1
|
Kurylenko O, Palusczak A, Luzhetskyy A, Rebets Y. An Improved Transformation-Associated Recombination Cloning Approach for Direct Capturing of Natural Product Biosynthetic Gene Clusters. Microb Biotechnol 2024; 17:e70067. [PMID: 39651843 PMCID: PMC11626649 DOI: 10.1111/1751-7915.70067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 11/21/2024] [Accepted: 11/24/2024] [Indexed: 12/12/2024] Open
Abstract
The phylum Actinomycetota and genus Streptomyces in particular are the major source for discovery of natural products with diverse chemical structures and a variety of biological activities. Genes encoding biosynthetic pathways for bacterial natural products are grouped together into biosynthetic gene clusters (BGCs). The size of a typical actinobacterial BGC may range from 10 kb to 200 kb, which makes their cloning for heterologous expression a challenging task. Various DNA cloning and assembly methods have been established for capturing BGCs. Among them, the transformation-associated recombination (TAR) in Saccharomyces cerevisiae remains one of the most cost-effective, accessible, customisable and precise approaches. However, the drawback of TAR cloning is a need for intensive screening of clones in order to identify one carrying the BGC. In this study, we report a further development of the TAR cloning approach by introducing the direct selection of colonies with BGC of interest based on the yeast killer phenomenon. For this, a new TAR cloning vector system was constructed and the strategy was validated by successful cloning of chelocardin (35 kb) BGC from Amycolatopsis sulphurea and daptomycin BGC (67 kb) from Streptomyces filamentosus. Both BGCs were functionally expressed in a heterologous host, resulting in the production of the corresponding antibiotics. The proposed approach could be widely applied for precise direct cloning of BGCs from the representatives of phylum Actinomycetota and easily adopted for other bacteria.
Collapse
Affiliation(s)
- Olena Kurylenko
- Explogen LLCLvivUkraine
- German‐Ukrainian Core of Excellence in Natural Products Research (CENtR)LvivUkraine
| | - Anja Palusczak
- Pharmazeutische BiotechnologieUniversität des SaarlandesSaarbrückenGermany
| | - Andriy Luzhetskyy
- Pharmazeutische BiotechnologieUniversität des SaarlandesSaarbrückenGermany
| | - Yuriy Rebets
- Explogen LLCLvivUkraine
- German‐Ukrainian Core of Excellence in Natural Products Research (CENtR)LvivUkraine
| |
Collapse
|
2
|
Hamchand R, Wang K, Song D, Palm NW, Crawford JM. Mucosal sugars delineate pyrazine vs pyrazinone autoinducer signaling in Klebsiella oxytoca. Nat Commun 2024; 15:8902. [PMID: 39406708 PMCID: PMC11480411 DOI: 10.1038/s41467-024-53185-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 10/03/2024] [Indexed: 10/18/2024] Open
Abstract
Virulent Klebsiella oxytoca strains are associated with gut and lung pathologies, yet our understanding of the molecular signals governing pathogenesis remains limited. Here, we characterized a family of K. oxytoca pyrazine and pyrazinone autoinducers and explored their roles in microbial and host signaling. We identified the human mucin capping sugar Neu5Ac as a selective elicitor of leupeptin, a protease inhibitor prevalent in clinical lung isolates of K. oxytoca, and leupeptin-derived pyrazinone biosynthesis. Additionally, we uncovered a separate pyrazine pathway, regulated by general carbohydrate metabolism, derived from a broadly conserved PLP-dependent enzyme. While both pyrazine and pyrazinone signaling induce iron acquisition responses, including enterobactin biosynthesis, pyrazinone signaling enhances yersiniabactin virulence factor production and selectively activates the proinflammatory human histamine receptor H4 (HRH4). Our findings suggest that the availability of specific carbohydrates delineates distinct autoinducer pathways in K. oxytoca that may have differential effects on bacterial virulence and host immune responses.
Collapse
Affiliation(s)
- Randy Hamchand
- Department of Chemistry, Yale University, New Haven, CT, USA
- Institute of Biomolecular Design & Discovery, Yale University, West Haven, CT, USA
| | - Kevin Wang
- Institute of Biomolecular Design & Discovery, Yale University, West Haven, CT, USA
| | - Deguang Song
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Noah W Palm
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Jason M Crawford
- Department of Chemistry, Yale University, New Haven, CT, USA.
- Institute of Biomolecular Design & Discovery, Yale University, West Haven, CT, USA.
