1
|
Elyamny S, Bracamonte AG. Enhanced coupling of perovskites with semiconductive properties by tuning multi-modal optically active nanostructured set-ups for photonics, photovoltaics and energy applications. RSC Adv 2025; 15:5571-5596. [PMID: 40007863 PMCID: PMC11851274 DOI: 10.1039/d5ra00458f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2025] [Accepted: 01/24/2025] [Indexed: 02/27/2025] Open
Abstract
This review describes the coupling of semiconducting materials with perovskites as main optically active elements for enhancing the performance depending on the optical set-up and coupling phenomena. The various uses of semiconductor nanoparticles and related nanomaterials for energy conduction and harvesting are discussed. Thus, it was obtained different materials highlighting the properties of perovskites incorporated within heterojunctions and hybrid nanomaterials where varied materials and sources were joined. Different multi-layered substrates are reported, and different strategies for improved electron and energy transfer and harvesting are elucidated Further, enhanced coupling of semiconductive properties for the above-mentioned processes is discussed. In this regard, various nanomaterials and their properties for improving energy applications such as solar cells are demonstrated. Moreover, the incorporation of plasmonic properties from different noble metal sources and pseudo-electromagnetic properties from graphene and carbon allotropes is discussed. Since variations in electromagnetic fields affect the semiconductive properties, it leads to varying effects and potential applications within the energy research field. Hence, this review could guide the development within energy research fields as nanophotonics, photovoltaics, and energy. This review is mainly focused on the development of solar energy cells by incorporating perovskites with varied hybrid nanomaterials, photonic materials, and metamaterials.
Collapse
Affiliation(s)
- Shaimaa Elyamny
- Electronic Materials Research Department, Advanced Technology and New Materials Research Institute, City of Scientific Research and Technological Applications (SRTA-City) New Borg El-Arab City, P.O. Box 21934 Alexandria Egypt
| | - A Guillermo Bracamonte
- Departamento Académico, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba X5000HUA Córdoba Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET, Instituto de Investigaciones en Fisicoquímica de Córdoba (INFIQC) X5000HUA Córdoba Argentina
| |
Collapse
|
2
|
Lee W, Ko S. Synthesis and Characterization of Lignocellulose-Based Carbon Quantum Dots (CQDs) and Their Antimicrobial and Antioxidant Functionalities. Molecules 2025; 30:667. [PMID: 39942771 PMCID: PMC11821036 DOI: 10.3390/molecules30030667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 01/27/2025] [Accepted: 01/31/2025] [Indexed: 02/16/2025] Open
Abstract
Carbon quantum dots (CQDs) have recently drawn enormous attention due to not only their unique chemical, biological, and optical properties but also because a variety of renewable biomasses are readily utilized as carbon sources in their synthesis. This study investigated the synthesis, characterization, and functional evaluation of CQDs from unbleached mechanical pulp as a natural lignocellulosic resource. The CQDs were synthesized using a one-step hydrothermal synthesis with varying temperature, time, and pulp consistency. The resulting CQDs exhibit a spherical shape with a size distribution of 9.73 ± 0.82 nm and lattice parameters of 0.21 and 0.34 nm, indicating a graphite core. The photoluminescence spectra showed evident fluorescence characteristics, with an emission peak at 435 nm at an excitation wavelength of 370 nm. The as-prepared CQDs were also chemically composed of C=C and C=O bonds linked to the hydroxyl and carboxyl functional groups, which are typically found in lignocellulose-based CQDs. The CQDs demonstrated antibacterial activity exceeding 99.9% against E. coli at the lowest concentration of 0.75 mg/mL. Demonstrating its antioxidation property, the DPPH radical scavenging activity surpassed 90% with more than 40 µg/mL of the CQD solution.
