1
|
Kartouzian A, Cameron RP. Unlocking the hidden dimension: power of chirality in scientific exploration. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2024; 382:20230321. [PMID: 39246075 DOI: 10.1098/rsta.2023.0321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/04/2024] [Accepted: 04/18/2024] [Indexed: 09/10/2024]
Abstract
In the boundless landscape of scientific exploration, there exists a hidden, yet easily accessible, dimension that has often not only intrigued and puzzled researchers but also provided the key. This dimension is chirality, the property that describes the handedness of objects. The influence of chirality extends across diverse fields of study from the parity violation in electroweak interactions to the extremely large macroscopic systems such as galaxies. In this opinion piece, we will delve into the power of chirality in scientific exploration by examining some examples that, at different scales, demonstrate its role as a key to a better understanding of our world. Our goal is to incite researchers from all fields to seek, implement and utilize chirality in their research. Going this extra mile might be more rewarding than it seems at first glance, in particular with regard to the increasing demand for new functional materials in response to the contemporary scientific and technological challenges we are facing. This article is part of the theme issue 'Celebrating the 15th anniversary of the Royal Society Newton International Fellowship'.
Collapse
Affiliation(s)
- Aras Kartouzian
- Department of Chemistry and Catalysis Research Center, TUM School of Natural Sciences, Technical University of Munich, Lichtenbergstr. 4 , Garching bei München 85748, Germany
| | - Robert P Cameron
- SUPA and Department of Physics, University of Strathclyde , Glasgow G4 0NG, UK
| |
Collapse
|
2
|
Hu W, Zhang Z, Xiong W, Li M, Yan Y, Yang C, Zou Q, Lü JT, Tian H, Guo X. Direct flipping dynamics and quantized enrichment of chirality at single-molecule resolution. SCIENCE ADVANCES 2024; 10:eado1125. [PMID: 38996014 PMCID: PMC11244442 DOI: 10.1126/sciadv.ado1125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 06/06/2024] [Indexed: 07/14/2024]
Abstract
Chirality is an important aspect of nature, and numerous macroscopic methods have been developed to understand and control chirality. For the chiral tertiary amines, their flexible flipping process makes it possible to achieve high chiral controllability without bond formation and breaking. Here, we present a type of stable chiral single-molecule devices formed by tertiary amines, using graphene-molecule-graphene single-molecule junctions. These single-molecule devices allow real-time, in situ, and long-time measurements of the flipping process of an individual chiral nitrogen center with high temporal resolution. Temperature- and bias voltage-dependent experiments, along with theoretical investigations, revealed diverse chiral intermediates, indicating the regulation of the flipping dynamics by energy-related factors. Angle-dependent measurements further demonstrated efficient enrichment of chiral states using linearly polarized light by a symmetry-related factor. This approach offers a reliable means for understanding the chirality's origin, elucidating microscopic chirality regulation mechanisms, and aiding in the design of effective drugs.
Collapse
Affiliation(s)
- Weilin Hu
- Beijing National Laboratory for Molecular Sciences, National Biomedical Imaging Center, College of Chemistry and Molecular Engineering, Peking University, 292 Chengfu Road, Haidian District, Beijing 100871, P. R. China
| | - Zhiyun Zhang
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China
| | - Wan Xiong
- School of Physics, Institute for Quantum Science and Engineering and Wuhan National High Magnetic Field Center, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, P. R. China
| | - Mingyao Li
- Beijing National Laboratory for Molecular Sciences, National Biomedical Imaging Center, College of Chemistry and Molecular Engineering, Peking University, 292 Chengfu Road, Haidian District, Beijing 100871, P. R. China
| | - Yong Yan
- Beijing National Laboratory for Molecular Sciences, National Biomedical Imaging Center, College of Chemistry and Molecular Engineering, Peking University, 292 Chengfu Road, Haidian District, Beijing 100871, P. R. China
- Center for Molecular Systems and Organic Devices, Key Laboratory for Organic Electronics and Information Displays and Institute of Advanced Materials, Nanjing University of Posts and Telecommunications, Nanjing 210023, P. R. China
| | - Caiyao Yang
- Beijing National Laboratory for Molecular Sciences, National Biomedical Imaging Center, College of Chemistry and Molecular Engineering, Peking University, 292 Chengfu Road, Haidian District, Beijing 100871, P. R. China
| | - Qi Zou
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China
| | - Jing-Tao Lü
- School of Physics, Institute for Quantum Science and Engineering and Wuhan National High Magnetic Field Center, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, P. R. China
| | - He Tian
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China
| | - Xuefeng Guo
