1
|
Xu L, Wu YJ, Gao RT, Li SY, Liu N, Wu ZQ. Visible Helicity Induction and Memory in Polyallene toward Circularly Polarized Luminescence, Helicity Discrimination, and Enantiomer Separation. Angew Chem Int Ed Engl 2023; 62:e202217234. [PMID: 36745050 DOI: 10.1002/anie.202217234] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/31/2023] [Accepted: 02/06/2023] [Indexed: 02/07/2023]
Abstract
Inspired by biological helices (e.g., DNA), artificial helical polymers have attracted intense attention. However, precise synthesis of one-handed helices from achiral materials remains a formidable challenge. Herein, a series of achiral poly(biphenyl allene)s with controlled molar mass and low dispersity were prepared and induced into one-handed helices using chiral amines and alcohols. The induced one-handed helix was simultaneously memorized, even after the chiral inducer was removed. The switchable induction processes were visible to naked eye; the achiral polymers exhibited blue emission (irradiated at 365 nm), whereas the induced one-handed helices exhibited cyan emission with clear circularly polarized luminescence. The induced helices formed stable gels in various solvents with helicity discrimination ability: the same-handed helix gels were self-healing, whereas the gels of opposite-handed helicity were self-sorted. Moreover, the induced helices could separate enantiomers via enantioselective crystallization with high efficiency and switchable enantioselectivity.
Collapse
Affiliation(s)
- Lei Xu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, China.,Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, Huaibei Normal University, Huaibei, Anhui, 235000, P. R. China
| | - Yong-Jie Wu
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, and Anhui Key Laboratory of Advanced Functional Materials and Devices, Hefei University of Technology, Hefei, Anhui Province, 230009, China
| | - Run-Tan Gao
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Shi-Yi Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Na Liu
- The School of Pharmaceutical Sciences, Jilin University, 1266 Fujin Road, Changchun, Jilin, 130021, P. R. China
| | - Zong-Quan Wu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, China
| |
Collapse
|
2
|
Wang K, Gan L, Wu Y, Zhou MJ, Liu G, Huang Z. Selective dehydrogenation of small and large molecules by a chloroiridium catalyst. SCIENCE ADVANCES 2022; 8:eabo6586. [PMID: 36149964 PMCID: PMC9506726 DOI: 10.1126/sciadv.abo6586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The dehydrogenation of abundant alkane feedstocks to olefins is one of the mostly intensively investigated reactions in organic catalysis. A long-standing, pervasive challenge in this transformation is the direct dehydrogenation of unactivated 1,1-disubstituted ethane, an aliphatic motif commonly found in organic molecules. Here, we report the design of a diphosphine chloroiridium catalyst for undirected dehydrogenation of this aliphatic class to form valuable 1,1-disubstituted ethylene. Featuring high site selectivity and excellent functional group compatibility, this catalytic system is applicable to late-stage dehydrogenation of complex bioactive molecules. Moreover, the system enables unprecedented dehydrogenation of polypropene with controllable degree of desaturation, dehydrogenating more than 10 in 100 propene units. Further derivatizations of the resulting double bonds afford functionalized polypropenes.
Collapse
Affiliation(s)
- Kuan Wang
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Lan Gan
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
- School of Chemistry and Material Sciences, Hangzhou Institute of Advanced Study, Hangzhou 310024, China
| | - Yuheng Wu
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Min-Jie Zhou
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Guixia Liu
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Zheng Huang
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
- School of Chemistry and Material Sciences, Hangzhou Institute of Advanced Study, Hangzhou 310024, China
| |
Collapse
|
3
|
Fan T, Ma X, Liu Y, Jiang C, Xu Y, Chen Y. Visible-Light-Induced Tandem Reaction of Allenes with Selenesulfonates Leading to ( E)-2,3-Disulfonylpropene Derivatives. J Org Chem 2022; 87:5846-5855. [PMID: 35414178 DOI: 10.1021/acs.joc.2c00134] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A visible-light-induced tandem reaction of allenes with selenesulfonates was developed, providing (E)-2,3-disulfonylpropene derivatives in moderate to good yields. This reaction was featured with simple operation, good regioselectivity and stereoselectivity, and wide functional group tolerance. Photoinduced radical additions via energy transfer were proposed.