Collapse
Affiliation(s)
| | - Seonghyuk Ko
- Laboratory of Nano-Enabled Packaging & Safety, Department of Packaging, Yonsei University, Wonju-si 26493, Republic of Korea;
| |
Collapse
|
3
|
Ou X, Chen X, Zhao S, Shi Y, Zhang J, Wu M, Ragauskas AJ, Song X, Zhang Z. Regulation of Electron Cloud Density by Electronic Effects of Substituents to Optimize Photocatalytic H 2 Evolution of Carbon Dots. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2408200. [PMID: 39703019 DOI: 10.1002/smll.202408200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 12/09/2024] [Indexed: 12/21/2024]
Abstract
Carbon dots (CDs) have a wide light absorption range, which are promising candidates for photocatalytic water splitting H2 evolution, but they show low activity for hydrogen evolution reaction (HER) due to the slow transfer efficiencies of photogenerated carriers. The electron cloud density of photocatalyst is essential for the separation and migration of photogenerated carriers. In this study, the effect mechanism of electron cloud density regulated by the substituents with different electronic effects on the photocatalytic HER of glucose-based CDs is clarified. CDs-SO3H and CDs-OH are first obtained by introducing electron-drawing group (─SO3H) and electron-donating group (─OH) using a tailoring post-processing strategy. Experimental results show that the H2 yield catalyzed by CDs-SO3H is 89.95 µmol•g-1 in 4 h, which is about four times that of CDs, and 7.4 times that of CDs-OH. The ─SO3H induces a much negative energy band and high electron cloud density on CDs edges, promoting the separation and transfer of photogenerated carriers; while the CDs-OH exhibits a high positive charge density and an upward energy band, hindering the surface complexation of electron-hole pairs and HER. This study will provide an insight into the design of CDs catalysts with efficient photocatalytic HER at a molecular level.
Collapse
Affiliation(s)
- Xue Ou
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, College of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, P. R. China
| | - Xinrui Chen
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, College of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, P. R. China
| | - Siyu Zhao
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, College of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, P. R. China
| | - Yarong Shi
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, College of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, P. R. China
| | - Junhua Zhang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, P. R. China
| | - Min Wu
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, College of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, P. R. China
| | - Arthur J Ragauskas
- Department of Chemical and Biomolecular Engineering, University of Tennessee Knoxville, Tennessee, TN, 37996, USA
- Joint Institute for Biological Sciences, Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37830, USA
- Center for Renewable Carbon, Department of Forestry, Wildlife and Fisheries, The University of Tennessee Knoxville, Tennessee, TN, 37996, USA
| | - Xueping Song
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, College of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, P. R. China
| | - Zhanying Zhang
- School of Mechanical, Medical and Process Engineering, Centre for Agriculture and the Bioeconomy, Queensland University of Technology, Brisbane, Queensland, 4000, Australia
| |
Collapse
|
4
|
Yuan Z, Sun X, Wang H, Zhao X, Jiang Z. Applications of Ni-Based Catalysts in Photothermal CO 2 Hydrogenation Reaction. Molecules 2024; 29:3882. [PMID: 39202961 PMCID: PMC11357118 DOI: 10.3390/molecules29163882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/13/2024] [Accepted: 08/15/2024] [Indexed: 09/03/2024] Open
Abstract
Heterogeneous CO2 hydrogenation catalytic reactions, as the strategies for CO2 emission reduction and green carbon resource recycling, play important roles in alleviating global warming and energy shortages. Among these strategies, photothermal CO2 hydrogenation technology has become one of the hot catalytic technologies by virtue of the synergistic advantages of thermal catalysis and photocatalysis. And it has attracted more and more researchers' attentions. Various kinds of effective photothermal catalysts have been gradually discovered, and nickel-based catalysts have been widely studied for their advantages of low cost, high catalytic activity, abundant reserves and thermal stability. In this review, the applications of nickel-based catalysts in photothermal CO2 hydrogenation are summarized. Finally, through a good understanding of the above applications, future modification strategies and design directions of nickel-based catalysts for improving their photothermal CO2 hydrogenation activities are proposed.
