1
|
Martín J, Schörgenhumer J, Nevado C. Interrogating the anti-Insertion of Alkynes into Gold(III). JACS AU 2025; 5:1439-1447. [PMID: 40151240 PMCID: PMC11938007 DOI: 10.1021/jacsau.5c00056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 02/10/2025] [Accepted: 02/11/2025] [Indexed: 03/29/2025]
Abstract
Alkyne hydrofunctionalizations are a powerful strategy to efficiently build up structural complexity. The selectivity of these reactions is typically governed by the interaction between the alkyne and a metal-hydride, which commonly proceeds via a well-understood syn-insertion mechanism. In contrast, anti-insertions are far less common, with proposed mechanisms often extrapolated from literature precedents rather than grounded in direct experimental evidence. While gold complexes rank among the most efficient catalysts for such transformations, the mechanistic understanding of the key alkyne insertion step remains incomplete. In this study, we demonstrate that stable gold(III)-hydrides, featuring a (P∧N∧C) ligand, undergo selective insertion of alkynes to yield the corresponding anti-Markovnikov Z-vinyl complexes. A combination of control experiments, kinetic studies, and computational analyses reveals a nonradical, bimolecular insertion process, in which water plays a pivotal role by accelerating the reaction and potentially stabilizing a highly reactive, T-shaped gold(I) intermediate. Notably, this is the first demonstration of the insertion of both activated and unactivated terminal and internal alkynes into a gold(III)-hydride complex.
Collapse
Affiliation(s)
- Jaime Martín
- Department of Chemistry, University
of Zurich, Winterthurerstrasse 190, Zurich, CH 8057, Switzerland
| | - Johannes Schörgenhumer
- Department of Chemistry, University
of Zurich, Winterthurerstrasse 190, Zurich, CH 8057, Switzerland
| | - Cristina Nevado
- Department of Chemistry, University
of Zurich, Winterthurerstrasse 190, Zurich, CH 8057, Switzerland
| |
Collapse
|
2
|
Wu R, Xu Z, Zhu D, Zhu S. Dirhodium-Catalyzed Asymmetric Transformations of Alkynes via Carbene Intermediates. Acc Chem Res 2025; 58:799-811. [PMID: 39887018 DOI: 10.1021/acs.accounts.4c00715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2025]
Abstract
ConspectusFunctionalization of alkynes is an established cornerstone of organic synthesis. While numerous transition metals exhibit promising activities in the transformations of alkynes via π-insertion or oxidative cyclometalation, Lewis π-acids offer a different approach. By coordinating with alkynes through π-bonding, Lewis π-acids facilitate nucleophilic addition, leading to the formation of alkenyl metal species. These species can undergo electron rearrangement to generate metal carbenes, which are crucial intermediates for subsequent carbene transfer reactions. This reaction pathway provides a versatile route for alkyne functionalization, especially in an asymmetric manner. Although the Lewis π-acid, gold(I), pioneered this reaction mode, the development of asymmetric variants remains challenging due to the linear coordination of gold(I). Therefore, expanding the range of catalysts beyond gold(I) complexes to other metal catalysts would facilitate further advances in chiral molecule construction and the exploration of novel reaction modes.In this Account, we present a concise review of alkyne multifunctionalization via dirhodium-catalyzed asymmetric transformations, providing the development of the modulation strategies and substrates and plausible reaction mechanisms. In the aromatization-driven strategy, the furanyl dirhodium carbene is generated from an enynone, which is terminated by enantioselective intramolecular C-H insertion, cyclopropanation, aromatic substitution, or the Büchner reaction, giving chiral dihydroindoles, dihydrobenzofurans, cyclopropane-fused tetrahydroquinolines, fluorenes, or cyclohepta[b]benzofurans. The cap-tether modulation strategy was developed in a subsequent study to balance the reactivity and selectivity of an azo-enyne. This strategy gave the first catalytic asymmetric cycloisomerization of azo-enyne, affording centrally and axially chiral isoindazole derivatives. The synergistic activation strategy, i.e., EWG activation and C-H···O interaction, was introduced to achieve the first dirhodium-catalyzed asymmetric cycloisomerization of enynes, providing a range of chiral cyclopropane-annulated bicyclic systems from enynals. Benefiting from these successes, difluoromethyl-substituted enynes were designed and proven to be effective substrates. With the corresponding benzo-1,6-enynes as the substrates, the enantioselective biscyclopropanation and the cascaded cyclopropanation/cyclopropenation were achieved using alkynes as dicarbene equivalents. Additionally, benzo-1,5-enynal generated vinyl dirhodium carbene, which reacted with a variety of alkenes via [2 + 1] cycloaddition, [4 + 3] cycloaddition, or formal allylation, giving spiro and fused polycyclic heterocycles. Coupling the synergistic activation strategy with desymmetrization, we further successfully achieved the asymmetric cycloisomerization of diynals, constructing furan-fused dihydropiperidines with an alkyne-substituted aza-quaternary stereocenter. Notably, by analyzing X-ray structures of several dirhodium-alkyne π-complexes, together with the results of DFT calculations and control experiments, we obtained evidence supporting the synergistic activation mode, making the well-defined paddlewheel-like dirhodium(II) stand out among the other metal complexes. We anticipate that our research will significantly advance the fields of dirhodium, alkyne, and carbene chemistry.