Collapse
Affiliation(s)
- Tao Fan
- Pharmacy School, Guilin Medical University, Guilin 541004, People's Republic of China
| | - Xianli Ma
- Pharmacy School, Guilin Medical University, Guilin 541004, People's Republic of China
| | - Yan Liu
- Pharmacy School, Guilin Medical University, Guilin 541004, People's Republic of China
| | - Caina Jiang
- Pharmacy School, Guilin Medical University, Guilin 541004, People's Republic of China
| | - Yanli Xu
- Pharmacy School, Guilin Medical University, Guilin 541004, People's Republic of China
| | - Yanyan Chen
- Pharmacy School, Guilin Medical University, Guilin 541004, People's Republic of China
| |
Collapse
|
4
|
Liu ZX, Xu TQ. Crystalline sulfur-functionalized poly(α-olefin) synthesized by scandium-catalyzed coordination polymerization. Polym Chem 2022. [DOI: 10.1039/d2py00315e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Combined with organoborate, the scandium complex catalyzed monomers to produce a series of syndiotactic sulfur-functionalized poly(α-olefin)s (rrrr of up to 0.95) which formed crystalline materials with a Tm of up to 91 °C.
Collapse
Affiliation(s)
- Zhao-Xuan Liu
- State Key Laboratory of Fine Chemicals, Department of Chemistry, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Tie-Qi Xu
- State Key Laboratory of Fine Chemicals, Department of Chemistry, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
5
|
Wang C, Zou H, Liu N, Wu ZQ. Recent Advances in Polyallenes: Preparation, Self-Assembly, and Stimuli-Responsiveness. Chem Asian J 2021; 16:3864-3872. [PMID: 34618408 DOI: 10.1002/asia.202101051] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/06/2021] [Indexed: 11/06/2022]
Abstract
Polyallenes, as a typical type of reactive polymers, are of great significance and have aroused widespread interest because they contain double bonds that can be post-modified into other functionalities to afford varieties of functional materials. This Minireview firstly highlights the recent advances in the preparation of polyallenes, including preparation of helical polyallenes through directly polymerization of chiral allene monomers or helix-sense-selective polymerization (HSSP) of achiral allene monomers, synthesis of 1,2-regulated polyallenes and 2,3-regulated polyallenes via selective polymerization of allene monomers, polymerization of allene monomers catalyzed by Ni(II)-terminated poly(3-hexylthiophene) (P3HT), and so on. Then, latest progress on the self-assembly and stimuli-responses of polyallene-based diblock, ABA and ABC triblock copolymers is summarized. We hope this Minireview will inspire more interest in developing polyallenes and encourage further advances in functional materials.
Collapse
Affiliation(s)
- Chao Wang
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology and Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei, 230009, Anhui Province, P. R. China
| | - Hui Zou
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology and Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei, 230009, Anhui Province, P. R. China
| | - Na Liu
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology and Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei, 230009, Anhui Province, P. R. China
| | - Zong-Quan Wu
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology and Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei, 230009, Anhui Province, P. R. China
| |
Collapse
|
6
|
Zhao W, Li F, Li C, He J, Zhang Y, Chen C. Lewis Pair Catalyzed Regioselective Polymerization of (E,E)-Alkyl Sorbates for the Synthesis of (AB) n Sequenced Polymers. Angew Chem Int Ed Engl 2021; 60:24306-24311. [PMID: 34510679 DOI: 10.1002/anie.202111336] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Indexed: 01/17/2023]
Abstract
In this contribution, Lewis pairs (LPs) composed of N-heterocyclic olefins (NHOs) with different steric hindrance and nucleophilicity as Lewis bases (LBs) and Al-based compounds with comparable acidity but different steric hindrance as Lewis acids (LAs) were applied for 1,4-selective polymerization of (E,E)-methyl sorbate (MS) and (E,E)-ethyl sorbate (ES). The effects of steric hindrance, electron-donating ability, and acidity of LPs on MS and ES polymerization were systematically investigated. High catalytic activity and high initiation efficiency can be achieved, leading to the formation of PMS with 100 % 1,4-selectivity, tunable molecular weight (Mw up to 333 kg mol-1 ), and narrow molecular weight distribution (MWD). Block copolymerization of ES and methyl methacrylate (MMA) was also realized. Meanwhile, this system can be applied to other homologous conjugated diene substrates. Furthermore, simple chemical reactions can efficiently convert PMS to different polymers with strict (AB)n sequence structures, such as poly(sorbic acid), poly(propylene-alt-methyl acrylate), poly(propylene-alt-acrylic acid), poly(propylene-alt-allyl alcohol), and poly(ethylene-alt-2-butylene).
