1
|
Kumar M, Chakraborty S, Nayek HP. Organotin(IV) compounds catalyzed cyanide-free synthesis of α-iminonitriles. Dalton Trans 2025. [PMID: 40298964 DOI: 10.1039/d5dt00492f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
Abstract
Two polydentate pro-ligands (H2L1 and H3L2) have been reacted with different organotin(IV) halides such as Ph2SnCl2, (t-Bu)2SnCl2, and (n-Bu)2SnCl2 to synthesize six organotin(IV) compounds, [R2Sn(L1)] (R = Ph (1), t-Bu (2), n-Bu (3)) and [R2Sn(HL2)] (R = Ph (4), t-Bu (5), n-Bu (6)), respectively. All organotin(IV) compounds were characterized by FT-IR spectroscopy, 1H, 13C{1H}, and 119Sn{1H} NMR spectroscopy, HR-MS spectrometry, and single-crystal X-ray diffraction analysis. The single-crystal X-ray diffraction analyses reveal that all compounds contain a penta-coordinated tin atom except 1. Compound 1 is hexacoordinated. All organotin compounds show catalytic efficiency towards the synthesis of α-iminonitriles, with a maximum yield of up to 88%. The α-iminonitriles are synthesized from trans-β-nitrostyrene derivatives and 2-aminopyridine derivatives without using any cyanating agent.
Collapse
Affiliation(s)
- Manish Kumar
- Department of Chemistry & Chemical Biology, Indian Institute of Technology (Indian School of Mines), Dhanbad-826004, Jharkhand, India.
| | - Sudipta Chakraborty
- Department of Chemistry & Chemical Biology, Indian Institute of Technology (Indian School of Mines), Dhanbad-826004, Jharkhand, India.
| | - Hari Pada Nayek
- Department of Chemistry & Chemical Biology, Indian Institute of Technology (Indian School of Mines), Dhanbad-826004, Jharkhand, India.
| |
Collapse
|
2
|
Ali T, Rahman T, Perveen S, Wang L, Khan A. Asymmetric Amination of 1,2-Diol through Borrowing Hydrogen: Synthesis of Vicinal Amino α-Tertiary Alcohol. Chemistry 2025; 31:e202404152. [PMID: 40011211 DOI: 10.1002/chem.202404152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 02/16/2025] [Accepted: 02/24/2025] [Indexed: 02/28/2025]
Abstract
Methods to prepare vicinal amino alcohols are important because of their presence in biologically active compounds. Despite the development of various methods for vicinal amino alcohol synthesis, C(sp3)-rich oxygen-containing β-amine compounds continue to pose great challenge. While ring-opening reaction of epoxides with amine nucleophile is the prime method for vicinal amino alcohol preparation, epoxides are highly reactive and sometimes difficult to make, resulting in drawbacks regarding selectivity of this approach. Here, we report a catalytic enantio-convergent amination of α-tertiary 1,2-diols for the efficient access to vicinal amino α-tertiary alcohols. The racemic α-tertiary 1,2-diol substrates of different alkyl/aryl or alkyl/alkyl backbone, can be converted to chiral vicinal amino α-tertiary alcohols through diphenyl phosphate-mediated RuCl3 catalysed asymmetric borrowing hydrogen (ABH) pathway. This simple ABH reaction can be scaled up to the synthesis of chiral ligands, synthetic intermediates, and other medicinally-relevant compounds. Overall, this catalytic redox-neutral procedure broadens the scope of Ru-catalysed amination of alcohols and discloses an underexplored step- and atom-economical synthetic strategy for the synthesis of vicinal amino α-tertiary alcohols and provides a practicable alternative to the present benchmark procedures.