Collapse
Affiliation(s)
- Rui Wu
- School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Zurong Xu
- Key Lab of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Dong Zhu
- School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Shifa Zhu
- School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
- Key Lab of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
- State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
3
|
Cheng T, Li S, Qiu J, Yang Z, Jiang H, Zhu S. Homologation of Alkenes Using Acetylene as a C 2 Feedstock. Angew Chem Int Ed Engl 2025:e202425169. [PMID: 40042732 DOI: 10.1002/anie.202425169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Revised: 03/04/2025] [Accepted: 03/05/2025] [Indexed: 03/18/2025]
Abstract
The preparation of diverse homologs from lead compounds has been a common and important practice in medicinal, mechano, polymeric, and many other branches of chemistry. The homologation of alkenes, though important, remains challenging due to the difficulty of (CH2)n insertion into the main carbon chain of alkenes compared to chains containing other polar functional groups. Here, we report the homologation of both terminal and internal alkenes by using acetylene as a cheap and abundant C2 feedstock. The process involves an in-situ transformation of alkenes into boranes and then into elongated alkenes, during which direct (CH2)n insertion is avoided. The reaction can be carried out iteratively to achieve up to a 12-carbon elongation.
Collapse
Affiliation(s)
- Tairan Cheng
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, P.R. China
| | - Siju Li
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, P.R. China
| | - Jiayao Qiu
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, P.R. China
| | - Zedong Yang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, P.R. China
| | - Huanfeng Jiang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, P.R. China
| | - Shifa Zhu
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, P.R. China
- School of Chemistry and Chemical Engineering, State Key Laboratory of Bio-based Fiber Materials, Zhejiang Sci-Tech University, Hangzhou, 310018, P.R. China
| |
Collapse
|
4
|
Cao Z, Wang Q, Neumann H, Beller M. Modular and Diverse Synthesis of Acrylamides by Palladium-Catalyzed Hydroaminocarbonylation of Acetylene. Angew Chem Int Ed Engl 2024; 63:e202410597. [PMID: 38986016 DOI: 10.1002/anie.202410597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/09/2024] [Accepted: 07/09/2024] [Indexed: 07/12/2024]
Abstract
The development of all kinds of covalent drugs had a major impact on the improvement of the human health system. Covalent binding to target proteins is achieved by so-called electrophilic warheads, which are incorporated in the respective drug molecule. In the last decade, specifically acrylamides emerged as attractive warheads in covalent drug design. Herein, a straightforward palladium-catalyzed hydroaminocarbonylation of acetylene has been developed, allowing a modular and diverse synthesis of bio-active acrylamides. This general protocol features high atom efficiency, wide functional group compatibility, high chemoselectivity and proceeds additive free under mild reaction conditions. The synthetic utility of this protocol is showcased in the synthesis of ibrutinib, osimertinib, and other bio-active compound derivatives.
Collapse
Affiliation(s)
- Zhusong Cao
- Leibniz-Institut für Katalyse e. V. an der, Universität Rostock, Albert-Einstein-Straße 29a, 18059, Rostock, Germany
| | - Qiang Wang
- Leibniz-Institut für Katalyse e. V. an der, Universität Rostock, Albert-Einstein-Straße 29a, 18059, Rostock, Germany
| | - Helfried Neumann
- Leibniz-Institut für Katalyse e. V. an der, Universität Rostock, Albert-Einstein-Straße 29a, 18059, Rostock, Germany
| | - Matthias Beller
- Leibniz-Institut für Katalyse e. V. an der, Universität Rostock, Albert-Einstein-Straße 29a, 18059, Rostock, Germany
| |
Collapse
|
5
|
Hammarback LA, Medina-Gil T, Sadurní A, Echavarren AM. Three-Component Gold(I)-Catalyzed Alkoxyvinylation. Org Lett 2024; 26:6375-6379. [PMID: 39025472 DOI: 10.1021/acs.orglett.4c02102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Acetylene has been underexploited despite being a highly valuable feedstock for chemical synthesis. We have developed the first true gold(I)-catalyzed intermolecular three-component reaction between acetylene, alkenes, and alcohols to afford β-vinyl hemiaminal scaffolds from N-vinyl amides. Unusual biscyclopropyl and 3-vinyl N-heterocyclic scaffolds were obtained through the incorporation of a second N-vinyl unit or tethered alkene into the starting material.
Collapse
Affiliation(s)
- L Anders Hammarback
- Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology (BIST), 43007 Tarragona, Spain
| | - Tania Medina-Gil
- Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology (BIST), 43007 Tarragona, Spain
- Departament de Química Orgànica i Analítica, Universitat Rovira i Virgili (URV), 43007 Tarragona, Spain
| | - Anna Sadurní
- Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology (BIST), 43007 Tarragona, Spain
| | - Antonio M Echavarren
- Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology (BIST), 43007 Tarragona, Spain
- Departament de Química Orgànica i Analítica, Universitat Rovira i Virgili (URV), 43007 Tarragona, Spain
| |
Collapse
|
6
|
Johnson CL, Storm DJ, Sajjad MA, Gyton MR, Duckett SB, Macgregor SA, Weller AS, Navarro M, Campos J. A Gold(I)-Acetylene Complex Synthesised using Single-Crystal Reactivity. Angew Chem Int Ed Engl 2024; 63:e202404264. [PMID: 38699962 DOI: 10.1002/anie.202404264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/01/2024] [Accepted: 05/03/2024] [Indexed: 05/05/2024]
Abstract
Using single-crystal to single-crystal solid/gas reactivity the gold(I) acetylene complex [Au(L1)(η2-HC≡CH)][BArF 4] is cleanly synthesized by addition of acetylene gas to single crystals of [Au(L1)(CO)][BArF 4] [L1=tris-2-(4,4'-di-tert-butylbiphenyl)phosphine, ArF=3,5-(CF3)2C6H3]. This simplest gold-alkyne complex has been characterized by single crystal X-ray diffraction, solution and solid-state NMR spectroscopy and periodic DFT. Bonding of HC≡CH with [Au(L1)]+ comprises both σ-donation and π-backdonation with additional dispersion interactions within the cavity-shaped phosphine.