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
3
|
Lacey HJ, Chen R, Vuong D, Lacey E, Rutledge PJ, Chooi YH, Piggott AM, Booth TJ. Resorculins: hybrid polyketide macrolides from Streptomyces sp. MST-91080. Org Biomol Chem 2023; 21:2531-2538. [PMID: 36876905 DOI: 10.1039/d2ob02332f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
Fourteen-membered macrolides are a class of compounds with significant clinical value as antibacterial agents. As part of our ongoing investigation into the metabolites of Streptomyces sp. MST-91080, we report the discovery of resorculins A and B, unprecedented 3,5-dihydroxybenzoic acid (α-resorcylic acid)-containing 14-membered macrolides. We sequenced the genome of MST-91080 and identified the putative resorculin biosynthetic gene cluster (rsn BGC). The rsn BGC is hybrid of type I and type III polyketide synthases. Bioinformatic analysis revealed that the resorculins are relatives of known hybrid polyketides: kendomycin and venemycin. Resorculin A exhibited antibacterial activity against Bacillus subtilis (MIC 19.8 μg mL-1), while resorculin B showed cytotoxic activity against the NS-1 mouse myeloma cell line (IC50 3.6 μg mL-1).
Collapse
Affiliation(s)
- Heather J Lacey
- Microbial Screening Technologies, Smithfield, NSW 2164, Australia
- School of Chemistry, The University of Sydney, NSW 2006, Australia
| | - Rachel Chen
- Microbial Screening Technologies, Smithfield, NSW 2164, Australia
| | - Daniel Vuong
- Microbial Screening Technologies, Smithfield, NSW 2164, Australia
| | - Ernest Lacey
- Microbial Screening Technologies, Smithfield, NSW 2164, Australia
- School of Natural Sciences, Macquarie University, NSW 2109, Australia
| | - Peter J Rutledge
- School of Chemistry, The University of Sydney, NSW 2006, Australia
| | - Yit-Heng Chooi
- School of Molecular Sciences, The University of Western Australia, Perth, WA 6009, Australia.
| | - Andrew M Piggott
- School of Natural Sciences, Macquarie University, NSW 2109, Australia
| | - Thomas J Booth
- School of Molecular Sciences, The University of Western Australia, Perth, WA 6009, Australia.
| |
Collapse
|
4
|
Okoth DA, Hug JJ, Garcia R, Müller R. Discovery, Biosynthesis and Biological Activity of a Succinylated Myxochelin from the Myxobacterial Strain MSr12020. Microorganisms 2022; 10:microorganisms10101959. [PMID: 36296235 PMCID: PMC9611931 DOI: 10.3390/microorganisms10101959] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 09/25/2022] [Accepted: 09/27/2022] [Indexed: 11/07/2022] Open
Abstract
Myxobacteria feature unique biological characteristics, including their capability to glide on the surface, undergo different multicellular developmental stages and produce structurally unique natural products such as the catecholate-type siderophores myxochelins A and B. Herein, we report the isolation, structure elucidation and a proposed biosynthesis of the new congener myxochelin B-succinate from the terrestrial myxobacterial strain MSr12020, featuring a succinyl decoration at its primary amine group. Myxochelin-B-succinate exhibited antibacterial growth inhibition and moderate cytotoxic activity against selected human cancer cell lines. This unique chemical modification of myxochelin B might provide interesting insights for future microbiological studies to understand the biological function and biosynthesis of secondary metabolite succinylation.