Collapse
Affiliation(s)
- Tariq Ali
- Department of Chemistry, School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry and MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiao Tong University, Xi An Shi, Xi'an, 710049, P. R. China
| | - Tahir Rahman
- Department of Chemistry, School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry and MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiao Tong University, Xi An Shi, Xi'an, 710049, P. R. China
| | - Shahida Perveen
- Department of Chemistry, School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry and MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiao Tong University, Xi An Shi, Xi'an, 710049, P. R. China
| | - Lingyun Wang
- Department of Chemistry, School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry and MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiao Tong University, Xi An Shi, Xi'an, 710049, P. R. China
| | - Ajmal Khan
- Department of Chemistry, School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry and MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiao Tong University, Xi An Shi, Xi'an, 710049, P. R. China
| |
Collapse
|
3
|
Wu L, Li L, Zhao Y, Rui J, Zhan Y, Zhang L, Chen R, Zhou JS, Zhu C, Wu X. Nonactivated Aziridine Synthesis by Intermolecular Polarity-Mismatched Carboamination of Unactivated Alkenes with Unactivated Alkyl Halides. Org Lett 2024; 26:5609-5613. [PMID: 38949378 DOI: 10.1021/acs.orglett.4c01224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
A general intermolecular polarity-mismatched carboamination reaction of unactivated alkenes with unactivated alkyl halides has been developed. A series of nonactivated alkyl-substituted aziridines were constructed in exclusive regioselectivity. The dual polarity-mismatched mechanism might be involved.
Collapse
Affiliation(s)
- Linlin Wu
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Lei Li
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Yao Zhao
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Jiacheng Rui
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Ying Zhan
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Ling Zhang
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Rizhi Chen
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Jianrong Steve Zhou
- State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Chenjie Zhu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Xiaojin Wu
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| |
Collapse
|
4
|
Cui DQ, Wang YQ, Zhou B, Ye LW. Brønsted-Acid-Catalyzed Enantioselective Desymmetrization of 1,3-Diols: Access to Chiral β-Amino Alcohol Derivatives. Org Lett 2023; 25:9130-9135. [PMID: 38112554 DOI: 10.1021/acs.orglett.3c03525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Herein, we describe a Brønsted-acid-catalyzed enantioselective desymmetrization of 1,3-diols with alkynes through a hydroalkoxylation/hydrolysis process. The reaction leads to the atom-economical synthesis of valuable chiral β-amino alcohols under mild reaction conditions. Further synthetic transformations based on the β-amino alcohol moiety provide divergent approaches toward chiral N-containing heterocycles.
Collapse
Affiliation(s)
- Da-Qiu Cui
- Key Laboratory for Chemical Biology of Fujian Province and State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, People's Republic of China
| | - Yu-Qi Wang
- Key Laboratory for Chemical Biology of Fujian Province and State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, People's Republic of China
| | - Bo Zhou
- Key Laboratory for Chemical Biology of Fujian Province and State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, People's Republic of China
| | - Long-Wu Ye
- Key Laboratory for Chemical Biology of Fujian Province and State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, People's Republic of China
- State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, People's Republic of China
- State Key Laboratory of Organometallic Chemistry, Chinese Academy of Sciences, Shanghai 200032, People's Republic of China
| |
Collapse
|
5
|
Iron-Catalyzed Intermolecular Oxyamination of Terminal Alkenes Promoted by HFIP Using Hydroxylamine Derivatives. J Org Chem 2023; 88:4720-4729. [PMID: 36939110 DOI: 10.1021/acs.joc.3c00198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2023]
Abstract
An atom-economical intermolecular iron-catalyzed oxyamination of alkenes is described herein. The insertion of oxygenated and nitrogenated moieties from the hydroxylamine substrate was observed with full regio- and chemo-selectivity for terminal alkenes in good yields. HFIP as a solvent appeared to have a synergistic effect with the iron catalyst to promote the formation of the oxyaminated products. Preliminary mechanistic studies suggest a pathway going through an aziridination reaction followed by an in situ ring opening.
