1
|
Insights into the Structures of Bilirubin and Biliverdin from Vibrational and Electronic Circular Dichroism: History and Perspectives. Molecules 2023; 28:molecules28062564. [PMID: 36985535 PMCID: PMC10054127 DOI: 10.3390/molecules28062564] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/06/2023] [Accepted: 03/08/2023] [Indexed: 03/14/2023] Open
Abstract
In this work we review research activities on a few of the most relevant structural aspects of bilirubin (BR) and biliverdin (BV). Special attention is paid to the exocyclic C=C bonds being in mostly Z rather than E configurations, and to the overall conformation being essentially different for BR and BV due to the presence or absence of the double C=C bond at C-10. In both cases, racemic mixtures of each compound of either M or P configuration are present in achiral solutions; however, imbalance between the two configurations may be easily achieved. In particular, results based on chiroptical spectroscopies, both electronic and vibrational circular dichroism (ECD and VCD) methods, are presented for chirally derivatized BR and BV molecules. Finally, we review deracemization experiments monitored with ECD data from our lab for BR in the presence of serum albumin and anesthetic compounds.
Collapse
|
2
|
Adeniyi E, Grounds O, Stephens Z, Zeller M, Rosokha SV. Thermodynamics and Spectroscopy of Halogen- and Hydrogen-Bonded Complexes of Haloforms with Aromatic and Aliphatic Amines. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27186124. [PMID: 36144855 PMCID: PMC9500756 DOI: 10.3390/molecules27186124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 09/12/2022] [Accepted: 09/14/2022] [Indexed: 11/30/2022]
Abstract
Similarities and differences of halogen and hydrogen bonding were explored via UV–Vis and 1H NMR measurements, X-ray crystallography and computational analysis of the associations of CHX3 (X=I, Br, Cl) with aromatic (tetramethyl-p-phenylenediamine) and aliphatic (4-diazabicyclo[2,2,2]octane) amines. When the polarization of haloforms was taken into account, the strengths of these complexes followed the same correlation with the electrostatic potentials on the surfaces of the interacting atoms. However, their spectral properties were quite distinct. While the halogen-bonded complexes showed new intense absorption bands in the UV–Vis spectra, the absorptions of their hydrogen-bonded analogues were close to the superposition of the absorption of reactants. Additionally, halogen bonding led to a shift in the NMR signal of haloform protons to lower ppm values compared with the individual haloforms, whereas hydrogen bonding of CHX3 with aliphatic amines resulted in a shift in the opposite direction. The effects of hydrogen bonding with aromatic amines on the NMR spectra of haloforms were ambivalent. Titration of all CHX3 with these nucleophiles produced consistent shifts in their protons’ signals to lower ppm values, whereas calculations of these pairs produced multiple hydrogen-bonded minima with similar structures and energies, but opposite directions of the NMR signals’ shifts. Experimental and computational data were used for the evaluation of formation constants of some halogen- and hydrogen-bonded complexes between haloforms and amines co-existing in solutions.
Collapse
Affiliation(s)
- Emmanuel Adeniyi
- Department of Chemistry, Ball State University, Muncie, IN 47306, USA
| | - Olivia Grounds
- Department of Chemistry, Ball State University, Muncie, IN 47306, USA
| | - Zachary Stephens
- Department of Chemistry, Ball State University, Muncie, IN 47306, USA
| | - Matthias Zeller
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Sergiy V. Rosokha
- Department of Chemistry, Ball State University, Muncie, IN 47306, USA
- Correspondence:
| |
Collapse
|
3
|
Bairagi KM, Ingle KS, Bhowal R, Mohurle SA, Hasija A, Alwassil OI, Venugopala KN, Chopra D, Nayak SK. Interplay of Halogen and Hydrogen Bonding through Co-Crystallization in Pharmacologically Active Dihydropyrimidines: Insights from Crystal Structure and Energy Framework. Chempluschem 2021; 86:1167-1176. [PMID: 34409757 DOI: 10.1002/cplu.202100259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 07/31/2021] [Indexed: 11/05/2022]
Abstract
A solvent-assisted grinding method has been used to prepare co-crystals in substituted dihydropyrimidines (DHPM) that constitutes pharmacologically active compounds. These were characterized using FT-IR, PXRD, and single-crystal X-ray diffraction. In order to explore the possibility of formation of halogen (XB) and hydrogen bonding (HB) synthons in the solid state, co-crystallization attempts of differently substituted DHPM molecules, containing nitro, hydoxy, and chloro substituents, with different co-formers, such as 1,4-diiodo tetrafluorobenzene (1,4 DITFB) and 3-nitrobenzoic acid (3 NBA) were performed. The XB co-crystals (C2aXB, C2bXB, and C2cXB) prefer the formation of C-I⋅⋅⋅O/C-I⋅⋅⋅S XB synthon, whereas the HB co-crystal (C2dHB) is stabilized by N-H⋅⋅⋅O H-bond formation. Hirshfeld surface analysis revealed that the percentage contribution of intermolecular interactions for XB co-crystals prefer equal contribution of XB synthon along with HB synthon. Furthermore, the interaction energy was analyzed using energy frameworks, which suggests that their stability, a combination of electrostatics and dispersion, is enhanced through XB/HB in comparison to the parent DHPMs.