- Beijing National Laboratory for Molecular Sciences, National Biomedical Imaging Center, College of Chemistry and Molecular Engineering, Peking University, 292 Chengfu Road, Haidian District, Beijing 100871, P. R. China
- Center of Single-Molecule Sciences, Institute of Modern Optics, Frontiers Science Center for New Organic Matter, College of Electronic Information and Optical Engineering, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin 300350, P. R. China
| |
Collapse
|
3
|
Liu Y, Xing P. Circularly Polarized Light Responsive Materials: Design Strategies and Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2300968. [PMID: 36934302 DOI: 10.1002/adma.202300968] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/09/2023] [Indexed: 06/18/2023]
Abstract
Circularly polarized light (CPL) with the end of optical vector traveling along circumferential trajectory shows left- and right-handedness, which transmits chiral information to materials via complicated CPL-matter interactions. Materials with circular dichroism respond to CPL illumination selectively with differential outputs that can be used to design novel photodetectors. Racemic or achiral compounds under CPL go through photodestruction, photoresolution, and asymmetric synthesis pathways to generate enantiomeric bias and optical activity. By this strategy, helical polymers and chiral inorganic plasmonic nanostructures are synthesized directly, and their intramolecular folding and subsequent self-assembly are photomodulable as well. In the aggregated state of self-assembly and liquid crystal phase, helical sense of the dynamic molecular packing is sensitive to enantiomeric bias brought by CPL, enabling the chiral amplification to supramolecular scale. In this review, the application-guided design strategies of CPL-responsive materials are aimed to be systematically summarized and discussed. Asymmetric synthesis, resolution, and property-modulation of small organic compounds, polymers, inorganic nanoparticles, supramolecular assemblies and liquid crystals are highlighted based on the important developments during the last decades. Besides, applications of light-matter interactions including CPL detection and biomedical applications are also referred.
Collapse
Affiliation(s)
- Yiping Liu
- Key Laboratory of Colloid and Interface Chemistry of Ministry of Education and School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, P. R. China
| | - Pengyao Xing
- Key Laboratory of Colloid and Interface Chemistry of Ministry of Education and School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, P. R. China
| |
Collapse
|
4
|
Hao C, Wang G, Chen C, Xu J, Xu C, Kuang H, Xu L. Circularly Polarized Light-Enabled Chiral Nanomaterials: From Fabrication to Application. NANO-MICRO LETTERS 2023; 15:39. [PMID: 36652114 PMCID: PMC9849638 DOI: 10.1007/s40820-022-01005-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 12/10/2022] [Indexed: 05/31/2023]
Abstract
For decades, chiral nanomaterials have been extensively studied because of their extraordinary properties. Chiral nanostructures have attracted a lot of interest because of their potential applications including biosensing, asymmetric catalysis, optical devices, and negative index materials. Circularly polarized light (CPL) is the most attractive source for chirality owing to its high availability, and now it has been used as a chiral source for the preparation of chiral matter. In this review, the recent progress in the field of CPL-enabled chiral nanomaterials is summarized. Firstly, the recent advancements in the fabrication of chiral materials using circularly polarized light are described, focusing on the unique strategies. Secondly, an overview of the potential applications of chiral nanomaterials driven by CPL is provided, with a particular emphasis on biosensing, catalysis, and phototherapy. Finally, a perspective on the challenges in the field of CPL-enabled chiral nanomaterials is given.
Collapse
Affiliation(s)
- Changlong Hao
- International Joint Research Laboratory for Biointerface and Biodetection, State Key Lab of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, People's Republic of China
| | - Gaoyang Wang
- International Joint Research Laboratory for Biointerface and Biodetection, State Key Lab of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, People's Republic of China
| | - Chen Chen
- International Joint Research Laboratory for Biointerface and Biodetection, State Key Lab of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, People's Republic of China
| | - Jun Xu
- Department of Neurology, China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, No.119 South 4Th Ring West Road, Beijing, 100070, People's Republic of China
| | - Chuanlai Xu
- International Joint Research Laboratory for Biointerface and Biodetection, State Key Lab of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, People's Republic of China
| | - Hua Kuang
- International Joint Research Laboratory for Biointerface and Biodetection, State Key Lab of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, People's Republic of China
| | - Liguang Xu
- International Joint Research Laboratory for Biointerface and Biodetection, State Key Lab of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, People's Republic of China.