Collapse
Affiliation(s)
- Zhimin Yuan
- School of Chemistry & Chemical Engineering and Environmental Engineering, Weifang University, Weifang 261061, China
| | - Xianhui Sun
- Food and Drug Department, Weifang Vocational College, Weifang 261061, China
| | - Haiquan Wang
- School of Chemistry & Chemical Engineering and Environmental Engineering, Weifang University, Weifang 261061, China
| | - Xingling Zhao
- School of Chemistry & Chemical Engineering and Environmental Engineering, Weifang University, Weifang 261061, China
| | - Zaiyong Jiang
- School of Chemistry & Chemical Engineering and Environmental Engineering, Weifang University, Weifang 261061, China
| |
Collapse
|
5
|
Wang R, Zhang S, Zhang J, Wang J, Bian H, Jin L, Zhang Y. State-of-the-art of lignin-derived carbon nanodots: Preparation, properties, and applications. Int J Biol Macromol 2024; 273:132897. [PMID: 38848826 DOI: 10.1016/j.ijbiomac.2024.132897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 05/09/2024] [Accepted: 06/02/2024] [Indexed: 06/09/2024]
Abstract
Lignin-derived carbon nanodots (LCNs) are nanometer-scale carbon spheres fabricated from naturally abundant lignin. Owing to rich and highly heritable graphene like π-π conjugated structure of lignin, to fabricate LCNs from it not only endows LCNs with on-demand tunable size and optical features, but also further broadens the green and chemical engineering of carbon nanodots. Recently, they have become increasingly popular in sensing, bioimaging, catalysis, anti-counterfeiting, energy storage/conversion, and others. Despite the enormous research efforts put into the ongoing development of lignin value-added utilization, few commercial LCNs are available. To have a deeper understanding of this issue, critical impacts on the preparation, properties, and applications of state-of-the-art LCNs are carefully reviewed and discussed. A concise analysis of their unique advantages, limitations for specific applications, and current challenges and outlook is conducted. We hope that this review will stimulate further advances in the functional material-oriented production of lignin.
Collapse
Affiliation(s)
- Ruibin Wang
- School of Chemistry and Chem. Eng., University of South China, Hengyang 421001, China; International Innovation Center for Forest Chemicals and Materials and Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| | - Shilong Zhang
- School of Chemistry and Chem. Eng., University of South China, Hengyang 421001, China
| | - Jing Zhang
- School of Chemistry and Chem. Eng., University of South China, Hengyang 421001, China
| | - Jiahai Wang
- School of Chemistry and Chem. Eng., University of South China, Hengyang 421001, China
| | - Huiyang Bian
- International Innovation Center for Forest Chemicals and Materials and Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| | - Linghua Jin
- School of Chemistry and Chem. Eng., University of South China, Hengyang 421001, China
| | - Ye Zhang
- School of Chemistry and Chem. Eng., University of South China, Hengyang 421001, China.
| |
Collapse
|
6
|
Yuan Z, Jiang Z. Applications of BiOX in the Photocatalytic Reactions. Molecules 2023; 28:4400. [PMID: 37298876 PMCID: PMC10254493 DOI: 10.3390/molecules28114400] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 05/25/2023] [Accepted: 05/26/2023] [Indexed: 06/12/2023] Open
Abstract
BiOX (X = Cl, Br, I) families are a kind of new type of photocatalysts, which have attracted the attention of more and more researchers. The suitable band gaps and their convenient tunability via the change of X elements enable BiOX to adapt to many photocatalytic reactions. In addition, because of their characteristics of the unique layered structure and indirect bandgap semiconductor, BiOX exhibits excellent separation efficiency of photogenerated electrons and holes. Therefore, BiOX could usually demonstrate fine activity in many photocatalytic reactions. In this review, we will present the various applications and modification strategies of BiOX in photocatalytic reactions. Finally, based on a good understanding of the above issues, we will propose the future directions and feasibilities of the reasonable design of modification strategies of BiOX to obtain better photocatalytic activity toward various photocatalytic applications.