Collapse
Affiliation(s)
- Keshab M Bairagi
- Department of Chemistry, Institution Visvesvaraya National Institute of Technology, Nagpur Address Nagpur, 440010, Maharashtra, India
| | - Kapil S Ingle
- Department of Chemistry, Institution Visvesvaraya National Institute of Technology, Nagpur Address Nagpur, 440010, Maharashtra, India
| | - Rohit Bhowal
- Department of Chemistry, Institution Indian Institute of Science Education and Research Bhopal Address Bhopal, Bhauri, Bhopal 462023, India
| | - Smital A Mohurle
- Department of Chemistry, Institution Visvesvaraya National Institute of Technology, Nagpur Address Nagpur, 440010, Maharashtra, India
| | - Avantika Hasija
- Department of Chemistry, Institution Indian Institute of Science Education and Research Bhopal Address Bhopal, Bhauri, Bhopal 462023, India
| | - Osama I Alwassil
- Department of Pharmaceutical Sciences, King Saud bin Abdulaziz University for health sciences, Riyadh, 11481, Kingdom of Saudi Arabia
| | - Katharigatta N Venugopala
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa, 31982, Kingdom of Saudi Arabia.,Department of Biotechnology and Food Technology, Durban University of Technology, Durban, Durban, 4001, South Africa.,Department of Pharmaceutical Sciences College of Clinical Pharmacy King Faisal University, Al-Ahsa, 31982, Kingdom of Saudi Arabia.,Department of Biotechnology and Food Technology, Durban University of Technology, Durban, Durban, 4001, South Africa
| | - Deepak Chopra
- Department of Chemistry, Institution Indian Institute of Science Education and Research Bhopal Address Bhopal, Bhauri, Bhopal 462023, India
| | - Susanta K Nayak
- Department of Chemistry, Institution Visvesvaraya National Institute of Technology, Nagpur Address Nagpur, 440010, Maharashtra, India
| |
Collapse
|
4
|
Romero-Nieto C, de Cózar A, Regulska E, Mullenix JB, Rominger F, Hindenberg P. Controlling the molecular arrangement of racemates through weak interactions: the synergy between π-interactions and halogen bonds. Chem Commun (Camb) 2021; 57:7366-7369. [PMID: 34232238 DOI: 10.1039/d1cc01700d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
POX and NX halogen bonds in combination with π-stacking interactions lead to the sorting of π-extended R- and S-isomers. Theoretical calculations point to a positive synergistic effect between the π-interactions and the halogen bonds to be the origin of such phenomena. As a result, enantiomeric building blocks form homoleptically connected quadrangular structures.
Collapse
Affiliation(s)
- Carlos Romero-Nieto
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, Heidelberg 69120, Germany. and Faculty of Pharmacy, University of Castilla-La Mancha, Calle Almansa 14 - Edif. Bioincubadora, Albacete, 02008, Spain
| | - A de Cózar
- Departamento de Química Orgánica I, Facultad de Química, Universidad del País Vasco P. K. 1072, San Sebastián-Donostia, E-20018, Spain. and IKERBASQUE, Basque Foundation for Science, Bilbao, 48009, Spain
| | - Elzbieta Regulska
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, Heidelberg 69120, Germany. and Faculty of Pharmacy, University of Castilla-La Mancha, Calle Almansa 14 - Edif. Bioincubadora, Albacete, 02008, Spain
| | - John B Mullenix
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, Heidelberg 69120, Germany.
| | - Frank Rominger
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, Heidelberg 69120, Germany.
| | - Philip Hindenberg
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, Heidelberg 69120, Germany.