Collapse
Affiliation(s)
- Chloe L Johnson
- Department of Chemistry, University of York, York, YO10 5DD, UK
| | - Daniel J Storm
- EaStCHEM School of Chemistry, University of St Andrews, North Haugh, St Andrews, KY16 9ST, UK
| | - M Arif Sajjad
- EaStCHEM School of Chemistry, University of St Andrews, North Haugh, St Andrews, KY16 9ST, UK
| | - Matthew R Gyton
- Department of Chemistry, University of York, York, YO10 5DD, UK
| | - Simon B Duckett
- Department of Chemistry, University of York, York, YO10 5DD, UK
| | - Stuart A Macgregor
- EaStCHEM School of Chemistry, University of St Andrews, North Haugh, St Andrews, KY16 9ST, UK
| | - Andrew S Weller
- Department of Chemistry, University of York, York, YO10 5DD, UK
| | - Miquel Navarro
- Instituto de Investigaciones Químicas (IIQ), Departamento de Química Inorgánica and Centro de Innovación en Química Avanzada (ORFEO-CINQA), Consejo Superior de Investigaciones Científicas (CSIC) and University of Sevilla, 41092, Sevilla, Spain
| | - Jesús Campos
- Instituto de Investigaciones Químicas (IIQ), Departamento de Química Inorgánica and Centro de Innovación en Química Avanzada (ORFEO-CINQA), Consejo Superior de Investigaciones Científicas (CSIC) and University of Sevilla, 41092, Sevilla, Spain
| |
Collapse
|
7
|
Li D, Qiu S, Wei Y, Zhao Y, Wu L. Ligand Control of Copper-Mediated Cycloadditions of Acetylene to Azides: Chemo- and Regio-Selective Formation of Deutero- and Iodo-Substituted 1,2,3-Triazoles. J Org Chem 2023. [PMID: 38152860 DOI: 10.1021/acs.joc.3c01406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
The participation of σ-monocopper and σ-bis-copper acetylide in mechanistic pathways for copper-catalyzed cycloaddition (CuAAC) reactions of acetylene with azides was probed by analysis of deuterium distributions in the 1,2,3-triazole product formed by deuterolysis of initially formed mono- and bis-copper triazoles. The results show that, when Cu(Phen)(PPh3)2NO3 is used as the catalyst for reactions of acetylene with azides in DMF/D2O, 1-substituted-5-deutero-1,2,3-triazoles are generated selectively. This finding demonstrates that the Cu(Phen)(PPh3)2NO3-catalyzed cycloadditions utilize monocopper acetylide as the substrate and produce 5-copper-1,2,3-triazoles initially. Conversely, when DBU or Et3N is the copper ligand, the process takes place through initial formation and cycloaddition of bis-copper acetylide to produce 4,5-bis-copper-triazole, which reacts with D2O to form the corresponding 4,5-bis-deutero-triazole. Moreover, when C2D2 is used as the substrate, Cu(Phen)(PPh3)2NO3 as the Cu ligand, and H2O/DMF as the solvent, mono-C4-deutreo 1,2,3-triazoles are generated in high yields and excellent levels of regioselectivity. Lastly, CuAAC reactions of acetylene with azides, promoted by CuCl2·2H2O and NaI, yield 4,5-diiodo-1,2,3-triazoles with moderate to high efficiencies.
Collapse
Affiliation(s)
- Dongying Li
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, Hainan Normal University, Haikou 571158, PR China
| | - Shanguang Qiu
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, Hainan Normal University, Haikou 571158, PR China
| | - Yunlong Wei
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, Hainan Normal University, Haikou 571158, PR China
| | - Yanmei Zhao
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, Hainan Normal University, Haikou 571158, PR China
| | - Luyong Wu
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, Hainan Normal University, Haikou 571158, PR China
| |
Collapse
|
8
|
Medina-Gil T, Sadurní A, Hammarback LA, Echavarren AM. Gold(I)-Catalyzed Intermolecular Aryloxyvinylation with Acetylene Gas. ACS Catal 2023; 13:10751-10755. [PMID: 37614519 PMCID: PMC10442918 DOI: 10.1021/acscatal.3c02461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/18/2023] [Indexed: 08/25/2023]
Abstract
Acetylene gas is an important feedstock for chemical production, although it is underutilized in organic synthesis. We have developed an intermolecular gold(I)-catalyzed alkyne/alkene reaction of o-allylphenols with acetylene gas that gives rise to chromanes by a stereospecific aryloxycyclization through the nucleophilic regioselective opening of cyclopropyl gold(I)-carbene intermediates. The synthetic application of this method was demonstrated in the late-stage functionalization of the natural product lapachol.