Collapse
|
6
|
Perveen S, Zhang S, Wang L, Song P, Ouyang Y, Jiao J, Duan X, Li P. Synthesis of Axially Chiral Biaryls via Enantioselective Ullmann Coupling of
ortho
‐Chlorinated Aryl Aldehydes Enabled by a Chiral 2,2′‐Bipyridine Ligand. Angew Chem Int Ed Engl 2022; 61:e202212108. [DOI: 10.1002/anie.202212108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Indexed: 11/07/2022]
Affiliation(s)
- Saima Perveen
- School of Chemistry Xi'an Jiaotong University Xi'an Shaanxi 710049 China
| | - Shuai Zhang
- Frontier Institute of Science and Technology Xi'an Jiaotong University Xi'an Shaanxi 710054 China
| | - Linghua Wang
- Frontier Institute of Science and Technology Xi'an Jiaotong University Xi'an Shaanxi 710054 China
| | - Peidong Song
- Frontier Institute of Science and Technology Xi'an Jiaotong University Xi'an Shaanxi 710054 China
| | - Yizhao Ouyang
- Frontier Institute of Science and Technology Xi'an Jiaotong University Xi'an Shaanxi 710054 China
| | - Jiao Jiao
- School of Chemistry Xi'an Jiaotong University Xi'an Shaanxi 710049 China
| | - Xin‐Hua Duan
- School of Chemistry Xi'an Jiaotong University Xi'an Shaanxi 710049 China
| | - Pengfei Li
- School of Chemistry Xi'an Jiaotong University Xi'an Shaanxi 710049 China
- Frontier Institute of Science and Technology Xi'an Jiaotong University Xi'an Shaanxi 710054 China
- State Key Laboratory of Elemento-Organic Chemistry Nankai University Tianjin 300071 China
| |
Collapse
|
7
|
Peng T, Tian J, Zhao Y, Jiang X, Cheng X, Deng G, Zhang Q, Wang Z, Yang J, Chen Y. Multienzyme Redox System with Cofactor Regeneration for Cyclic Deracemization of Sulfoxides. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202209272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Tao Peng
- Zunyi Medical University Department of Biochemistry CHINA
| | - Jin Tian
- Zunyi Medical University Department of Biochemistry CHINA
| | - Yuyan Zhao
- Zunyi Medical University Department of Biochemistry CHINA
| | - Xu Jiang
- Zunyi Medical University Department of Biochemistry CHINA
| | - Xiaoling Cheng
- Zunyi Medical University Department of Biochemistry CHINA
| | - Guozhong Deng
- Zunyi Medical University Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province CHINA
| | - Quan Zhang
- Zunyi Medical University Department of Biochemistry CHINA
| | - Zhongqiang Wang
- Zunyi Medical University Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province CHINA
| | - Jiawei Yang
- Zunyi Medical University Department of Biochemistry CHINA
| | - Yongzheng Chen
- Zunyi Medical University School of Pharmacy 6#, Xuefu West Road,Zunyi, Guizhou,P.R. China 563000 Zunyi CHINA
| |
Collapse
|
8
|
Peng T, Tian J, Zhao Y, Jiang X, Cheng X, Deng G, Zhang Q, Wang Z, Yang J, Chen Y. Multienzyme Redox System with Cofactor Regeneration for Cyclic Deracemization of Sulfoxides. Angew Chem Int Ed Engl 2022; 61:e202209272. [PMID: 35831972 DOI: 10.1002/anie.202209272] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Indexed: 11/07/2022]
Abstract
Optically pure sulfoxides are noteworthy compounds applied in a wide range of industrial fields; however, the biocatalytic deracemization of racemic sulfoxides is challenging. Herein, a high-enantioselective methionine sulfoxide reductase A (MsrA) was combined with a low-enantioselective styrene monooxygenase (SMO) for the cyclic deracemization of sulfoxides. Enantiopure sulfoxides were obtained in >90% yield and with >90% enantiomeric excess ( ee ) through dynamic "selective reduction and non-selective oxidation" cycles. The cofactors of MsrA and SMO were subsequently regenerated by the cascade catalysis of three auxiliary enzymes through the consumption of low-cost D-glucose. Moreover, this "one-pot, one-step" cyclic deracemization strategy exhibited a wide substrate scope toward various aromatic, heteroaromatic, alkyl and thio-alkyl sulfoxides. This system proposed an efficient strategy for the green synthesis of chiral sulfoxide .