Collapse
Affiliation(s)
- Dorothy A. Okoth
- Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Department of Microbial Natural Products, Campus E8 1, Saarland University, 66123 Saarbrücken, Germany
- Department of Pharmacy, Saarland University, 66123 Saarbrücken, Germany
- German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, 38124 Braunschweig, Germany
- Helmholtz International Labs, Department of Microbial Natural Products, Campus E8 1, Saarland University, 66123 Saarbrücken, Germany
- Department of Chemistry, School of Physical and Biological Sciences, Main campus, Maseno University, Maseno P.O. Box 333-40105, Kenya
| | - Joachim J. Hug
- Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Department of Microbial Natural Products, Campus E8 1, Saarland University, 66123 Saarbrücken, Germany
- Department of Pharmacy, Saarland University, 66123 Saarbrücken, Germany
- German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, 38124 Braunschweig, Germany
- Helmholtz International Labs, Department of Microbial Natural Products, Campus E8 1, Saarland University, 66123 Saarbrücken, Germany
| | - Ronald Garcia
- Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Department of Microbial Natural Products, Campus E8 1, Saarland University, 66123 Saarbrücken, Germany
- Department of Pharmacy, Saarland University, 66123 Saarbrücken, Germany
- German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, 38124 Braunschweig, Germany
- Helmholtz International Labs, Department of Microbial Natural Products, Campus E8 1, Saarland University, 66123 Saarbrücken, Germany
| | - Rolf Müller
- Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Department of Microbial Natural Products, Campus E8 1, Saarland University, 66123 Saarbrücken, Germany
- Department of Pharmacy, Saarland University, 66123 Saarbrücken, Germany
- German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, 38124 Braunschweig, Germany
- Helmholtz International Labs, Department of Microbial Natural Products, Campus E8 1, Saarland University, 66123 Saarbrücken, Germany
- Correspondence:
| |
Collapse
|
5
|
Shuai H, Myronovskyi M, Rosenkränzer B, Paulus C, Nadmid S, Stierhof M, Kolling D, Luzhetskyy A. Novel Biosynthetic Route to the Isoquinoline Scaffold. ACS Chem Biol 2022; 17:598-608. [PMID: 35253423 DOI: 10.1021/acschembio.1c00869] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Isoquinoline alkaloids are a large class of natural products with a broad range of biological activities, including antimicrobial, antitumor, antileukemic and anti-inflammatory properties. Although mostly found in plants, isoquinolines can also be found in the extracts of bacterial and fungal cultures. Regardless of the origin, most of the reported biosynthetic routes for isoquinolines use tyrosine as a main biosynthetic precursor. Here, we report the identification of a new biosynthetic pathway for production of isoquinolinequinone alkaloid mansouramycin D in Streptomyces albus Del14. Using feeding, mass spectrometry, and nuclear magnetic resonance spectroscopy, we demonstrate that tryptophan serves instead of tyrosine as a main mansouramycin biosynthetic precursor. The biosynthetic genes were identified in the chromosome of the strain by using gene inactivation and heterologous expression. Insights into the biosynthesis of mansouramycins are also presented.
Collapse
Affiliation(s)
- Hui Shuai
- Department of Pharmaceutical Biotechnology, University of Saarland, Campus Building C2 3, 66123 Saarbruecken, Germany
| | - Maksym Myronovskyi
- Department of Pharmaceutical Biotechnology, University of Saarland, Campus Building C2 3, 66123 Saarbruecken, Germany
| | - Birgit Rosenkränzer
- Department of Pharmaceutical Biotechnology, University of Saarland, Campus Building C2 3, 66123 Saarbruecken, Germany
| | - Constanze Paulus
- Department of Pharmaceutical Biotechnology, University of Saarland, Campus Building C2 3, 66123 Saarbruecken, Germany
| | - Suvd Nadmid
- Department of Pharmaceutical Biotechnology, University of Saarland, Campus Building C2 3, 66123 Saarbruecken, Germany
| | - Marc Stierhof
- Department of Pharmaceutical Biotechnology, University of Saarland, Campus Building C2 3, 66123 Saarbruecken, Germany
| | - Dominik Kolling
- Department of Pharmaceutical Biotechnology, University of Saarland, Campus Building C2 3, 66123 Saarbruecken, Germany
| | - Andriy Luzhetskyy
- Department of Pharmaceutical Biotechnology, University of Saarland, Campus Building C2 3, 66123 Saarbruecken, Germany
- Department of Metabolic Engineering of Actinomycetes, Helmholtz-Institute for Pharmaceutical Research Saarland, Campus Building E8 1, 66123 Saarbruecken, Germany
| |
Collapse
|
6
|
