intermediate, followed by cascade addition with thiocyanate and diverse N-, O-, and S-containing nucleophiles in the green solvent and EtOH. Notably, chiral spiro azapolyheterocycles were prepared enantioselectively (>20:1 dr, up to 99% ee) when cysteine or serine esters were used as substrates. Moreover, the concise late-stage modification of several natural product derivatives was accomplished using this method.
Collapse
Affiliation(s)
- Yan He
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Key Laboratory for Yellow River and Huai River Water Environmental Pollution Control, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Environment, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Qimeng Liu
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Key Laboratory for Yellow River and Huai River Water Environmental Pollution Control, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Environment, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Jintao Yang
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Key Laboratory for Yellow River and Huai River Water Environmental Pollution Control, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Environment, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Zhi Zheng
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Key Laboratory for Yellow River and Huai River Water Environmental Pollution Control, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Environment, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Guo-Li Chai
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Key Laboratory for Yellow River and Huai River Water Environmental Pollution Control, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Environment, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Xinying Zhang
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Key Laboratory for Yellow River and Huai River Water Environmental Pollution Control, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Environment, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Xuesen Fan
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Key Laboratory for Yellow River and Huai River Water Environmental Pollution Control, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Environment, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| |
Collapse
|
6
|
Recoba-Torres A, Cruz-Gregorio S, Quintero L, Sandoval-Lira J, Romero-Ibañez J, Sartillo-Piscil F. Selective Deconstructive Lactamization of the Indolo[2,3‐a]quinolizine Skeleton for the Total Synthesis of (+) and (‐)‐Cuscutamine. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Adriana Recoba-Torres
- Benemérita Universidad Autónoma de Puebla: Benemerita Universidad Autonoma de Puebla Chemistry MEXICO
| | - Silvano Cruz-Gregorio
- Benemérita Universidad Autónoma de Puebla: Benemerita Universidad Autonoma de Puebla Chemistry MEXICO
| | - Leticia Quintero
- Benemérita Universidad Autónoma de Puebla: Benemerita Universidad Autonoma de Puebla Chemistry MEXICO
| | - Jacinto Sandoval-Lira
- Instituto Tecnológico Superior de San Martín Texmelucan: Instituto Tecnologico Superior de San Martin Texmelucan Ingenieria ambiental MEXICO
| | - Julio Romero-Ibañez
- Benemérita Universidad Autónoma de Puebla: Benemerita Universidad Autonoma de Puebla Chemistry MEXICO
| | - Fernando Sartillo-Piscil
- Benemerita Universidad Autonoma de Puebla Chemistry 14 Sur Esq. San Claudio S/N 72570 Puebla MEXICO
| |
Collapse
|
7
|
Wang SC, Shen YT, Zhang TS, Hao WJ, Tu SJ, Jiang B. Cyclic Oxime Esters as Deconstructive Bifunctional Reagents for Cyanoalkyl Esterification of 1,6-Enynes. J Org Chem 2021; 86:15488-15497. [PMID: 34664501 DOI: 10.1021/acs.joc.1c01972] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A concise copper catalysis strategy for the addition-cyclization of cyclic oxime esters across 1,6-enynes with high stereoselectivity to generate 1-indanones bearing an all-carbon quaternary center is reported. In this process, single-electron reduction of cyclic oxime esters enables deconstructive carbon-carbon cleavage to provide a key cyanopropyl radical poised for the addition-cyclization. This reaction is redox-neutral, exhibits good functional group compatibility, and features 100% atomic utilization. This process driven by copper catalyst makes readily available cyclic oxime esters as bifunctional reagents to demonstrate convergent synthesis.