| |
Collapse
|
5
|
Nunes RS, Vila-Viçosa D, Costa PJ. Halogen Bonding: An Underestimated Player in Membrane–Ligand Interactions. J Am Chem Soc 2021; 143:4253-4267. [DOI: 10.1021/jacs.0c12470] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Rafael Santana Nunes
- BioISI - Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, Campo Grande, C8 bdg, 1749-016 Lisboa, Portugal
- Centro de Química Estrutural, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | - Diogo Vila-Viçosa
- BioISI - Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, Campo Grande, C8 bdg, 1749-016 Lisboa, Portugal
| | - Paulo J. Costa
- BioISI - Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, Campo Grande, C8 bdg, 1749-016 Lisboa, Portugal
| |
Collapse
|
6
|
5-Iodo-1-Arylpyrazoles as Potential Benchmarks for Investigating the Tuning of the Halogen Bonding. CRYSTALS 2020. [DOI: 10.3390/cryst10121149] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
5-Iodo-1-arylpyrazoles are interesting templates for investigating the halogen bond propensity in small molecules other than the already well-known halogenated molecules such as tetrafluorodiiodobenzene. Herein, we present six compounds with different substitution on the aryl ring attached at position 1 of the pyrazoles and investigate them in the solid state in order to elucidate the halogen bonding significance to the crystallographic landscape of such molecules. The substituents on the aryl ring are generally combinations of halogen atoms (Br, Cl) and various alkyl groups. Observed halogen bonding types spanned by these six 5-iodopyrazoles included a wide variety, namely, C–I⋯O, C–I⋯π, C–I⋯Br, C–I⋯N and C–Br⋯O interactions. By single crystal X-ray diffraction analysis combined with the descriptive Hirshfeld analysis, we discuss the role and influence of the halogen bonds among the intermolecular interactions.
Collapse
|
7
|
Eraković M, Cinčić D, Molčanov K, Stilinović V. A Crystallographic Charge Density Study of the Partial Covalent Nature of Strong N⋅⋅⋅Br Halogen Bonds. Angew Chem Int Ed Engl 2019; 58:15702-15706. [PMID: 31441965 DOI: 10.1002/anie.201908875] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Indexed: 12/21/2022]
Abstract
The covalent nature of strong N-Br⋅⋅⋅N halogen bonds in a cocrystal (2) of N-bromosuccinimide (NBS) with 3,5-dimethylpyridine (lut) was determined from X-ray charge density studies and compared to a weak N-Br⋅⋅⋅O halogen bond in pure crystalline NBS (1) and a covalent bond in bis(3-methylpyridine)bromonium cation (in its perchlorate salt (3). In 2, the donor N-Br bond is elongated by 0.0954 Å, while the Br⋅⋅⋅acceptor distance of 2.3194(4) is 1.08 Å shorter than the sum of the van der Waals radii. A maximum electron density of 0.38 e Å-3 along the Br⋅⋅⋅N halogen bond indicates a considerable covalent contribution to the total interaction. This value is intermediate to 0.067 e Å-3 for the Br⋅⋅⋅O contact in 1, and approximately 0.7 e Å-3 in both N-Br bonds of the bromonium cation in 3. A calculation of the natural bond order charges of the contact atoms, and the σ*(N1-Br) population of NBS as a function of distance between NBS and lut, have shown that charge transfer becomes significant at a Br⋅⋅⋅N distance below about 3 Å.
Collapse
Affiliation(s)
- Mihael Eraković
- Department of Physical Chemistry, Rudjer Bošković Institute, Bijenička 54, HR-10000, Zagreb, Croatia
| | - Dominik Cinčić
- Department of Chemistry, Faculty of Science, University of Zagreb, Horvatovac 102a, HR-10000, Zagreb, Croatia
| | - Krešimir Molčanov
- Department of Physical Chemistry, Rudjer Bošković Institute, Bijenička 54, HR-10000, Zagreb, Croatia
| | - Vladimir Stilinović
- Department of Chemistry, Faculty of Science, University of Zagreb, Horvatovac 102a, HR-10000, Zagreb, Croatia
| |
Collapse
|
8
|
Eraković M, Cinčić D, Molčanov K, Stilinović V. A Crystallographic Charge Density Study of the Partial Covalent Nature of Strong N⋅⋅⋅Br Halogen Bonds. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201908875] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Mihael Eraković
- Department of Physical Chemistry Rudjer Bošković Institute Bijenička 54 HR-10000 Zagreb Croatia
| | - Dominik Cinčić
- Department of Chemistry Faculty of Science University of Zagreb Horvatovac 102a HR-10000 Zagreb Croatia
| | - Krešimir Molčanov
- Department of Physical Chemistry Rudjer Bošković Institute Bijenička 54 HR-10000 Zagreb Croatia
| | - Vladimir Stilinović
- Department of Chemistry Faculty of Science University of Zagreb Horvatovac 102a HR-10000 Zagreb Croatia
| |
Collapse
|