Collapse
Affiliation(s)
- Tania Medina-Gil
- Institute of Chemical Research
of Catalonia (ICIQ), Barcelona Institute
of Science and Technology (BIST), Av. Països Catalans 16, 43007 Tarragona, Spain
- Departament de Química
Orgànica i Analítica, Universitat
Rovira i Virgili (URV), C/Marcel·lí Domingo s/n, 43007 Tarragona, Spain
| | - Anna Sadurní
- Institute of Chemical Research
of Catalonia (ICIQ), Barcelona Institute
of Science and Technology (BIST), Av. Països Catalans 16, 43007 Tarragona, Spain
- Departament de Química
Orgànica i Analítica, Universitat
Rovira i Virgili (URV), C/Marcel·lí Domingo s/n, 43007 Tarragona, Spain
| | - L. Anders Hammarback
- Institute of Chemical Research
of Catalonia (ICIQ), Barcelona Institute
of Science and Technology (BIST), Av. Països Catalans 16, 43007 Tarragona, Spain
- Departament de Química
Orgànica i Analítica, Universitat
Rovira i Virgili (URV), C/Marcel·lí Domingo s/n, 43007 Tarragona, Spain
| | | |
Collapse
|
9
|
Lin Z, Liu B, Wang Y, Li S, Zhu S. Synthesis of vinyl-substituted alcohols using acetylene as a C2 building block. Chem Sci 2023; 14:1912-1918. [PMID: 36819868 PMCID: PMC9930919 DOI: 10.1039/d2sc06400f] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 02/06/2023] [Accepted: 12/22/2022] [Indexed: 12/25/2022] Open
Abstract
Vinyl-substituted alcohols represent a highly useful class of molecular skeletons. The current method typically requires either stoichiometric metallic reagents or preformed precursors. Herein, we report a nickel catalysis-enabled synthesis of vinyl-substituted alcohols via a 5-membered oxa-metallacycle. In this protocol, acetylene, the simplest alkyne and abundant feedstock, is employed as an ideal C2 synthon. The reaction features mild conditions, good functional group tolerance and broad substrate scope. Mechanistic exploration implies that the oxa-metallacycle originated from the cyclometallation of aldehyde and acetylene is the key intermediate for this transformation, which is then terminated by a silane-mediated σ-bond metathesis and subsequent reductive elimination.
Collapse
Affiliation(s)
- Zhicong Lin
- Key Lab of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology Guangzhou 510640 P. R. China
| | - Boxiang Liu
- Key Lab of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology Guangzhou 510640 P. R. China
| | - Yu Wang
- Key Lab of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology Guangzhou 510640 P. R. China
| | - Siju Li
- Key Lab of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology Guangzhou 510640 P. R. China
| | - Shifa Zhu
- Key Lab of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology Guangzhou 510640 P. R. China
| |
Collapse
|
10
|
Hsueh NC, Wang YH, Chang MY. Sequential condensation and double desulfonylative cyclopropanation of 1,2-bis(sulfonylmethyl)arenes with 3-arylacroleins: access to biscyclopropane-fused tetralins. Org Biomol Chem 2023; 21:1206-1221. [PMID: 36632710 DOI: 10.1039/d2ob02188a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Efficient tBuOK-mediated sequential condensation and double desulfonylative cyclopropanation of readily accessible 1,2-bis(sulfonylmethyl)arenes with 3-arylacroleins is described. This high-yielding, single-step strategy provides a variety of polysubstituted biscyclopropane-fused tetralins with six contiguous stereogenic centers via the construction of five carbon-carbon single bonds. A plausible mechanism is proposed and discussed. In the overall reaction process, water and sulfinic acid salts were generated as the byproducts.
Collapse
Affiliation(s)
- Nai-Chen Hsueh
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| | - Yu-Han Wang
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| | - Meng-Yang Chang
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 807, Taiwan. .,Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan.,NPUST College of Professional Studies, National Pingtung University of Science and Technology, Pingtung 912, Taiwan
| |
Collapse
|
11
|
Li K, Long X, Zhu S. Photoredox/Nickel Dual Catalysis-Enabled Modular Synthesis of Arylallyl Alcohols with Acetylene as the Two-Carbon Synthon. ACS Catal 2023. [DOI: 10.1021/acscatal.2c06178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Kangkui Li
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, P. R. China
| | - Xianyang Long
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, P. R. China
| | - Shifa Zhu
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, P. R. China
| |
Collapse
|
12
|
Gyrdymova YV, Samoylenko DE, Rodygin KS. [ 13 C+D] Double Labeling with Calcium Carbide: Incorporation of Two Labels in One Step. Chem Asian J 2023; 18:e202201063. [PMID: 36530060 DOI: 10.1002/asia.202201063] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/13/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022]
Abstract
D-labeling is a valuable tool in advanced synthetic chemistry and pharmacy. However, D-incorporation significantly complicates the identification of products. In fact, D labels are invisible in 1 H-NMR spectra and cause undesirable splitting in 13 C-NMR spectra which decreases the detectable limits. At the same time, 2 H-NMR spectra are not effective for precise identification due to low sensitivity and the absence of correlations with 1 H atoms. Here, 13 C-label was considered as an accompanying label for D-label in [13 C+D] unit for identification of D-containing sites and to track D-labels. [13 C+D]-doubly labeled vinyl derivatives and triazoles were synthesized using 13 C-labeled calcium carbide as a source of 13 C-label and deuterium oxide as a source of D-label. The reaction occurred in one-step manner accompanied with in situ doubly labeled acetylene formation. Non-labeled, mono-labeled and doubly labeled substrates were isolated in 25-80% yields.