Collapse
Affiliation(s)
- Shi-Chao Wang
- School of Chemistry & Materials Science, Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou 221116, P. R. China
| | - Yi-Ting Shen
- School of Chemistry & Materials Science, Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou 221116, P. R. China
| | - Tian-Shu Zhang
- School of Materials and Chemical Engineering, Xuzhou University of Technology, Xuzhou 221018, P. R. China
| | - Wen-Juan Hao
- School of Chemistry & Materials Science, Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou 221116, P. R. China
| | - Shu-Jiang Tu
- School of Chemistry & Materials Science, Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou 221116, P. R. China
| | - Bo Jiang
- School of Chemistry & Materials Science, Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou 221116, P. R. China
| |
Collapse
|
8
|
He YG, Huang YK, Fan QQ, Zheng B, Luo YQ, Zhu XL, Shi XX. Copper(ii)-catalyzed and acid-promoted highly regioselective oxidation of tautomerizable C(sp 3)-H bonds adjacent to 3,4-dihydroisoquinolines using air (O 2) as a clean oxidant. RSC Adv 2021; 11:29702-29710. [PMID: 35479555 PMCID: PMC9040818 DOI: 10.1039/d1ra05671a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 08/30/2021] [Indexed: 12/15/2022] Open
Abstract
A mild, efficient and eco-friendly method for the oxidation of 1-Bn-DHIQs to 1-Bz-DHIQs without concomitant excessive oxidation of 1-Bz-DHIQs to 1-Bz-IQs is very important for the syntheses of 1-Bz-DHIQ alkaloids and analogues. In this article, we developed a novel Cu(ii)-catalyzed and acid-promoted highly regioselective oxidation of tautomerizable C(sp3)-H bonds adjacent to the C-1 positions of various 1-Bn-DHIQs. It was observed that when 0.2 equiv. of Cu(OAc)2·2H2O was used as the catalyst, 3.0 equiv. of AcOH was used as the additive and air (O2) was used as a clean oxidant, various 1-Bn-DHIQs could be efficiently oxidized to corresponding 1-Bz-DHIQs at 25 °C in DMSO. Especially, almost no concomitant excessive oxidation of 1-Bz-DHIQs to 1-Bz-IQs was observed during the above reaction. In addition, this method was successfully applied in the first total synthesis of the alkaloid canelillinoxine.
Collapse
Affiliation(s)
- Yun-Gang He
- Engineering Research Center of Pharmaceutical Process Chemistry of the Ministry of Education, School of Pharmacy, East China University of Science and Technology Shanghai 200237 People's Republic of China
| | - Yong-Kang Huang
- Engineering Research Center of Pharmaceutical Process Chemistry of the Ministry of Education, School of Pharmacy, East China University of Science and Technology Shanghai 200237 People's Republic of China
| | - Qi-Qi Fan
- Engineering Research Center of Pharmaceutical Process Chemistry of the Ministry of Education, School of Pharmacy, East China University of Science and Technology Shanghai 200237 People's Republic of China
| | - Bo Zheng
- Engineering Research Center of Pharmaceutical Process Chemistry of the Ministry of Education, School of Pharmacy, East China University of Science and Technology Shanghai 200237 People's Republic of China
| | - Yong-Qiang Luo
- Engineering Research Center of Pharmaceutical Process Chemistry of the Ministry of Education, School of Pharmacy, East China University of Science and Technology Shanghai 200237 People's Republic of China
| | - Xing-Liang Zhu
- Engineering Research Center of Pharmaceutical Process Chemistry of the Ministry of Education, School of Pharmacy, East China University of Science and Technology Shanghai 200237 People's Republic of China
| | - Xiao-Xin Shi
- Engineering Research Center of Pharmaceutical Process Chemistry of the Ministry of Education, School of Pharmacy, East China University of Science and Technology Shanghai 200237 People's Republic of China
| |
Collapse
|
9
|
Zuo HD, Zhu SS, Hao WJ, Wang SC, Tu SJ, Jiang B. Copper-Catalyzed Asymmetric Deconstructive Alkynylation of Cyclic Oximes. ACS Catal 2021. [DOI: 10.1021/acscatal.1c00842] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Hang-Dong Zuo
- School of Chemistry & Materials Science, Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou 221116, P. R. China
| | - Shan-Shan Zhu
- School of Chemistry & Materials Science, Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou 221116, P. R. China
| | - Wen-Juan Hao
- School of Chemistry & Materials Science, Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou 221116, P. R. China
| | - Shi-Chao Wang
- School of Chemistry & Materials Science, Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou 221116, P. R. China
| | - Shu-Jiang Tu
- School of Chemistry & Materials Science, Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou 221116, P. R. China
| | - Bo Jiang
- School of Chemistry & Materials Science, Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou 221116, P. R. China
| |
Collapse
|
10
|