Collapse
Affiliation(s)
- Wuchao Zhao
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin, 130012, P. R. China
| | - Fukuan Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin, 130012, P. R. China
| | - Chengkai Li
- CAS Key Laboratory of Soft Matter Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Jianghua He
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin, 130012, P. R. China
| | - Yuetao Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin, 130012, P. R. China
| | - Changle Chen
- CAS Key Laboratory of Soft Matter Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, 230026, P. R. China
| |
Collapse
|
7
|
Zhao W, Li F, Li C, He J, Zhang Y, Chen C. Lewis Pair Catalyzed Regioselective Polymerization of (
E
,
E
)‐Alkyl Sorbates for the Synthesis of (AB)
n
Sequenced Polymers. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202111336] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Wuchao Zhao
- State Key Laboratory of Supramolecular Structure and Materials College of Chemistry Jilin University, Changchun Jilin 130012 P. R. China
| | - Fukuan Li
- State Key Laboratory of Supramolecular Structure and Materials College of Chemistry Jilin University, Changchun Jilin 130012 P. R. China
| | - Chengkai Li
- CAS Key Laboratory of Soft Matter Chemistry Hefei National Laboratory for Physical Sciences at the Microscale Department of Polymer Science and Engineering University of Science and Technology of China Hefei 230026 P. R. China
| | - Jianghua He
- State Key Laboratory of Supramolecular Structure and Materials College of Chemistry Jilin University, Changchun Jilin 130012 P. R. China
| | - Yuetao Zhang
- State Key Laboratory of Supramolecular Structure and Materials College of Chemistry Jilin University, Changchun Jilin 130012 P. R. China
| | - Changle Chen
- CAS Key Laboratory of Soft Matter Chemistry Hefei National Laboratory for Physical Sciences at the Microscale Department of Polymer Science and Engineering University of Science and Technology of China Hefei 230026 P. R. China
| |
Collapse
|
8
|
Xu S, Wang J, Zhai J, Wang F, Pan L, Shi X. Imidazoline-2-imine Functionalized Fluorenyl Rare-Earth Metal Complexes: Synthesis and Their Application in the Polymerization of ortho-Methoxystyrene. Organometallics 2021. [DOI: 10.1021/acs.organomet.1c00439] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Suting Xu
- Department of Polymer Materials, College of Materials Science and Engineering, Shanghai University, Materials Building, Nanchen Street 333, Shanghai 200444, China
| | - Jixing Wang
- Department of Polymer Materials, College of Materials Science and Engineering, Shanghai University, Materials Building, Nanchen Street 333, Shanghai 200444, China
| | - Jingjing Zhai
- Department of Polymer Materials, College of Materials Science and Engineering, Shanghai University, Materials Building, Nanchen Street 333, Shanghai 200444, China
| | - Fei Wang
- Tianjin Key Lab of Composite & Functional Materials, School of Material Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Li Pan
- Tianjin Key Lab of Composite & Functional Materials, School of Material Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Xiaochao Shi
- Department of Polymer Materials, College of Materials Science and Engineering, Shanghai University, Materials Building, Nanchen Street 333, Shanghai 200444, China
| |
Collapse
|
9
|
Gao X, Nie J, Chen X, Zhou L, Hou X, Zou H. Highly 2,3-selective polymerization of phenylallene and its derivatives by vanadium complexes. Polym Chem 2021. [DOI: 10.1039/d1py00761k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Allene polymerizations by vanadium complexes using various Al co-catalysts were carried out. All the vanadium complexes show moderate activity for phenylallene and high 2,3-selectivity (>99%).