Collapse
Affiliation(s)
- Yulia V Gyrdymova
- Institute of Chemistry, Saint Petersburg State University, Universitetskiy pr. 26, Saint Petersburg, 198504, Russia
| | - Dmitriy E Samoylenko
- Institute of Chemistry, Saint Petersburg State University, Universitetskiy pr. 26, Saint Petersburg, 198504, Russia
| | - Konstantin S Rodygin
- Institute of Chemistry, Saint Petersburg State University, Universitetskiy pr. 26, Saint Petersburg, 198504, Russia
| |
Collapse
|
13
|
Scott KA, Groch JR, Bao J, Marshall CM, Allen RA, Nick SJ, Lauta NR, Williams RE, Qureshi MH, Delost MD, Njardarson JT. Minimalistic graphical presentation approach for total syntheses. Tetrahedron 2022. [DOI: 10.1016/j.tet.2022.133062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
14
|
Lotsman KA, Rodygin KS. Syntheisis of Divinyl Ether from 5-Hydroxymethylfurfural (5-HMF) and Calcium Carbide. RUSS J GEN CHEM+ 2022. [DOI: 10.1134/s1070363222110378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
15
|
Cheng T, Liu B, Wu R, Zhu S. Cu-catalyzed carboboration of acetylene with Michael acceptors. Chem Sci 2022; 13:7604-7609. [PMID: 35872813 PMCID: PMC9241969 DOI: 10.1039/d2sc02306g] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 06/07/2022] [Indexed: 11/21/2022] Open
Abstract
A copper-catalyzed three-component carboboration of acetylene with B2Pin2 and Michael acceptors is reported. In this reaction, a cheap and abundant C2 chemical feedstock, acetylene, was used as a starting material to afford cis-alkenyl boronates bearing a homoallylic carbonyl group. The reaction was robust and could be reliably performed on the molar scale. Furthermore, the resulting cis-alkenyl boronates could be converted to diverse functionalized molecules with ease.
Collapse
Affiliation(s)
- Tairan Cheng
- Key Lab of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology Guangzhou 510640 P. R. China
| | - Boxiang Liu
- Key Lab of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology Guangzhou 510640 P. R. China
| | - Rui Wu
- Key Lab of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology Guangzhou 510640 P. R. China
| | - Shifa Zhu
- Key Lab of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology Guangzhou 510640 P. R. China
| |
Collapse
|
16
|
Jing T, Liu N, Xu C, Bu QQ. Zinc Chloride‐Promoted Coupling Reaction Between Calcium Carbide and Aryl Chloride. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Tianna Jing
- Shihezi University School of Chemistry and Chemical Engineering School of Chemistry and Chemical Engineering CHINA
| | - Ning Liu
- Shihezi University School of Chemistry and Chemical Engineering School of Chemistry and Chemical Engineering, Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan CHINA
| | - Caixia Xu
- Shihezi University School of Chemistry and Chemical Engineering School of Chemistry and Chemical Engineering, Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan CHINA
| | - Qing qing Bu
- Shihezi University School of Chemistry and Chemical Engineering North Fourth Road 832003 Shihezi CHINA
| |
Collapse
|
17
|
Yang B, Lu S, Wang Y, Zhu S. Diverse synthesis of C2-linked functionalized molecules via molecular glue strategy with acetylene. Nat Commun 2022; 13:1858. [PMID: 35388000 PMCID: PMC8986794 DOI: 10.1038/s41467-022-29556-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 03/13/2022] [Indexed: 02/08/2023] Open
Abstract
As the simplest alkyne and an abundant chemical feedstock, acetylene is an ideal two-carbon building block. However, in contrast to substituted alkynes, catalytic methods to incorporate acetylene into fine chemicals are quite limited. Herein, we developed a photoredox-catalyzed synthetic protocol for diverse C2-linked molecules via a molecular glue strategy using gaseous acetylene under mild conditions. Initiated by addition of an acyl radical to acetylene, two cascade transformations follow. One involves a double addition for the formation of 1,4-diketones and the other where the intermediate vinyl ketone is intercepted by a radical formed from a heterocycle. In addition to making two new C-C bonds, two C-H bonds are also created in two mechanistically distinct ways: one via a C-H abstraction and the other via protonation. This system offers a reliable and safe way to incorporate gaseous acetylene into fine chemicals and expands the utility of acetylene in organic synthesis. Although acetylene is an ideal two-carbon building block, very few catalytic methods can be applied to incorporate acetylene into fine chemicals. Here, the authors show photoredox-catalyzed syntheses of C2- linked molecules with gaseous acetylene under mild conditions.