| |
Collapse
|
5
|
Liu Y, Wang X, Yu J, Guo X. Chiral separation and molecular simulation study of six antihistamine agents on a coated cellulose tri-(3,5-dimethylphenycarbamate) column (Chiralcel OD-RH) and its recognition mechanisms. Electrophoresis 2021; 42:1461-1472. [PMID: 33905565 DOI: 10.1002/elps.202100033] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/10/2021] [Accepted: 04/05/2021] [Indexed: 11/07/2022]
Abstract
Enantiomeric separation of six antihistamine agents was first systematically investigated on a cellulose-based chiral stationary phase (CSP), that is, cellulose tris-(3,5-dimethyl phenyl carbamate) (Chiralcel OD-RH), under the reversed-phase mode. Orphenadrine, meclizine, terfenadine, dioxopromethazine, and carbinoxamine enantiomers were completely separated under the optimized mobile phase conditions with resolutions of 5.02, 1.93, 1.68, 1.67, and 1.54, respectively. Mequitazine was partially separated with a resolution of 0.77. The influences of type and concentration of buffer salt, the pH of buffer solution, and the type and ratio of organic modifier on the chiral separation were evaluated and optimized. For a better insight into the enantiorecognition mechanisms, molecular docking was carried out via the Autodock software. The lowest binding energy and the optimal conformations of the analytes/CSP complexes were supplied, and the mechanisms of chiral recognition were determined. According to the results, the key interactions for the chiral recognition of these six analytes on CDMPC were π-π interactions, hydrophobic interactions, hydrogen bond interactions, and some special interactions.
Collapse
Affiliation(s)
- Yanru Liu
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning Province, P. R. China
| | - Xia Wang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning Province, P. R. China
| | - Jia Yu
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning Province, P. R. China
| | - Xingjie Guo
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning Province, P. R. China
| |
Collapse
|
6
|
Ristow F, Scheffel J, Xu X, Fehn N, Oberhofer KE, Riemensberger J, Mortaheb F, Kienberger R, Heiz U, Kartouzian A, Iglev H. Understanding laser desorption with circularly polarized light. Chirality 2020; 32:1341-1353. [PMID: 33091214 DOI: 10.1002/chir.23279] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 08/25/2020] [Accepted: 09/07/2020] [Indexed: 01/19/2023]
Abstract
We present aspects of emerging optical activity in thin racemic 1,1'-Bi-2-naphthol films upon irradiation with circularly polarized light and subsequent resonant two-photon absorption in the sample. Thorough analysis of the sample morphology is conducted by means of (polarization-resolved) optical microscopy and scanning electron microscopy (SEM). The influence of crystallization on the nonlinear probing technique (second harmonic generation circular dichroism [SHG-CD]) is investigated. Optical activity and crystallization are brought together by a systematic investigation in different crystallization regimes. We find crystallization to be responsible for two counter-acting effects, which arise for different states of crystallization. Measuring crystallized samples offers the best signal-to-noise ratio, but it limits generation of optical activity due to self-assembly effects. For suppression of crystallization on the other hand, there is a clear indication that enantiomeric selective desorption is responsible for the generation of optical activity in the sample. We reach the current resolution limit of probing with SHG-CD, as we suppress the crystallization in the racemic sample during desorption. In addition, intensity-dependent measurements on the induced optical activity reveal an onset threshold (≈0.7 TW cm-2), above which higher order nonlinear processes impair the generation of optical activity by desorption with CPL.