Collapse
Affiliation(s)
- Xiang Gao
- Department of Polymer Science and Engineering
- School of Chemistry and Chemical Engineering
- and Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering
- Hefei University of Technology
- People's Republic of China
| | - Jinxin Nie
- Department of Polymer Science and Engineering
- School of Chemistry and Chemical Engineering
- and Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering
- Hefei University of Technology
- People's Republic of China
| | - Xiaojian Chen
- Department of Polymer Science and Engineering
- School of Chemistry and Chemical Engineering
- and Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering
- Hefei University of Technology
- People's Republic of China
| | - Li Zhou
- Department of Polymer Science and Engineering
- School of Chemistry and Chemical Engineering
- and Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering
- Hefei University of Technology
- People's Republic of China
| | - Xiaohua Hou
- Department of Polymer Science and Engineering
- School of Chemistry and Chemical Engineering
- and Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering
- Hefei University of Technology
- People's Republic of China
| | - Hui Zou
- Department of Polymer Science and Engineering
- School of Chemistry and Chemical Engineering
- and Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering
- Hefei University of Technology
- People's Republic of China
| |
Collapse
|
10
|
Zhou M, Wang S, Ding A, Lu G, Huang X, Jiang X, Xu B. First polyallene-based well-defined amphiphilic diblock copolymer via RAFT polymerization. Polym Chem 2021. [DOI: 10.1039/d1py00509j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
We report the first well-defined amphiphilic diblock copolymer via allene and vinyl monomers.
Collapse
Affiliation(s)
- Mingtao Zhou
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules
- Center for Excellence in Molecular Synthesis
- Shanghai Institute of Organic Chemistry
- University of Chinese Academy of Sciences
- Chinese Academy of Sciences
| | - Shengfei Wang
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules
- Center for Excellence in Molecular Synthesis
- Shanghai Institute of Organic Chemistry
- University of Chinese Academy of Sciences
- Chinese Academy of Sciences
| | - Aishun Ding
- Department of Chemistry
- Fudan University
- Shanghai 200438
- People's Republic of China
| | - Guolin Lu
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules
- Center for Excellence in Molecular Synthesis
- Shanghai Institute of Organic Chemistry
- University of Chinese Academy of Sciences
- Chinese Academy of Sciences
| | - Xiaoyu Huang
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules
- Center for Excellence in Molecular Synthesis
- Shanghai Institute of Organic Chemistry
- University of Chinese Academy of Sciences
- Chinese Academy of Sciences
| | - Xue Jiang
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules
- Center for Excellence in Molecular Synthesis
- Shanghai Institute of Organic Chemistry
- University of Chinese Academy of Sciences
- Chinese Academy of Sciences
| | - Binbin Xu
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules
- Center for Excellence in Molecular Synthesis
- Shanghai Institute of Organic Chemistry
- University of Chinese Academy of Sciences
- Chinese Academy of Sciences
| |
Collapse
|
11
|
Kang SM, Xu XH, Xu L, Zhou L, Liu N, Wu ZQ. Highly 2,3-selective and fast living polymerization of alkyl-, alkoxy- and phenylallenes using nickel(ii) catalysts. Polym Chem 2021. [DOI: 10.1039/d1py00482d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
A novel Ni(ii) catalyst was developed to initiate the polymerization of various allene monomers efficiently in a fast and living/controlled manner, and the thermodynamic and crystallization properties of the polymers were investigated.
Collapse
Affiliation(s)
- Shu-Ming Kang
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, and Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei University of Technology, Hefei 230009, Anhui Province, China
| | - Xun-Hui Xu
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, and Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei University of Technology, Hefei 230009, Anhui Province, China
| | - Lei Xu
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, and Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei University of Technology, Hefei 230009, Anhui Province, China
| | - Li Zhou
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, and Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei University of Technology, Hefei 230009, Anhui Province, China
| | - Na Liu
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, and Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei University of Technology, Hefei 230009, Anhui Province, China
| | - Zong-Quan Wu
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, and Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei University of Technology, Hefei 230009, Anhui Province, China
| |
Collapse
|
12
|
Dongmei Cui. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202007394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
13
|
Dongmei Cui. Angew Chem Int Ed Engl 2020; 59:21276. [PMID: 32495962 DOI: 10.1002/anie.202007394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
"The most important future application of my research is making environmentally benign tyres … My favorite way to spend a holiday is climbing a mountain …" Find out more about Dongmei Cui in her Author Profile.