Collapse
Affiliation(s)
- Tao Peng
- Zunyi Medical University, Department of Biochemistry, CHINA
| | - Jin Tian
- Zunyi Medical University, Department of Biochemistry, CHINA
| | - Yuyan Zhao
- Zunyi Medical University, Department of Biochemistry, CHINA
| | - Xu Jiang
- Zunyi Medical University, Department of Biochemistry, CHINA
| | - Xiaoling Cheng
- Zunyi Medical University, Department of Biochemistry, CHINA
| | - Guozhong Deng
- Zunyi Medical University, Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, CHINA
| | - Quan Zhang
- Zunyi Medical University, Department of Biochemistry, CHINA
| | - Zhongqiang Wang
- Zunyi Medical University, Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, CHINA
| | - Jiawei Yang
- Zunyi Medical University, Department of Biochemistry, CHINA
| | - Yongzheng Chen
- Zunyi Medical University, School of Pharmacy, 6#, Xuefu West Road,Zunyi, Guizhou,P.R. China, 563000, Zunyi, CHINA
| |
Collapse
|
9
|
Das A, Buzzetti L, Puriņš M, Waser J. Palladium-Catalyzed trans-Hydroalkoxylation: Counterintuitive Use of an Aryl Iodide Additive to Promote C–H Bond Formation. ACS Catal 2022; 12:7565-7570. [PMID: 35799768 PMCID: PMC9251722 DOI: 10.1021/acscatal.2c01809] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 06/03/2022] [Indexed: 12/31/2022]
Abstract
![]()
We report an enantioselective
palladium-catalyzed trans-hydroalkoxylation of propargylic
amines with a trifluoroacetaldehyde-derived
tether to build chiral oxazolidines. Diastereoselective hydrogenation
using a heterogeneous palladium catalyst then gave access to protected
benzylic amino alcohols in 45–87% yields and 84–94%
ee values. Hydroalkoxylation of the alkynes required a catalytic amount
of aryl iodide, highlighting the counterintuitive key role played
by a putative Pd(II)/ArI oxidative addition complex to promote oxypalladation/protodemetalation.
Collapse
Affiliation(s)
- Ashis Das
- Laboratory of Catalysis and Organic Synthesis and NCCR Catalysis, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, EPFL SB ISIC LCSO, BCH 1402, 1015 Lausanne, Switzerland
| | - Luca Buzzetti
- Laboratory of Catalysis and Organic Synthesis and NCCR Catalysis, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, EPFL SB ISIC LCSO, BCH 1402, 1015 Lausanne, Switzerland
| | - Mikus Puriņš
- Laboratory of Catalysis and Organic Synthesis and NCCR Catalysis, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, EPFL SB ISIC LCSO, BCH 1402, 1015 Lausanne, Switzerland
| | - Jerome Waser
- Laboratory of Catalysis and Organic Synthesis and NCCR Catalysis, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, EPFL SB ISIC LCSO, BCH 1402, 1015 Lausanne, Switzerland
| |
Collapse
|
10
|
Song J, Zheng WH. A highly enantioselective approach towards optically active γ-amino alcohols by tin-catalyzed kinetic resolution of 1,3-amino alcohols. Chem Commun (Camb) 2022; 58:7392-7395. [PMID: 35686938 DOI: 10.1039/d2cc01963a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A highly enantioselective kinetic resolution of racemic 1,3-amino alcohols via O-Acylation was achieved using a chiral organotin as the catalyst. Alkyl- and aryl-substituted 1,3-amino alcohols were resolved with excellent efficiencies to afford the recovered 1,3-amino alcohols and acylative products with high enantioselectivities, with s factors up to >600. Notably, the chiral organotin catalyst was more selective for anti-1,3-amino alcohols than for syn-isomers. A Gram-scale reaction with loading using 2 mol% catalysts demonstrated the utility of this protocol.