Roque JB, Sarpong R, Musaev DG. Key Mechanistic Features of the Silver(I)-Mediated Deconstructive Fluorination of Cyclic Amines: Multistate Reactivity versus Single-Electron Transfer. J Am Chem Soc 2021; 143:3889-3900. [DOI: 10.1021/jacs.0c13061] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Jose B. Roque
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Richmond Sarpong
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Djamaladdin G. Musaev
- Cherry L. Emerson Center for Scientific Computation, and Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| |
Collapse
|
11
|
He Y, Yang J, Zhang X, Fan X. Selective cleavage and reconstruction of C–N/C–C bonds in saturated cyclic amines: tunable synthesis of lactams and functionalized acyclic amines. Org Chem Front 2021. [DOI: 10.1039/d1qo00689d] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Selective cleavage of C–N/C–C bonds in saturated cyclic amines for the tunable synthesis of lactams and functionalized acyclic amines under the promotion of oxoammonium salt and TBHP in the presence of different additives have been developed.
Collapse
Affiliation(s)
- Yan He
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Key Laboratory for Yellow River and Huai River Water Environmental Pollution Control, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Environment, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Jintao Yang
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Key Laboratory for Yellow River and Huai River Water Environmental Pollution Control, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Environment, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Xinying Zhang
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Key Laboratory for Yellow River and Huai River Water Environmental Pollution Control, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Environment, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Xuesen Fan
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Key Laboratory for Yellow River and Huai River Water Environmental Pollution Control, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Environment, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| |
Collapse
|
12
|
He Y, Zheng Z, Yang J, Zhang X, Fan X. Recent advances in the functionalization of saturated cyclic amines. Org Chem Front 2021. [DOI: 10.1039/d1qo00171j] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Functionalized cyclic amines are the essential structural moieties of numerous biologically active compounds. This review summarized the most recent advances in the C–H, C–N and C–C bond functionalization of saturated cyclic amines.
Collapse
Affiliation(s)
- Yan He
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug
- Key Laboratory for Yellow River and Huai River Water Environmental Pollution Control
- Ministry of Education
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals
- School of Environment
| | - Zhi Zheng
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug
- Key Laboratory for Yellow River and Huai River Water Environmental Pollution Control
- Ministry of Education
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals
- School of Environment
| | - Jintao Yang
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug
- Key Laboratory for Yellow River and Huai River Water Environmental Pollution Control
- Ministry of Education
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals
- School of Environment
| | - Xinying Zhang
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug
- Key Laboratory for Yellow River and Huai River Water Environmental Pollution Control
- Ministry of Education
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals
- School of Environment
| | - Xuesen Fan
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug
- Key Laboratory for Yellow River and Huai River Water Environmental Pollution Control
- Ministry of Education
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals
- School of Environment
| |
Collapse
|
13
|
Sartillo-Piscil F, Romero-Ibañez J, Fuentes L. Transition-Metal-Free Functionalization of Saturated and Unsaturated Amines to Bioactive Alkaloids Mediated by Sodium Chlorite. Synlett 2020. [DOI: 10.1055/a-1308-0247] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