Collapse
Affiliation(s)
- Bo Yang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Shaodong Lu
- Singfar Laboratories, Guangzhou, 510670, China
| | | | - Shifa Zhu
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, China.
| |
Collapse
|
18
|
Lebedev AN, Rodygin KS, Mironenko RM, Saybulina ER, Ananikov VP. Metal-Catalyzed Chemical Activation of Calcium Carbide: New Way to Hierarchical Metal/Alloy-on-Carbon Catalysts. J Catal 2022. [DOI: 10.1016/j.jcat.2022.01.034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
19
|
Ledovskaya MS, Polynski MV, Ananikov VP. One-Pot and Two-Chamber Methodologies for Using Acetylene Surrogates in the Synthesis of Pyridazines and Their D-Labeled Derivatives. Chem Asian J 2021; 16:2286-2297. [PMID: 34152671 DOI: 10.1002/asia.202100562] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/18/2021] [Indexed: 01/03/2023]
Abstract
Acetylene surrogates are efficient tools in modern organic chemistry with largely unexplored potential in the construction of heterocyclic cores. Two novel synthetic paths to 3,6-disubstituted pyridazines were proposed using readily available acetylene surrogates through flexible C2 unit installation procedures in a common reaction space mode (one-pot) and distributed reaction space mode (two-chamber): (1) an interaction of 1,2,4,5-tetrazine and its acceptor-functionalized derivatives with a CaC2 -H2 O mixture performed in a two-chamber reactor led to the corresponding pyridazines in quantitative yields; (2) [4+2] cycloaddition of 1,2,4,5-tetrazines to benzyl vinyl ether can be considered a universal synthetic path to a wide range of pyridazines. Replacing water with D2 O and vinyl ether with its trideuterated analog in the developed procedures, a range of 4,5-dideuteropyridazines of 95-99% deuteration degree was synthesized for the first time. Quantum chemical modeling allowed to quantify the substituent effect in both synthetic pathways.
Collapse
Affiliation(s)
- Maria S Ledovskaya
- Institute of Chemistry, Saint Petersburg State University, Universitetsky prospect 26, Saint Petersburg, 198504, Russia
| | - Mikhail V Polynski
- Institute of Chemistry, Saint Petersburg State University, Universitetsky prospect 26, Saint Petersburg, 198504, Russia.,N. D. Zelinsky Institute of Organic Chemistry Russian Academy of Sciences, Leninsky prospect 47, Moscow, 119991, Russia
| | - Valentine P Ananikov
- Institute of Chemistry, Saint Petersburg State University, Universitetsky prospect 26, Saint Petersburg, 198504, Russia.,N. D. Zelinsky Institute of Organic Chemistry Russian Academy of Sciences, Leninsky prospect 47, Moscow, 119991, Russia
| |
Collapse
|
20
|
Qin XY, Meng FT, Wang M, Tu SJ, Hao WJ, Wang J, Jiang B. Gold-Catalyzed Skeletal Rearrangement of Alkenes: Regioselective Synthesis of Skeletally Diverse Tricyclic Heterocycles and Mechanistic Investigations. ACS Catal 2021. [DOI: 10.1021/acscatal.1c00753] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Xiao-Yan Qin
- School of Chemistry & Materials Science, Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou 221116, P. R. China
| | - Fan-Tao Meng
- School of Chemistry & Materials Science, Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou 221116, P. R. China
| | - Mian Wang
- Medical College, Guangxi University, Nanning 530004, P. R. China
| | - Shu-Jiang Tu
- School of Chemistry & Materials Science, Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou 221116, P. R. China
| | - Wen-Juan Hao
- School of Chemistry & Materials Science, Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou 221116, P. R. China
| | - Jianyi Wang
- Medical College, Guangxi University, Nanning 530004, P. R. China
| | - Bo Jiang
- School of Chemistry & Materials Science, Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou 221116, P. R. China
| |
Collapse
|
21
|
Jiang Y, McNamee RE, Smith PJ, Sozanschi A, Tong Z, Anderson EA. Advances in polycyclization cascades in natural product synthesis. Chem Soc Rev 2021; 50:58-71. [DOI: 10.1039/d0cs00768d] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Cascade reactions are among the most powerful means to achieve the construction of multiple ring systems in a single step. This tutorial review describes recent advances in the use of polycyclization cascades in natural product synthesis.
Collapse
Affiliation(s)
- Yubo Jiang
- Chemistry Research Laboratory
- Oxford
- UK
- Faculty of Science
- Kunming University of Science and Technology
| | | | | | | | | | | |
Collapse
|
22
|
Abstract
Three- and four-membered rings, widespread motifs in nature and medicinal chemistry, have fascinated chemists ever since their discovery. However, due to energetic considerations, small rings are often difficult to assemble. In this regard, homogeneous gold catalysis has emerged as a powerful tool to construct these highly strained carbocycles. This review aims to provide a comprehensive summary of all the major advances and discoveries made in the gold-catalyzed synthesis of cyclopropanes, cyclopropenes, cyclobutanes, cyclobutenes, and their corresponding heterocyclic or heterosubstituted analogs.