Collapse
Affiliation(s)
- Jian Song
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, Jiangsu, China.
| | - Wen-Hua Zheng
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, Jiangsu, China.
| |
Collapse
|
11
|
Song J, Zheng WH. Kinetic Resolution of Tertiary Alcohols by Chiral Organotin-Catalyzed O-Acylation. Org Lett 2022; 24:2349-2353. [PMID: 35315279 DOI: 10.1021/acs.orglett.2c00537] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
A novel highly enantioselective method for the kinetic resolution of racemic tertiary alcohols has been achieved through chiral organotin-catalyzed intermolecular acylation of the hydroxyl group. This process has demonstrated a broad substrate scope (both alkyl- and aryl-substituted tertiary alcohols) with high enantioselectivity under mild reaction conditions, affording the corresponding products and the recovered tertiary alcohols with high enantioselectivities, with s factors up to >200.
Collapse
Affiliation(s)
- Jian Song
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, Jiangsu, China
| | - Wen-Hua Zheng
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, Jiangsu, China
| |
Collapse
|
12
|
Guo Z, Xie J, Hu T, Chen Y, Tao H, Yang X. Kinetic resolution of N-aryl β-amino alcohols via asymmetric aminations of anilines. Chem Commun (Camb) 2021; 57:9394-9397. [PMID: 34528982 DOI: 10.1039/d1cc03117a] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
An efficient kinetic resolution of N-aryl β-amino alcohols has been developed via asymmetric para-aminations of anilines with azodicarboxylates enabled by chiral phosphoric acid catalysis. Broad substrate scope and high kinetic resolution performances were afforded with this method. Control experiments supported the critical roles of the NH and OH group in these reactions.
Collapse
Affiliation(s)
- Zheng Guo
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China. .,University of Chinese Academy of Sciences, Beijing 100049, China.,Shanghai Institute of Organic Chemistry, Shanghai 200032, China
| | - Jinglei Xie
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China.
| | - Tao Hu
- University of Chinese Academy of Sciences, Beijing 100049, China.,iHuman Institute, ShanghaiTech University, Shanghai 201210, China
| | - Yunrong Chen
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China.
| | - Houchao Tao
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China
| | - Xiaoyu Yang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China.
| |
Collapse
|
13
|
Mu QQ, Nie YX, Li H, Bai XF, Liu XW, Xu Z, Xu LW. Catalytic asymmetric oxidative carbonylation-induced kinetic resolution of sterically hindered benzylamines to chiral isoindolinones. Chem Commun (Camb) 2021; 57:1778-1781. [PMID: 33475103 DOI: 10.1039/d0cc07218d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
A highly enantioselective kinetic resolution of sterically hindered benzylamines has been achieved for the first time through transition-metal-catalyzed oxidative carbonylation, in which the new KR strategy offered a new approach to afford chiral isoindolinones (er up to 97 : 3) and the origin of chemoselectivity and stereoselectivity was confirmed by density functional theory (DFT) calculations.
Collapse
Affiliation(s)
- Qiu-Qi Mu
- Institute of Advanced Synthesis (IAS), Northwestern Polytechnical University (NPU), Xi'an 710072, China, Yangtze River Delta Research Institute of NPU, Taicang, Jiangsu 215400, China
| | | | | | | | | | | | | |
Collapse
|
14
|
Buzzetti L, Puriņš M, Greenwood PDG, Waser J. Enantioselective Carboetherification/Hydrogenation for the Synthesis of Amino Alcohols via a Catalytically Formed Chiral Auxiliary. J Am Chem Soc 2020; 142:17334-17339. [PMID: 33006890 PMCID: PMC7564104 DOI: 10.1021/jacs.0c09177] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Indexed: 01/15/2023]
Abstract
Chiral auxiliaries and asymmetric catalysis are the workhorses of enantioselective transformations, but they still remain limited in terms of either efficiency or generality. Herein, we present an alternative strategy for controlling the stereoselectivity of chemical reactions. Asymmetric catalysis is used to install a transient chiral auxiliary starting from achiral precursors, which then directs diastereoselective reactions. We apply this strategy to a palladium-catalyzed carboetherification/hydrogenation sequence on propargylic amines, providing fast access to enantioenriched chiral amino alcohols, important building blocks for medicinal chemistry and drug discovery. All stereoisomers of the product could be accessed by the choice of ligand and substituent on the propargylic amine, leading to a stereodivergent process.