Collapse
Affiliation(s)
| | - Zaiyong Jiang
- School of Chemistry & Chemical Engineering and Environmental Engineering, Weifang University, Weifang 261061, China
| |
Collapse
|
7
|
Yadav N, Gaikwad RP, Mishra V, Gawande MB. Synthesis and Photocatalytic Applications of Functionalized Carbon Quantum Dots. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2022. [DOI: 10.1246/bcsj.20220250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Nisha Yadav
- Amity Institute of Click Chemistry Research and Studies, Amity University, Noida, Uttar Pradesh-201313, India
| | - Rahul P. Gaikwad
- Department of Industrial and Engineering Chemistry, Institute of Chemical Technology, Mumbai - Marathwada Campus, Jalna-431203, India
| | - Vivek Mishra
- Amity Institute of Click Chemistry Research and Studies, Amity University, Noida, Uttar Pradesh-201313, India
| | - Manoj B. Gawande
- Department of Industrial and Engineering Chemistry, Institute of Chemical Technology, Mumbai - Marathwada Campus, Jalna-431203, India
| |
Collapse
|
8
|
Meng W, Zhao Y, Dai D, Zhang Q, Wang Z, Liu Y, Zheng Z, Cheng H, Dai Y, Huang B, Wang P. Synergy of Au-Pt for Enhancing Ethylene Photodegradation Performance of Flower-like TiO 2. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3221. [PMID: 36145006 PMCID: PMC9505558 DOI: 10.3390/nano12183221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 09/05/2022] [Accepted: 09/13/2022] [Indexed: 06/16/2023]
Abstract
Efficient and low-cost degradation of ethylene has always been a difficult problem in the storage and transportation of fruits and vegetables. Although photocatalysis is considered to be a feasible and efficient solution for ethylene degradation, the low degradation ability of conventional catalysts for small non-polar molecules limits its application. TiO2 has the advantage of tunable microstructure, but it also has the defects of wide band gap and low utilization of sunlight. The surface plasmon resonance (SPR) effect of noble metals can effectively improve the visible light absorption range of catalysts, and the synergy of noble metals further enhances the photocatalytic ability. Herein, we developed a series of AuPt catalysts through the photo-deposition method. Benefited from the SPR effect and the synergy of Au and Pt, the efficiency of AuPt-TiO2 was 19.9, 4.64 and 2.42 times that of TiO2, Au-TiO2 and Pt-TiO2, and the photocatalytic degradation ability of AuPt-TiO2 was maintained in five cyclic stability tests. Meanwhile, the transient photocurrent spectra and PL spectra proved that the light absorption capacity and carrier separation efficiency of AuPt-TiO2 were enhanced. This work provides a new direction for enhancing non-polar small-molecule photodegradation of semiconductors.
Collapse
Affiliation(s)
- Wanzhen Meng
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
| | - Yunrui Zhao
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
| | - Dujuan Dai
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
| | - Qianqian Zhang
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
| | - Zeyan Wang
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
| | - Yuanyuan Liu
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
| | - Zhaoke Zheng
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
| | - Hefeng Cheng
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
| | - Ying Dai
- School of Physics, Shandong University, Jinan 250100, China
| | - Baibiao Huang
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
| | - Peng Wang
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
| |
Collapse
|
9
|
Grave-to-cradle upcycling of Ni from electroplating wastewater to photothermal CO 2 catalysis. Nat Commun 2022; 13:5305. [PMID: 36085305 PMCID: PMC9463155 DOI: 10.1038/s41467-022-33029-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 08/29/2022] [Indexed: 11/08/2022] Open
Abstract
Treating hazardous waste Ni from the electroplating industry is mandated world-wide, is exceptionally expensive, and carries a very high CO2 footprint. Rather than regarding Ni as a disposable waste, the chemicals and petrochemicals industries could instead consider it a huge resource. In the work described herein, we present a strategy for upcycling waste Ni from electroplating wastewater into a photothermal catalyst for converting CO2 to CO. Specifically, magnetic nanoparticles encapsulated in amine functionalized porous SiO2, is demonstrated to efficiently scavenge Ni from electroplating wastewater for utilization in photothermal CO2 catalysis. The core-shell catalyst architecture produces CO at a rate of 1.9 mol·gNi-1·h-1 (44.1 mmol·gcat-1·h-1), a selectivity close to 100%, and notable long-term stability. This strategy of upcycling metal waste into functional, catalytic materials offers a multi-pronged approach for clean and renewable energy technologies.