Collapse
|
14
|
Huang M, Chen J, Wang B, Huang W, Chen H, Gao Y, Marks TJ. Polar Isotactic and Syndiotactic Polypropylenes by Organozirconium‐Catalyzed Masking‐Reagent‐Free Propylene and Amino–Olefin Copolymerization. Angew Chem Int Ed Engl 2020; 59:20522-20528. [DOI: 10.1002/anie.202005635] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 06/30/2020] [Indexed: 02/02/2023]
Affiliation(s)
- Minglu Huang
- Department of Chemistry Northwestern University 2145 Sheridan Road Evanston IL 60208 USA
- Wanhua Chemical Group Co., Ltd. Yantai Shandong Province 264002 P. R. China
| | - Jiazhen Chen
- Department of Chemistry Northwestern University 2145 Sheridan Road Evanston IL 60208 USA
| | - Binghao Wang
- Department of Chemistry Northwestern University 2145 Sheridan Road Evanston IL 60208 USA
| | - Wei Huang
- Department of Chemistry Northwestern University 2145 Sheridan Road Evanston IL 60208 USA
| | - Haibo Chen
- Wanhua Chemical Group Co., Ltd. Yantai Shandong Province 264002 P. R. China
| | - Yanshan Gao
- Department of Chemistry Northwestern University 2145 Sheridan Road Evanston IL 60208 USA
| | - Tobin J. Marks
- Department of Chemistry Northwestern University 2145 Sheridan Road Evanston IL 60208 USA
| |
Collapse
|
15
|
Huang M, Chen J, Wang B, Huang W, Chen H, Gao Y, Marks TJ. Polar Isotactic and Syndiotactic Polypropylenes by Organozirconium‐Catalyzed Masking‐Reagent‐Free Propylene and Amino–Olefin Copolymerization. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202005635] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Minglu Huang
- Department of Chemistry Northwestern University 2145 Sheridan Road Evanston IL 60208 USA
- Wanhua Chemical Group Co., Ltd. Yantai Shandong Province 264002 P. R. China
| | - Jiazhen Chen
- Department of Chemistry Northwestern University 2145 Sheridan Road Evanston IL 60208 USA
| | - Binghao Wang
- Department of Chemistry Northwestern University 2145 Sheridan Road Evanston IL 60208 USA
| | - Wei Huang
- Department of Chemistry Northwestern University 2145 Sheridan Road Evanston IL 60208 USA
| | - Haibo Chen
- Wanhua Chemical Group Co., Ltd. Yantai Shandong Province 264002 P. R. China
| | - Yanshan Gao
- Department of Chemistry Northwestern University 2145 Sheridan Road Evanston IL 60208 USA
| | - Tobin J. Marks
- Department of Chemistry Northwestern University 2145 Sheridan Road Evanston IL 60208 USA
| |
Collapse
|
16
|
A new complex compound of chromium(III) with 5-aminopyridine-2-carboxylate anions – Structure, physicochemical and catalytic properties. Polyhedron 2020. [DOI: 10.1016/j.poly.2020.114616] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
17
|
Zhang Z, Dou Y, Cai Z, Liu D, Li S, Cui D. Syndioselective Coordination (Co)Polymerization of Alkyne-Substituted Styrenes Using Rare-Earth Metal Catalysts. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c01237] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Zhen Zhang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- Roll Forging Research Institute, School of Materials Science and Engineering, Jilin University, Changchun 130025, China
| | - Yanli Dou
- Key Laboratory of Automobile Materials of Ministry of Education, Department of Materials Science and Engineering, Jilin University, Changchun 130025, China
| | - Zhongyi Cai
- Roll Forging Research Institute, School of Materials Science and Engineering, Jilin University, Changchun 130025, China
| | - Dongtao Liu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Shihui Li
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Dongmei Cui
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| |
Collapse
|