Collapse
Affiliation(s)
- Florian Ristow
- Physik-Department E11, Technische Universität München, Garching, Germany
| | - Jakob Scheffel
- Physik-Department E11, Technische Universität München, Garching, Germany
| | - Xuqiang Xu
- Catalysis Research Center and Chemistry Department, Physical Chemistry, Technical University of Munich, Garching, Germany
| | - Natalie Fehn
- Catalysis Research Center and Chemistry Department, Physical Chemistry, Technical University of Munich, Garching, Germany
| | - Katrin E Oberhofer
- Physik-Department E11, Technische Universität München, Garching, Germany
| | | | - Farinaz Mortaheb
- Catalysis Research Center and Chemistry Department, Physical Chemistry, Technical University of Munich, Garching, Germany
| | | | - Ulrich Heiz
- Catalysis Research Center and Chemistry Department, Physical Chemistry, Technical University of Munich, Garching, Germany
| | - Aras Kartouzian
- Catalysis Research Center and Chemistry Department, Physical Chemistry, Technical University of Munich, Garching, Germany
| | - Hristo Iglev
- Physik-Department E11, Technische Universität München, Garching, Germany
| |
Collapse
|
7
|
Albano G, Pescitelli G, Di Bari L. Chiroptical Properties in Thin Films of π-Conjugated Systems. Chem Rev 2020; 120:10145-10243. [PMID: 32892619 DOI: 10.1021/acs.chemrev.0c00195] [Citation(s) in RCA: 284] [Impact Index Per Article: 56.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Chiral π-conjugated molecules provide new materials with outstanding features for current and perspective applications, especially in the field of optoelectronic devices. In thin films, processes such as charge conduction, light absorption, and emission are governed not only by the structure of the individual molecules but also by their supramolecular structures and intermolecular interactions to a large extent. Electronic circular dichroism, ECD, and its emission counterpart, circularly polarized luminescence, CPL, provide tools for studying aggregated states and the key properties to be sought for designing innovative devices. In this review, we shall present a comprehensive coverage of chiroptical properties measured on thin films of organic π-conjugated molecules. In the first part, we shall discuss some general concepts of ECD, CPL, and other chiroptical spectroscopies, with a focus on their applications to thin film samples. In the following, we will overview the existing literature on chiral π-conjugated systems whose thin films have been characterized by ECD and/or CPL, as well other chiroptical spectroscopies. Special emphasis will be put on systems with large dissymmetry factors (gabs and glum) and on the application of ECD and CPL to derive structural information on aggregated states.
Collapse
Affiliation(s)
- Gianluigi Albano
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via Giuseppe Moruzzi 13, 56124 Pisa, Italy
| | - Gennaro Pescitelli
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via Giuseppe Moruzzi 13, 56124 Pisa, Italy
| | - Lorenzo Di Bari
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via Giuseppe Moruzzi 13, 56124 Pisa, Italy
| |
Collapse
|
8
|
Shang W, Zhu X, Liang T, Du C, Hu L, Li T, Liu M. Chiral Reticular Self‐Assembly of Achiral AIEgen into Optically Pure Metal–Organic Frameworks (MOFs) with Dual Mechano‐Switchable Circularly Polarized Luminescence. Angew Chem Int Ed Engl 2020; 59:12811-12816. [DOI: 10.1002/anie.202005703] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Indexed: 12/27/2022]
Affiliation(s)
- Weili Shang
- Beijing National Laboratory for Molecular Sciences (BNLMS) Key Laboratory of Colloid Interface and Chemical Thermodynamics Institute of Chemistry Chinese Academy of Sciences (CAS) ZhongGuanCun North First Street 2 Beijing 100190 China
- College of Chemistry and Molecular Engineering Zhengzhou University Kexuedadao 100 Zhengzhou 450001 China
| | - Xuefeng Zhu
- Beijing National Laboratory for Molecular Sciences (BNLMS) Key Laboratory of Colloid Interface and Chemical Thermodynamics Institute of Chemistry Chinese Academy of Sciences (CAS) ZhongGuanCun North First Street 2 Beijing 100190 China
| | | | - Cong Du
- Beijing National Laboratory for Molecular Sciences (BNLMS) Key Laboratory of Colloid Interface and Chemical Thermodynamics Institute of Chemistry Chinese Academy of Sciences (CAS) ZhongGuanCun North First Street 2 Beijing 100190 China
| | - Liangyu Hu
- Beijing National Laboratory for Molecular Sciences (BNLMS) Key Laboratory of Colloid Interface and Chemical Thermodynamics Institute of Chemistry Chinese Academy of Sciences (CAS) ZhongGuanCun North First Street 2 Beijing 100190 China
| | - Tiesheng Li
- College of Chemistry and Molecular Engineering Zhengzhou University Kexuedadao 100 Zhengzhou 450001 China