Kuhl M, Rückert C, Gläser L, Beganovic S, Luzhetskyy A, Kalinowski J, Wittmann C. Microparticles enhance the formation of seven major classes of natural products in native and metabolically engineered actinobacteria through accelerated morphological development. Biotechnol Bioeng 2021; 118:3076-3093. [PMID: 33974270 DOI: 10.1002/bit.27818] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 04/17/2021] [Accepted: 04/30/2021] [Indexed: 11/09/2022]
Abstract
Actinobacteria provide a rich spectrum of bioactive natural products and therefore display an invaluable source towards commercially valuable pharmaceuticals and agrochemicals. Here, we studied the use of inorganic talc microparticles (hydrous magnesium silicate, 3MgO·4SiO2 ·H2 O, 10 µm) as a general supplement to enhance natural product formation in this important class of bacteria. Added to cultures of recombinant Streptomyces lividans, talc enhanced production of the macrocyclic peptide antibiotic bottromycin A2 and its methylated derivative Met-bottromycin A2 up to 109 mg L-1 , the highest titer reported so far. Hereby, the microparticles fundamentally affected metabolism. With 10 g L-1 talc, S. lividans grew to 40% smaller pellets and, using RNA sequencing, revealed accelerated morphogenesis and aging, indicated by early upregulation of developmental regulator genes such as ssgA, ssgB, wblA, sigN, and bldN. Furthermore, the microparticles re-balanced the expression of individual bottromycin cluster genes, resulting in a higher macrocyclization efficiency at the level of BotAH and correspondingly lower levels of non-cyclized shunt by-products, driving the production of mature bottromycin. Testing a variety of Streptomyces species, talc addition resulted in up to 13-fold higher titers for the RiPPs bottromycin and cinnamycin, the alkaloid undecylprodigiosin, the polyketide pamamycin, the tetracycline-type oxytetracycline, and the anthramycin-analogs usabamycins. Moreover, talc addition boosted production in other actinobacteria, outside of the genus of Streptomyces: vancomycin (Amycolatopsis japonicum DSM 44213), teicoplanin (Actinoplanes teichomyceticus ATCC 31121), and the angucyclinone-type antibiotic simocyclinone (Kitasatospora sp.). For teicoplanin, the microparticles were even crucial to activate production. Taken together, the use of talc was beneficial in 75% of all tested cases and optimized natural and heterologous hosts forming the substance of interest with clusters under native and synthetic control. Given its simplicity and broad benefits, microparticle-supplementation appears as an enabling technology in natural product research of these most important microbes.
Collapse
Affiliation(s)
- Martin Kuhl
- Institute of Systems Biotechnology, Saarland University, Saarbrücken, Germany
| | | | - Lars Gläser
- Institute of Systems Biotechnology, Saarland University, Saarbrücken, Germany
| | - Selma Beganovic
- Institute of Systems Biotechnology, Saarland University, Saarbrücken, Germany
| | - Andriy Luzhetskyy
- Department of Pharmaceutical Biotechnology, Saarland University, Saarbrücken, Germany
| | - Jörn Kalinowski
- Center for Biotechnology, Bielefeld University, Bielefeld, Germany
| | - Christoph Wittmann
- Institute of Systems Biotechnology, Saarland University, Saarbrücken, Germany
| |
Collapse
|
7
|
Hahn F, Guth FM. The ambruticins and jerangolids - chemistry, biology and chemoenzymatic synthesis of potent antifungal drug candidates. Nat Prod Rep 2020; 37:1300-1315. [PMID: 32420573 DOI: 10.1039/d0np00012d] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Covering: 1977 to 2020The ambruticins and jerangolids are myxobacterial reduced polyketides, which are produced via highly unusual biosynthetic pathways containing a plethora of non-canonical enzymatic transformations. Since the discovery of the first congeners in the late 1970s, they have been in the focus of drug development due to their good antifungal activity and low toxicity in mammals, which result from interaction with an unusual innercellular target in fungi. Despite significant efforts, which have led to the development of various total syntheses, their structural complexity has yet avoided full exploitation of their pharmacological potential. This article summarises biological, total and semisynthetic as well as biosynthetic studies on both compounds. An outlook on the biosynthesis-based approaches to them and their derivatives is presented. Due to the structural and biosynthetic characteristics of the ambruticins and jerangolids, chemoenzymatic processes that make use of their biosynthetic pathway enzymes are particularly promising to gain efficient access to derivative libraries for structure activity relationship studies.
Collapse
Affiliation(s)
- Frank Hahn
- Department of Chemistry, University of Bayreuth, 51427 Bayreuth, Germany.