AbstractNew approaches to the synthesis of alkaloids through the straightforward functionalization of C(sp3)–H and C(sp2)=C(sp2) bonds of simple five- and six-membered-ring N-heterocycles are highlighted. The direct functionalization of pre-existing N-heterocycles to advanced alkaloids intermediates is a chemical operation that commonly requires the intervention of transition or precious metals. Regardless the inherent unwanted waste production, the high economical cost of many transition-metal catalysts limits their use globally. Here, we account our efforts directed toward the synthesis of bioactive alkaloids under an economic and ecological fashion by using NaClO2 as the key activating or oxidizing reagent that substitutes the use of transition-metal catalysts. While undesired metal wastes are collected during the extraction process of a transition-metal-catalyzed reaction, innocuous NaCl is the commonly product waste when NaClO2 is employed in our chemical transformations. Beginning with the synthesis of 2,3-epoxyamides from allyl amines, we concluded with the functionalization of multiple and remote C(sp3)–H and C(sp3)–C(sp3) bonds in piperidine rings that enabled the preparation of important bioactive alkaloids. For the latter functionalization, a precise amount of co-oxidant reagent (NaOCl) and radical 2,2,6,6-tetramethylpiperidinyloxy (TEMPO) were needed.1 Introduction2 Direct Chemical Method for Preparing 2,3-Epoxyamides3 Dual C(sp3)–H Oxidation of Cyclic Amines to 3‑Alkoxyamine Lactams4 Electrochemical Deamination of 3-Alkoxyamine Lactams5 Direct C–H Oxidation of Piperazines and Morpholines to 2,3-Diketopiperazines and 3-Morpholinones, Respectively6 Transition-Metal-Free Triple C–H Oxidation7 Deconstructive Lactamization of Piperidines8 Conclusion
Collapse
|
14
|
He Y, Zheng Z, Liu Q, Zhang X, Fan X. Solvent-Regulated Coupling of 2-Alkynylbenzaldehydes with Cyclic Amines: Selective Synthesis of Fused N-Heterocycles and Functionalized Naphthalene Derivatives. Org Lett 2020; 22:9053-9058. [DOI: 10.1021/acs.orglett.0c03442] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yan He
- Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, Key Laboratory for Yellow River and Huai River Water Environmental Pollution Control, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Environment, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Zhi Zheng
- Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, Key Laboratory for Yellow River and Huai River Water Environmental Pollution Control, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Environment, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Qimeng Liu
- Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, Key Laboratory for Yellow River and Huai River Water Environmental Pollution Control, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Environment, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Xinying Zhang
- Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, Key Laboratory for Yellow River and Huai River Water Environmental Pollution Control, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Environment, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Xuesen Fan
- Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, Key Laboratory for Yellow River and Huai River Water Environmental Pollution Control, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Environment, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| |
Collapse
|
15
|
Wang GW, Sokolova OO, Young TA, Christodoulou EMS, Butts CP, Bower JF. Carbonylative C–C Bond Activation of Aminocyclopropanes Using a Temporary Directing Group Strategy. J Am Chem Soc 2020; 142:19006-19011. [DOI: 10.1021/jacs.0c08973] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Gang-Wei Wang
- School of Chemistry, University of Bristol, Bristol, BS8 1TS, United Kingdom
| | - Olga O. Sokolova
- School of Chemistry, University of Bristol, Bristol, BS8 1TS, United Kingdom
| | - Tom. A. Young
- Physical and Theoretical Laboratory, University of Oxford, Oxford, OX1 3QZ, United Kingdom
| | | | - Craig P. Butts
- School of Chemistry, University of Bristol, Bristol, BS8 1TS, United Kingdom
| | - John F. Bower
- School of Chemistry, University of Bristol, Bristol, BS8 1TS, United Kingdom
- Department of Chemistry, University of Liverpool, Crown Street, Liverpool, L69 7ZD, United Kingdom
| |
Collapse
|
16
|
Kim Y, Heo J, Kim D, Chang S, Seo S. Ring-opening functionalizations of unstrained cyclic amines enabled by difluorocarbene transfer. Nat Commun 2020; 11:4761. [PMID: 32958762 PMCID: PMC7506026 DOI: 10.1038/s41467-020-18557-8] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Accepted: 08/27/2020] [Indexed: 12/22/2022] Open
Abstract
Chemical synthesis based on the skeletal variation has been prolifically utilized as an attractive approach for modification of molecular properties. Given the ubiquity of unstrained cyclic amines, the ability to directly alter such motifs would grant an efficient platform to access unique chemical space. Here, we report a highly efficient and practical strategy that enables the selective ring-opening functionalization of unstrained cyclic amines. The use of difluorocarbene leads to a wide variety of multifaceted acyclic architectures, which can be further diversified to a range of distinctive homologative cyclic scaffolds. The virtue of this deconstructive strategy is demonstrated by successful modification of several natural products and pharmaceutical analogues.