Collapse
|
10
|
Song X, Zhao S, Xu Y, Chen X, Wang S, Zhao P, Pu Y, Ragauskas AJ. Preparation, Properties, and Application of Lignocellulosic-Based Fluorescent Carbon Dots. CHEMSUSCHEM 2022; 15:e202102486. [PMID: 35199466 DOI: 10.1002/cssc.202102486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 01/29/2022] [Indexed: 06/14/2023]
Abstract
Carbon dots (CDs) are a relatively new type of fluorescent carbon material with excellent performance and widespread application. As the most readily available and widely distributed biomass resource, lignocellulosics are a renewable bioresource with great potential. Research into the preparation of CDs with lignocellulose (LC-CDs) has become the focus of numerous researchers. Compared with other carbon sources, lignocellulose is low cost, rich in structural variety, exhibits excellent biocompatibility,[1] and the structures of CDs prepared by lignin, cellulose, and hemicellulose are similar. This Review summarized research progress in the preparation of CDs from lignocellulosics in recent years and reviewed traditional and new preparation methods, physical and chemical properties, optical properties, and applications of LC-CDs, providing guidance for the formation and improvement of LC-CDs. In addition, the challenges of synthesizing LC-CDs were also highlighted, including the interaction of different lignocellulose components on the formation of LC-CDs and the nucleation and growth mechanism of LC-CDs; from this, current trends and opportunities of LC-CDs were examined, and some research methods for future research were put forward.
Collapse
Affiliation(s)
- Xueping Song
- College of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, P. R. China
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, Nanning, 530004, P. R. China
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, TN, USA
| | - Siyu Zhao
- College of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, P. R. China
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, Nanning, 530004, P. R. China
| | - Ying Xu
- College of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, P. R. China
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, Nanning, 530004, P. R. China
| | - Xinrui Chen
- College of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, P. R. China
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, Nanning, 530004, P. R. China
| | - Shuangfei Wang
- College of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, P. R. China
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, Nanning, 530004, P. R. China
| | - Peitao Zhao
- School of Electrical and Power Engineering, China University of Mining and Technology, Xuzhou, 221116, P. R. China
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, TN, USA
| | - Yunqiao Pu
- Joint Institute for Biological Sciences, Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Arthur J Ragauskas
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, TN, USA
- Joint Institute for Biological Sciences, Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
- Center for Renewable Carbon, Department of Forestry, Wildlife and Fisheries, University of Tennessee, Knoxville, TN, 37996, USA
| |
Collapse
|
11
|
Zhang S, Chen J, Jia Q, Jiang Q, Yan J, Yang G. A Novel and Effective Recyclable BiOCl/BiOBr Photocatalysis for Lignin Removal from Pre-Hydrolysis Liquor. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:2836. [PMID: 34835600 PMCID: PMC8618783 DOI: 10.3390/nano11112836] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/18/2021] [Accepted: 10/20/2021] [Indexed: 11/17/2022]
Abstract
The presence of lignin hampers the utilization of hemicelluloses in the pre-hydrolysis liquor (PHL) from the kraft-based dissolving pulp production process. In this paper, a novel process for removing lignin from PHL was proposed by effectively recycling catalysts of BiOCl/BiOBr. During the whole process, BiOCl and BiOBr were not only adsorbents for removing lignin, but also photocatalysts for degrading lignin. The results showed that BiOCl and BiOBr treatments caused 36.3% and 33.9% lignin removal, respectively, at the optimized conditions, and the losses of hemicellulose-derived saccharides (HDS) were both 0.1%. The catalysts could be regenerated by simple photocatalytic treatment and obtain considerable CO and CO2. After 15 h of illumination, 49.9 μmol CO and 553.0 μmol CO2 were produced by BiOCl, and 38.7 μmol CO and 484.3 μmol CO2 were produced by BiOBr. Therefore, both BiOCl and BiOBr exhibit excellent adsorption and photocatalytic properties for lignin removal from pre-hydrolysis.