Collapse
Affiliation(s)
| | | | | | - Jerome Waser
- Laboratory of Catalysis and Organic
Synthesis, Ecole Polytechnique Fédérale
de Lausanne, EPFL, SB ISIC LCSO,
BCH 1402, 1015 Lausanne, Switzerland
| |
Collapse
|
15
|
Uno H, Punna N, Tokunaga E, Shiro M, Shibata N. Synthesis of Both Enantiomers of Nine‐Membered CF
3
‐Substituted Heterocycles Using a Single Chiral Ligand: Palladium‐Catalyzed Decarboxylative Ring Expansion with Kinetic Resolution. Angew Chem Int Ed Engl 2020; 59:8187-8194. [DOI: 10.1002/anie.201915021] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Indexed: 12/14/2022]
Affiliation(s)
- Hiroto Uno
- Department of Nanopharmaceutical Sciences & Department of Life Science and Applied ChemistryNagoya Institute of Technology Gokiso, Showa-ku Nagoya 466-8555 Japan
| | - Nagender Punna
- Department of Nanopharmaceutical Sciences & Department of Life Science and Applied ChemistryNagoya Institute of Technology Gokiso, Showa-ku Nagoya 466-8555 Japan
| | - Etsuko Tokunaga
- Department of Nanopharmaceutical Sciences & Department of Life Science and Applied ChemistryNagoya Institute of Technology Gokiso, Showa-ku Nagoya 466-8555 Japan
| | - Motoo Shiro
- Rigaku Corporation 3-9-12, Matsubara-cho, Akishima-shi Tokyo 196-8666 Japan
| | - Norio Shibata
- Department of Nanopharmaceutical Sciences & Department of Life Science and Applied ChemistryNagoya Institute of Technology Gokiso, Showa-ku Nagoya 466-8555 Japan
- Institute of Advanced Fluorine-Containing MaterialsZhejiang Normal University 321004 Jinhua China
| |
Collapse
|
16
|
Uno H, Punna N, Tokunaga E, Shiro M, Shibata N. Synthesis of Both Enantiomers of Nine‐Membered CF
3
‐Substituted Heterocycles Using a Single Chiral Ligand: Palladium‐Catalyzed Decarboxylative Ring Expansion with Kinetic Resolution. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201915021] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Hiroto Uno
- Department of Nanopharmaceutical Sciences & Department of Life Science and Applied ChemistryNagoya Institute of Technology Gokiso, Showa-ku Nagoya 466-8555 Japan
| | - Nagender Punna
- Department of Nanopharmaceutical Sciences & Department of Life Science and Applied ChemistryNagoya Institute of Technology Gokiso, Showa-ku Nagoya 466-8555 Japan
| | - Etsuko Tokunaga
- Department of Nanopharmaceutical Sciences & Department of Life Science and Applied ChemistryNagoya Institute of Technology Gokiso, Showa-ku Nagoya 466-8555 Japan
| | - Motoo Shiro
- Rigaku Corporation 3-9-12, Matsubara-cho, Akishima-shi Tokyo 196-8666 Japan
| | - Norio Shibata
- Department of Nanopharmaceutical Sciences & Department of Life Science and Applied ChemistryNagoya Institute of Technology Gokiso, Showa-ku Nagoya 466-8555 Japan
- Institute of Advanced Fluorine-Containing MaterialsZhejiang Normal University 321004 Jinhua China
| |
Collapse
|