Collapse
Affiliation(s)
- Youyoung Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.,Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea
| | - Joon Heo
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.,Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea
| | - Dongwook Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.,Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea
| | - Sukbok Chang
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea. .,Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea.
| | - Sangwon Seo
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea. .,Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea.
| |
Collapse
|
17
|
Chamorro‐Arenas D, Nolasco‐Hernández AA, Fuentes L, Quintero L, Sartillo‐Piscil F. Transition‐Metal‐Free Multiple Functionalization of Piperidines to 4‐Substituted and 3,4‐Disubstituted 2‐Piperidinones. Chemistry 2020; 26:4671-4676. [DOI: 10.1002/chem.201905262] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Indexed: 12/25/2022]
Affiliation(s)
- Delfino Chamorro‐Arenas
- Centro de Investigación de la Facultad de Ciencias QuímicasBenemérita Universidad Autónoma de Puebla (BUAP) 14 Sur Esq. San Claudio, Col. San Manuel 72570 Puebla México
| | - Alejandro A. Nolasco‐Hernández
- Centro de Investigación de la Facultad de Ciencias QuímicasBenemérita Universidad Autónoma de Puebla (BUAP) 14 Sur Esq. San Claudio, Col. San Manuel 72570 Puebla México
| | - Lilia Fuentes
- Centro de Investigación de la Facultad de Ciencias QuímicasBenemérita Universidad Autónoma de Puebla (BUAP) 14 Sur Esq. San Claudio, Col. San Manuel 72570 Puebla México
| | - Leticia Quintero
- Centro de Investigación de la Facultad de Ciencias QuímicasBenemérita Universidad Autónoma de Puebla (BUAP) 14 Sur Esq. San Claudio, Col. San Manuel 72570 Puebla México
| | - Fernando Sartillo‐Piscil
- Centro de Investigación de la Facultad de Ciencias QuímicasBenemérita Universidad Autónoma de Puebla (BUAP) 14 Sur Esq. San Claudio, Col. San Manuel 72570 Puebla México
| |
Collapse
|
18
|
Zhang JW, Wang YR, Pan JH, He YH, Yu W, Han B. Deconstructive Oxygenation of Unstrained Cycloalkanamines. Angew Chem Int Ed Engl 2020; 59:3900-3904. [PMID: 31869508 DOI: 10.1002/anie.201914623] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 12/18/2019] [Indexed: 12/20/2022]
Abstract
A deconstructive oxygenation of unstrained primary cycloalkanamines has been developed for the first time using an auto-oxidative aromatization promoted C(sp3 )-C(sp3 ) bond cleavage strategy. This metal-free method involves the substitution reaction of cycloalkanamines with hydrazonyl chlorides and subsequent auto-oxidative annulation to in situ generate pre-aromatics, followed by N-radical-promoted ring-opening and further oxygenation by 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO) and m-cholorperoxybenzoic acid (mCPBA). Consequently, a series of 1,2,4-triazole-containing acyclic carbonyl compounds were efficiently produced. This protocol features a one-pot operation, mild reaction conditions, high regioselectivity and ring-opening efficiency, broad substrate scope, and is compatible with alkaloids, osamines, and peptides, as well as steroids.