Collapse
Affiliation(s)
- Mauro Mato
- Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007 Tarragona, Spain.,Departament de Quı́mica Analı́tica i Quı́mica Orgànica, Universitat Rovira i Virgili, C/Marcel·li Domingo s/n, 43007 Tarragona, Spain
| | - Allegra Franchino
- Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007 Tarragona, Spain.,Departament de Quı́mica Analı́tica i Quı́mica Orgànica, Universitat Rovira i Virgili, C/Marcel·li Domingo s/n, 43007 Tarragona, Spain
| | - Cristina Garcı A-Morales
- Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007 Tarragona, Spain.,Departament de Quı́mica Analı́tica i Quı́mica Orgànica, Universitat Rovira i Virgili, C/Marcel·li Domingo s/n, 43007 Tarragona, Spain
| | - Antonio M Echavarren
- Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007 Tarragona, Spain.,Departament de Quı́mica Analı́tica i Quı́mica Orgànica, Universitat Rovira i Virgili, C/Marcel·li Domingo s/n, 43007 Tarragona, Spain
| |
Collapse
|
23
|
Zheng L, Hua R. Recent Advances in Construction of Polycyclic Natural Product Scaffolds via One-Pot Reactions Involving Alkyne Annulation. Front Chem 2020; 8:580355. [PMID: 33195069 PMCID: PMC7596902 DOI: 10.3389/fchem.2020.580355] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Accepted: 08/31/2020] [Indexed: 12/12/2022] Open
Abstract
Polycyclic scaffolds are omnipresent in natural products and drugs, and the synthetic strategies and methods toward construction of these scaffolds are of particular importance. Compared to simple cyclic ring systems, polycyclic scaffolds have higher structure complexity and diversity, making them suitable for charting broader chemical space, yet bringing challenges for the syntheses. In this review, we surveyed progress in the past decade on synthetic methods for polycyclic natural product scaffolds, in which the key steps are one-pot reactions involving intermolecular or intramolecular alkyne annulation. Synthetic strategies of selected polycyclic carbocycles and heterocycles with at least three fused, bridged, or spiro rings are discussed with emphasis on the synthetic efficiency and product diversity. Recent examples containing newly developed synthetic concepts or toolkits such as collective and divergent total synthesis, gold catalysis, C–H functionalization, and dearomative cyclization are highlighted. Finally, several “privileged synthetic strategies” for “privileged polycyclic scaffolds” are summarized, with discussion of remained challenges and future perspectives.
Collapse
Affiliation(s)
- Liyao Zheng
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, China
| | - Ruimao Hua
- Department of Chemistry, Tsinghua University, Beijing, China
| |
Collapse
|
24
|
Rodygin KS, Ledovskaya MS, Voronin VV, Lotsman KA, Ananikov VP. Calcium Carbide: Versatile Synthetic Applications, Green Methodology and Sustainability. European J Org Chem 2020. [DOI: 10.1002/ejoc.202001098] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Konstantin S. Rodygin
- Institute of Chemistry Saint Petersburg State University Universitetskiy pr. 26 198504 Saint Petersburg Russia
- N. D. Zelinsky Institute of Organic Chemistry Russian Academy of Sciences Leninsky pr. 47 119991 Moscow Russia
| | - Maria S. Ledovskaya
- Institute of Chemistry Saint Petersburg State University Universitetskiy pr. 26 198504 Saint Petersburg Russia
| | - Vladimir V. Voronin
- Institute of Chemistry Saint Petersburg State University Universitetskiy pr. 26 198504 Saint Petersburg Russia
| | - Kristina A. Lotsman
- Institute of Chemistry Saint Petersburg State University Universitetskiy pr. 26 198504 Saint Petersburg Russia
| | - Valentine P. Ananikov
- Institute of Chemistry Saint Petersburg State University Universitetskiy pr. 26 198504 Saint Petersburg Russia
- N. D. Zelinsky Institute of Organic Chemistry Russian Academy of Sciences Leninsky pr. 47 119991 Moscow Russia
| |
Collapse
|
25
|
Rodygin KS, Lotsman KA, Ananikov VP. Calcium Carbide Looping System for Acetaldehyde Manufacturing from Virtually any Carbon Source. CHEMSUSCHEM 2020; 13:3679-3685. [PMID: 32338832 DOI: 10.1002/cssc.202000760] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 04/24/2020] [Indexed: 06/11/2023]
Abstract
A vinylation/devinylation looping system for acetaldehyde manufacturing was evaluated. Vinylation of iso-butanol with calcium carbide under solvent-free conditions was combined with hydrolysis of the resulting iso-butyl vinyl ether under slightly acidic conditions. Acetaldehyde produced by hydrolysis was collected from the reaction mixture by simple distillation, and the remaining alcohol was redirected to the vinylation step. All the inorganic co-reagents can be looped as well, and the full sequence is totally sustainable. A complete acetaldehyde manufacturing cycle was proposed on the basis of the developed procedure. The cycle was fed with calcium carbide and produced the aldehyde as a single product in a total preparative yield of 97 %. No solvents, hydrocarbons, or metal catalysts were needed to maintain the cycle. As calcium carbide in principle can be synthesized from virtually any source of carbon, the developed technology represents an excellent example of biomass and waste conversion into a valuable industrial product.