Collapse
Affiliation(s)
| | - Jiachuan Chen
- State Key Laboratory of Bio-Based Material and Green Papermaking/Key Laboratory of Pulp & Paper Science and Technology of Education Ministry of China, Qilu University of Technology, Jinan 250353, China; (S.Z.); (Q.J.); (J.Y.)
| | | | - Qimeng Jiang
- State Key Laboratory of Bio-Based Material and Green Papermaking/Key Laboratory of Pulp & Paper Science and Technology of Education Ministry of China, Qilu University of Technology, Jinan 250353, China; (S.Z.); (Q.J.); (J.Y.)
| | | | - Guihua Yang
- State Key Laboratory of Bio-Based Material and Green Papermaking/Key Laboratory of Pulp & Paper Science and Technology of Education Ministry of China, Qilu University of Technology, Jinan 250353, China; (S.Z.); (Q.J.); (J.Y.)
| |
Collapse
|
12
|
Wang R, Jiao L, Zhou X, Guo Z, Bian H, Dai H. Highly fluorescent graphene quantum dots from biorefinery waste for tri-channel sensitive detection of Fe 3+ ions. JOURNAL OF HAZARDOUS MATERIALS 2021; 412:125096. [PMID: 33517054 DOI: 10.1016/j.jhazmat.2021.125096] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 01/06/2021] [Accepted: 01/06/2021] [Indexed: 06/12/2023]
Abstract
Renewable lignocellulosic biomass can be effectively transformed to value-added products, enabling fast growth of related downstream processing. However, valorization of the by-produced cellulose-poor fraction, which is also in large volumes, is only occasionally reported regarding existing technologies. Here, a simple, general, and effective strategy for fabricating graphene quantum dots (GQDs) from the Miscanthus (MC) biorefinery waste consisting of sugars and depolymerized lignin, is developed. This process involves the fast and selective removal of most lignin and hemicellulose based on mild acid hydrotrope fractionation, with followed hydrothermal carbonization. The as-fabricated MC-derived GQDs (M-GQDs) exhibit several advantages such as few-layer graphene-like single crystalline structure, sulfur and nitrogen co-doping, bright fluorescence, excitation-dependent photoluminescence, and long fluorescence lifetime (11.95 ns). Furthermore, M-GQDs present prominent fluorescence reduction in the presence of Fe3+ with good linearity (≤0.995) and very low detection limit (≥1.41 nM). Later, it is found that the observed high sensitivity for Fe3+ is based on a dynamic quenching mechanism, which is caused by the Fe3+-induced increase in both the energy dissipation and photogenerated electron consumption. This work is anticipated to open new opportunities for promoting the integral valorization of biomass and sensitive fluorometric detection of Fe3+.
Collapse
Affiliation(s)
- Ruibin Wang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China; Jiangsu Provincial Key Laboratory of Pulp and Paper Science and Technology, Nanjing Forestry University, Nanjing 210037, China
| | - Liang Jiao
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China; Jiangsu Provincial Key Laboratory of Pulp and Paper Science and Technology, Nanjing Forestry University, Nanjing 210037, China
| | - Xuelian Zhou
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China; Jiangsu Provincial Key Laboratory of Pulp and Paper Science and Technology, Nanjing Forestry University, Nanjing 210037, China
| | - Ziyu Guo
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China; Jiangsu Provincial Key Laboratory of Pulp and Paper Science and Technology, Nanjing Forestry University, Nanjing 210037, China
| | - Huiyang Bian
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China; Jiangsu Provincial Key Laboratory of Pulp and Paper Science and Technology, Nanjing Forestry University, Nanjing 210037, China
| | - Hongqi Dai
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China; Jiangsu Provincial Key Laboratory of Pulp and Paper Science and Technology, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
13
|
Si QS, Guo WQ, Wang HZ, Liu BH, Ren NQ. Carbon quantum dots-based semiconductor preparation methods, applications and mechanisms in environmental contamination. CHINESE CHEM LETT 2020. [DOI: 10.1016/j.cclet.2020.08.036] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|