Collapse
Affiliation(s)
- Jian-Wu Zhang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Yuan-Rui Wang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Jia-Hao Pan
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Yi-Heng He
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Wei Yu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Bing Han
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China
| |
Collapse
|
19
|
Vázquez-Amaya LY, Quintero L, Rodrı Guez-Molina B, Sartillo-Piscil F. Transition-Metal-Free Total Synthesis and Revision of the Absolute Configuration of Pipermethystine. J Org Chem 2020; 85:3949-3953. [PMID: 31994875 DOI: 10.1021/acs.joc.9b03218] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Starting from 3-hydroxy piperidines, a novel transition-metal-free strategy to 5-hydroxy-5,6-dihydro-2(1H)pyridones is reported. This unprecedented approach, which provides a practical, economical, and ecofriendly alternative to either the classical ring-closing metathesis of N-homoallyl-unsaturated amides or the dehydrogenation of amides, occurs by means of a triple C-H functionalization of three unreactive piperidine sp3 carbons. The completion of the total synthesis revealed that the natural levo-isomer possesses the R absolute configuration, not S.
Collapse
Affiliation(s)
- Laura Y Vázquez-Amaya
- Centro de Investigación de la Facultad de Ciencias Quı́micas, Benemérita Universidad Autónoma de Puebla (BUAP), 14 Sur Esq. San Claudio, Col. San Manuel, Puebla 72570, México
| | - Leticia Quintero
- Centro de Investigación de la Facultad de Ciencias Quı́micas, Benemérita Universidad Autónoma de Puebla (BUAP), 14 Sur Esq. San Claudio, Col. San Manuel, Puebla 72570, México
| | - Braulio Rodrı Guez-Molina
- Instituto de Quı́mica, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, Ciudad de México 04510, México
| | - Fernando Sartillo-Piscil
- Centro de Investigación de la Facultad de Ciencias Quı́micas, Benemérita Universidad Autónoma de Puebla (BUAP), 14 Sur Esq. San Claudio, Col. San Manuel, Puebla 72570, México
| |
Collapse
|
20
|
The effect of a double n(O) → π∗(C = O) intramolecular interaction on the stability of 3-nitrophthalic acid. Struct Chem 2020. [DOI: 10.1007/s11224-019-01399-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
21
|
Zhang J, Wang Y, Pan J, He Y, Yu W, Han B. Deconstructive Oxygenation of Unstrained Cycloalkanamines. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201914623] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Jian‐Wu Zhang
- State Key Laboratory of Applied Organic Chemistry College of Chemistry and Chemical Engineering Lanzhou University Lanzhou 730000 P. R. China
| | - Yuan‐Rui Wang
- State Key Laboratory of Applied Organic Chemistry College of Chemistry and Chemical Engineering Lanzhou University Lanzhou 730000 P. R. China
| | - Jia‐Hao Pan
- State Key Laboratory of Applied Organic Chemistry College of Chemistry and Chemical Engineering Lanzhou University Lanzhou 730000 P. R. China
| | - Yi‐Heng He
- State Key Laboratory of Applied Organic Chemistry College of Chemistry and Chemical Engineering Lanzhou University Lanzhou 730000 P. R. China
| | - Wei Yu
- State Key Laboratory of Applied Organic Chemistry College of Chemistry and Chemical Engineering Lanzhou University Lanzhou 730000 P. R. China
| | - Bing Han
- State Key Laboratory of Applied Organic Chemistry College of Chemistry and Chemical Engineering Lanzhou University Lanzhou 730000 P. R. China
| |
Collapse
|