| | - Minghua Liu
- Beijing National Laboratory for Molecular Sciences (BNLMS) Key Laboratory of Colloid Interface and Chemical Thermodynamics Institute of Chemistry Chinese Academy of Sciences (CAS) ZhongGuanCun North First Street 2 Beijing 100190 China
| |
Collapse
|
9
|
Shang W, Zhu X, Liang T, Du C, Hu L, Li T, Liu M. Chiral Reticular Self‐Assembly of Achiral AIEgen into Optically Pure Metal–Organic Frameworks (MOFs) with Dual Mechano‐Switchable Circularly Polarized Luminescence. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202005703] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Weili Shang
- Beijing National Laboratory for Molecular Sciences (BNLMS) Key Laboratory of Colloid Interface and Chemical Thermodynamics Institute of Chemistry Chinese Academy of Sciences (CAS) ZhongGuanCun North First Street 2 Beijing 100190 China
- College of Chemistry and Molecular Engineering Zhengzhou University Kexuedadao 100 Zhengzhou 450001 China
| | - Xuefeng Zhu
- Beijing National Laboratory for Molecular Sciences (BNLMS) Key Laboratory of Colloid Interface and Chemical Thermodynamics Institute of Chemistry Chinese Academy of Sciences (CAS) ZhongGuanCun North First Street 2 Beijing 100190 China
| | | | - Cong Du
- Beijing National Laboratory for Molecular Sciences (BNLMS) Key Laboratory of Colloid Interface and Chemical Thermodynamics Institute of Chemistry Chinese Academy of Sciences (CAS) ZhongGuanCun North First Street 2 Beijing 100190 China
| | - Liangyu Hu
- Beijing National Laboratory for Molecular Sciences (BNLMS) Key Laboratory of Colloid Interface and Chemical Thermodynamics Institute of Chemistry Chinese Academy of Sciences (CAS) ZhongGuanCun North First Street 2 Beijing 100190 China
| | - Tiesheng Li
- College of Chemistry and Molecular Engineering Zhengzhou University Kexuedadao 100 Zhengzhou 450001 China
| | - Minghua Liu
- Beijing National Laboratory for Molecular Sciences (BNLMS) Key Laboratory of Colloid Interface and Chemical Thermodynamics Institute of Chemistry Chinese Academy of Sciences (CAS) ZhongGuanCun North First Street 2 Beijing 100190 China
| |
Collapse
|
10
|
Mortaheb F, Oberhofer K, Riemensberger J, Ristow F, Kienberger R, Heiz U, Iglev H, Kartouzian A. Enantiospecific Desorption Triggered by Circularly Polarized Light. Angew Chem Int Ed Engl 2019; 58:15685-15689. [PMID: 31393661 PMCID: PMC6851867 DOI: 10.1002/anie.201906630] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 07/18/2019] [Indexed: 11/09/2022]
Abstract
The interest in enantioseparation and enantiopurification of chiral molecules has been drastically increasing over the past decades, since these are important steps in various disciplines such as pharmaceutical industry, asymmetric catalysis, and chiral sensing. By exposing racemic samples of BINOL (1,1′‐bi‐2‐naphthol) coated onto achiral glass substrates to circularly polarized light, we unambiguously demonstrate that by controlling the handedness of circularly polarized light, preferential desorption of enantiomers can be achieved. There are currently no mechanisms known that would describe this phenomenon. Our observation together with a simplified phenomenological model suggests that the process of laser desorption needs to be further developed and the contribution of quantum mechanical processes should be revisited to account for these data. Asymmetric laser desorption provides us with a contamination‐free technique for the enantioenrichment of chiral compounds.
Collapse
Affiliation(s)
- Farinaz Mortaheb
- Catalysis Research Center and Chemistry Department, Chair of Physical Chemistry, Technische Universität München, Lichtenbergstr. 4, 85748, Garching, Germany
| | - Katrin Oberhofer
- Physik-Department E11, Technische Universität München, James-Franck-Str. 1, 85748, Garching, Germany
| | - Johann Riemensberger
- Physik-Department E11, Technische Universität München, James-Franck-Str. 1, 85748, Garching, Germany
| | - Florian Ristow
- Physik-Department E11, Technische Universität München, James-Franck-Str. 1, 85748, Garching, Germany
| | - Reinhard Kienberger
- Physik-Department E11, Technische Universität München, James-Franck-Str. 1, 85748, Garching, Germany
| | - Ulrich Heiz
- Catalysis Research Center and Chemistry Department, Chair of Physical Chemistry, Technische Universität München, Lichtenbergstr. 4, 85748, Garching, Germany
| | - Hristo Iglev
- Physik-Department E11, Technische Universität München, James-Franck-Str. 1, 85748, Garching, Germany
| | - Aras Kartouzian
- Catalysis Research Center and Chemistry Department, Chair of Physical Chemistry, Technische Universität München, Lichtenbergstr. 4, 85748, Garching, Germany
| |
Collapse
|