Collapse
Affiliation(s)
- Konstantin S Rodygin
- Institute of Chemistry, Saint Petersburg State University, Universitetskiy pr. 26, Stary Petergof, 198504, Russia
- N.D. Zelinsky Institute of Organic Chemistry, Leninsky pr. 47, Moscow, 119991, Russia
| | - Kristina A Lotsman
- Institute of Chemistry, Saint Petersburg State University, Universitetskiy pr. 26, Stary Petergof, 198504, Russia
| | - Valentine P Ananikov
- Institute of Chemistry, Saint Petersburg State University, Universitetskiy pr. 26, Stary Petergof, 198504, Russia
- N.D. Zelinsky Institute of Organic Chemistry, Leninsky pr. 47, Moscow, 119991, Russia
| |
Collapse
|
26
|
Ledovskaya MS, Voronin VV, Polynski MV, Lebedev AN, Ananikov VP. Primary Vinyl Ethers as Acetylene Surrogate: A Flexible Tool for Deuterium-Labeled Pyrazole Synthesis. European J Org Chem 2020. [DOI: 10.1002/ejoc.202000674] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Maria S. Ledovskaya
- Institute of Chemistry; Saint Petersburg State University; Universitetsky prospect 26 198504 Peterhof Russia
| | - Vladimir V. Voronin
- Institute of Chemistry; Saint Petersburg State University; Universitetsky prospect 26 198504 Peterhof Russia
| | - Mikhail V. Polynski
- Institute of Chemistry; Saint Petersburg State University; Universitetsky prospect 26 198504 Peterhof Russia
- N. D. Zelinsky Institute of Organic Chemistry Russian Academy of Sciences; Leninsky prospect 47 119991 Moscow Russia
| | - Andrey N. Lebedev
- Institute of Chemistry; Saint Petersburg State University; Universitetsky prospect 26 198504 Peterhof Russia
| | - Valentine P. Ananikov
- Institute of Chemistry; Saint Petersburg State University; Universitetsky prospect 26 198504 Peterhof Russia
- N. D. Zelinsky Institute of Organic Chemistry Russian Academy of Sciences; Leninsky prospect 47 119991 Moscow Russia
| |
Collapse
|
27
|
Scharnagel D, Escofet I, Armengol‐Relats H, de Orbe ME, Korber JN, Echavarren AM. Acetylene as a Dicarbene Equivalent for Gold(I) Catalysis: Total Synthesis of Waitziacuminone in One Step. Angew Chem Int Ed Engl 2020; 59:4888-4891. [PMID: 31912609 PMCID: PMC7078946 DOI: 10.1002/anie.201915895] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Indexed: 11/16/2022]
Abstract
The gold(I)-catalyzed reaction of acetylene gas with alkenes leads to (Z,Z)-1,4-disubstituted 1,3-butadienes and biscyclopropanes depending on the donor ligand on gold(I). Acetylene was generated in situ from calcium carbide and water in a user-friendly procedure. Reaction of acetylene with 1,5-dienes gives rise stereoselectively to tricyclo[5.1.0.02,4 ]octanes. This novel double cyclopropanation has been applied to the one step total synthesis of the natural product waitziacuminone from acetylene and geranyl acetone.
Collapse
Affiliation(s)
- Dagmar Scharnagel
- Institute of Chemical Research of Catalonia (ICIQ)Barcelona Institute of Science and TechnologyAv. Països Catalans 1643007TarragonaSpain
- Departament de Química Analítica i Química OrgànicaUniversitat Rovira i VirgiliC/ Marcel⋅lí Domingo s/n43007TarragonaSpain
| | - Imma Escofet
- Institute of Chemical Research of Catalonia (ICIQ)Barcelona Institute of Science and TechnologyAv. Països Catalans 1643007TarragonaSpain
- Departament de Química Analítica i Química OrgànicaUniversitat Rovira i VirgiliC/ Marcel⋅lí Domingo s/n43007TarragonaSpain
| | - Helena Armengol‐Relats
- Institute of Chemical Research of Catalonia (ICIQ)Barcelona Institute of Science and TechnologyAv. Països Catalans 1643007TarragonaSpain
- Departament de Química Analítica i Química OrgànicaUniversitat Rovira i VirgiliC/ Marcel⋅lí Domingo s/n43007TarragonaSpain
| | - M. Elena de Orbe
- Institute of Chemical Research of Catalonia (ICIQ)Barcelona Institute of Science and TechnologyAv. Països Catalans 1643007TarragonaSpain
- Departament de Química Analítica i Química OrgànicaUniversitat Rovira i VirgiliC/ Marcel⋅lí Domingo s/n43007TarragonaSpain
| | - J. Nepomuk Korber
- Institute of Chemical Research of Catalonia (ICIQ)Barcelona Institute of Science and TechnologyAv. Països Catalans 1643007TarragonaSpain
- Departament de Química Analítica i Química OrgànicaUniversitat Rovira i VirgiliC/ Marcel⋅lí Domingo s/n43007TarragonaSpain
| | - Antonio M. Echavarren
- Institute of Chemical Research of Catalonia (ICIQ)Barcelona Institute of Science and TechnologyAv. Països Catalans 1643007TarragonaSpain
- Departament de Química Analítica i Química OrgànicaUniversitat Rovira i VirgiliC/ Marcel⋅lí Domingo s/n43007TarragonaSpain
| |
Collapse
|
28
|
Voronin VV, Ledovskaya MS, Rodygin KS, Ananikov VP. Examining the vinyl moiety as a protecting group for hydroxyl (–OH) functionality under basic conditions. Org Chem Front 2020. [DOI: 10.1039/d0qo00202j] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
A method for the protection and deprotection of alcohols via vinylation and devinylation reactions is proposed. Stability of the vinyl protecting group under various conditions is studied and synthetic applicability is demonstrated.
Collapse
Affiliation(s)
| | | | - Konstantin S. Rodygin
- Institute of Chemistry
- Saint Petersburg State University
- Peterhof
- Russia
- N. D. Zelinsky Institute of Organic Chemistry Russian Academy of Sciences
| | - Valentine P. Ananikov
- Institute of Chemistry
- Saint Petersburg State University
- Peterhof
- Russia
- N. D. Zelinsky Institute of Organic Chemistry Russian Academy of Sciences
| |
Collapse
|