| | | |
Collapse
|
8
|
Tan B, Zhang Q, Zhu Y, Jin H, Zhang L, Chen S, Zhang C. Deciphering Biosynthetic Enzymes Leading to 4-Chloro-6-Methyl-5,7-Dihydroxyphenylglycine, a Non-Proteinogenic Amino Acid in Totopotensamides. ACS Chem Biol 2020; 15:766-773. [PMID: 32118401 DOI: 10.1021/acschembio.9b00997] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Totopotensamide A (TPM A, 1) is a polyketide-peptide glycoside featuring a nonproteinogenic amino acid 4-chloro-6-methyl-5,7-dihydroxyphenylglycine (ClMeDPG). The biosynthetic gene cluster (BGC) of totopotensamides (tot) was previously activated by manipulating transcription regulators in marine-derived Streptomyces pactum SCSIO 02999. Herein, we report the heterologous expression of the tot BGC in Streptomyces lividans TK64, and the production improvement of TPM A via in-frame deletion of two negative regulators totR5 and totR3. The formation of ClMeDPG was proposed to require six enzymes, including four enzymes TotC1C2C3C4 for 3,5-dihydroxyphenylglycine (DPG) biosynthesis and two modifying enzymes TotH (halogenase) and TotM (methyltransferase). Heterologous expression of the four-gene cassette totC1C2C3C4 led to production of 3,5-dihydroxyphenylglyoxylate (DPGX). The aminotransferase TotC4 was biochemically characterized to convert DPGX to S-DPG. Inactivation of totH led to a mutant accumulated a deschloro derivative TPM H1, and the ΔtotHi/ΔtotMi double mutant afforded two deschloro-desmethyl products TPMs HM1 and HM2. A hydrolysis experiment demonstrated that the DPG moiety in TPM HM2 was S-DPG, consistent with that of the TotC4 enzymatic product. These results confirmed that TotH and TotM were responsible for ClMeDPG biosynthesis. Bioinformatics analysis indicated that both TotH and TotM might act on thiolation domain-tethered substrates. This study provided evidence for deciphering enzymes leading to ClMeDPG in TPM A, and unambiguously determined its absolute configuration as S.
Collapse
Affiliation(s)
- Bin Tan
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, Institutions of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
- University of the Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China
| | - Qingbo Zhang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, Institutions of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
| | - Yiguang Zhu
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, Institutions of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
| | - Hongbo Jin
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, Institutions of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
- University of the Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China
| | - Liping Zhang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, Institutions of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
| | - Siqiang Chen
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, Institutions of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
- University of the Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China
| | - Changsheng Zhang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, Institutions of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
| |
Collapse
|
9
|
Miao HJ, Wang LL, Han HB, Zhao YD, Wang QL, Bu ZW. Regio- and diastereoselective dearomatizations of N-alkyl activated azaarenes: the maximization of the reactive sites. Chem Sci 2019; 11:1418-1424. [PMID: 34123266 PMCID: PMC8147894 DOI: 10.1039/c9sc04880d] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
An unprecedented base-promoted multi-component one-pot dearomatization of N-alkyl activated azaarenes was developed, which enabled the synthesis of complex and diverse bridged cyclic polycycles with multiple stereocenters in a highly regio- and diastereoselective manner. Besides, we realized the step-controlled dearomative bi- and trifunctionalization of quinolinium salts. These transformations not only achieved the maximization of the reaction sites of pyridinium, quinolinium and isoquinolinium salts to enhance structural complexity and diversity, but also opened up a new reaction mode of these N-activated azaarenes. A unique feature of this strategy is the use of easily accessible and bench-stable N-alkyl activated azaarenes to provide maximum reactive sites for dearomative cascade cyclizations. In addition, the salient characteristics including high synthetic efficiency, short reaction time, mild conditions and simple operation made this strategy particularly attractive. An unprecedented base-promoted multi-component one-pot dearomatization of N-alkyl activated azaarenes was developed to construct complex and diverse bridged cyclic polycycles with multiple stereocenters in a highly regio- and diastereoselective manner.![]()
Collapse
Affiliation(s)
- Hong-Jie Miao
- College of Chemistry and Chemical Engineering, Henan University Kaifeng 475004 China
| | - Le-Le Wang
- College of Chemistry and Chemical Engineering, Henan University Kaifeng 475004 China
| | - Hua-Bin Han
- College of Chemistry and Chemical Engineering, Henan University Kaifeng 475004 China
| | - Yong-De Zhao
- College of Chemistry and Chemical Engineering, Henan University Kaifeng 475004 China .,Institute of Chemistry, Henan Academy of Sciences Zhengzhou 450002 P. R. China
| | - Qi-Lin Wang
- College of Chemistry and Chemical Engineering, Henan University Kaifeng 475004 China
| | - Zhan-Wei Bu
- College of Chemistry and Chemical Engineering, Henan University Kaifeng 475004 China
| |
Collapse
|
10
|
Hill RA, Sutherland A. Hot off the press. Nat Prod Rep 2019. [DOI: 10.1039/c9np90041a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A personal selection of 32 recent papers is presented covering various aspects of current developments in bioorganic chemistry and novel natural products such as phlegmadine A from Phlegmariurus phlegmaria.
Collapse
|