1
|
García de la Concepción J, Corchado JC, Cintas P, Babiano R. Norcaradiene-Cycloheptatriene Equilibrium: A Heavy-Atom Quantum Tunneling Case. J Org Chem 2024; 89:9336-9343. [PMID: 38888485 PMCID: PMC11232008 DOI: 10.1021/acs.joc.4c00464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/31/2024] [Accepted: 06/07/2024] [Indexed: 06/20/2024]
Abstract
The equilibrium between norcaradiene and cycloheptatriene, which has captivated chemists for more than half a century, is revisited by state-of-the-art quantum chemical calculations. Our theoretical data significantly deviate from the experimental results (J. Am. Chem. Soc., 1981, 26, 7791-7792), especially at low temperatures, where isomerization is dominated by heavy-atom tunneling. This effect results in an extremely short half-life for norcaradiene, rendering it undetectable. This work sheds light on this equilibrium, updating the kinetic and thermodynamic data while also expanding the repertoire of organic reactions controlled by this exotic quantum effect.
Collapse
Affiliation(s)
- Juan García de la Concepción
- Departamento de Química Orgánica e Inorgánica, Facultad de Ciencias, and IACYS-Green Chemistry and Sustainable Development Unit, Universidad de Extremadura, 06006 Badajoz, Spain
| | - José C Corchado
- Departamento de Ingeniería Química y Química Física, Facultad de Ciencias, and ICCAEx, Universidad Extremadura, 06006 Badajoz, Spain
| | - Pedro Cintas
- Departamento de Química Orgánica e Inorgánica, Facultad de Ciencias, and IACYS-Green Chemistry and Sustainable Development Unit, Universidad de Extremadura, 06006 Badajoz, Spain
| | - Reyes Babiano
- Departamento de Química Orgánica e Inorgánica, Facultad de Ciencias, and IACYS-Green Chemistry and Sustainable Development Unit, Universidad de Extremadura, 06006 Badajoz, Spain
| |
Collapse
|
2
|
Harada S, Takenaka H, Ito T, Kanda H, Nemoto T. Valence-isomer selective cycloaddition reaction of cycloheptatrienes-norcaradienes. Nat Commun 2024; 15:2309. [PMID: 38485991 PMCID: PMC10940685 DOI: 10.1038/s41467-024-46523-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 02/29/2024] [Indexed: 03/18/2024] Open
Abstract
The rapid and precise creation of complex molecules while controlling multiple selectivities is the principal objective in synthetic chemistry. Combining data science and organic synthesis to achieve this goal is an emerging trend, but few examples of successful reaction designs are reported. We develop an artificial neural network regression model using bond orbital data to predict chemical reactivities. Actual experimental verification confirms cycloheptatriene-selective [6 + 2]-cycloaddition utilizing nitroso compounds and norcaradiene-selective [4 + 2]-cycloaddition reactions employing benzynes. Additionally, a one-pot asymmetric synthesis is achieved by telescoping the enantioselective dearomatization of non-activated benzenes and cycloadditions. Computational studies provide a rational explanation for the seemingly anomalous occurrence of thermally prohibited suprafacial [6 + 2]-cycloaddition without photoirradiation.
Collapse
Affiliation(s)
- Shingo Harada
- Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, 260-8675, Japan.
| | - Hiroki Takenaka
- Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, 260-8675, Japan
| | - Tsubasa Ito
- Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, 260-8675, Japan
| | - Haruki Kanda
- Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, 260-8675, Japan
| | - Tetsuhiro Nemoto
- Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, 260-8675, Japan.
| |
Collapse
|
3
|
Kaasik M, Chen PP, Ričko S, Jørgensen KA, Houk KN. Asymmetric [4 + 2], [6 + 2], and [6 + 4] Cycloadditions of Isomeric Formyl Cycloheptatrienes Catalyzed by a Chiral Diamine Catalyst. J Am Chem Soc 2023; 145:23874-23890. [PMID: 37862136 DOI: 10.1021/jacs.3c09551] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2023]
Abstract
Novel asymmetric aminocatalytic cycloadditions are described between formyl cycloheptatrienes and 6,6-dimethylfulvene that lead to [4 + 2], [6 + 2], and [4 + 6] cycloadducts. The unprecedented reaction course is dependent on the position of the formyl functionality in the cycloheptatriene core, and each formyl cycloheptatriene isomer displays a distinct reactivity pattern. The formyl cycloheptatriene isomers are activated by a chiral primary diamine catalyst, and the activation mode is dependent on the position of the formyl functionality relative to the cycloheptatriene core. The [4 + 2] and [6 + 2] cycloadducts are formed via rare iminocatalytic inverse electron-demand cycloadditions, while the [4 + 6] cycloadduct is formed by a normal electron-demand cycloaddition. The reactivity displayed by the different formyl cycloheptatrienes was investigated by DFT calculations. These computational studies account for the different reaction paths for the three isomeric formyl cycloheptatrienes. The aminocatalytic [4 + 2], [6 + 2], and [4 + 6] cycloadditions proceed by stepwise processes, and the interplay between conjugation, substrate distortion, and dispersive interactions between the fulvene and aminocatalyst mainly defines the outcome of each cycloaddition.
Collapse
Affiliation(s)
- Mikk Kaasik
- Department of Chemistry, Aarhus University, DK-80000 Aarhus C, Denmark
| | - Pan-Pan Chen
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| | - Sebastijan Ričko
- Department of Chemistry, Aarhus University, DK-80000 Aarhus C, Denmark
- Aarhus Institute of Advanced Studies, Aarhus University, DK-8000 Aarhus C, Denmark
| | | | - K N Houk
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| |
Collapse
|
4
|
Seeman JI. Revolutions in Chemistry: Assessment of Six 20th Century Candidates (The Instrumental Revolution; Hückel Molecular Orbital Theory; Hückel's 4 n + 2 Rule; the Woodward-Hoffmann Rules; Quantum Chemistry; and Retrosynthetic Analysis). JACS AU 2023; 3:2378-2401. [PMID: 37772184 PMCID: PMC10523497 DOI: 10.1021/jacsau.3c00278] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 08/04/2023] [Accepted: 08/07/2023] [Indexed: 09/30/2023]
Abstract
Six 20th century candidates for revolutions in chemistry are examined, using a definitional scheme published recently by the author. Six groupings of 13 characteristics of revolutions in science are considered: causes and birthings of revolutions, relationships between the old and the new, conceptual qualities of the candidate revolutions, instrumental and methodological functions, social construction of knowledge and practical considerations, and testimonials. The Instrumental Revolution was judged to be a revolution in chemistry because of the enormous increase in community-wide knowledge provided by the new instruments and the intentionality in the identification of specific target instruments, in the mindfulness in their design, manufacture, testing, use, and ultimately commercialization. The Woodward-Hoffmann rules were judged to precipitate the Quantum Chemistry Revolution because of theoretical, practical, and social construction of knowledge characteristics. Neither Hückel molecular orbital theory nor Hückel's 4n + 2 rule was considered an initiator of a revolution in chemistry but rather participants in the Quantum Chemistry Revolution. Retrosynthetic analysis was not judged to initiate a revolution in chemistry.
Collapse
Affiliation(s)
- Jeffrey I. Seeman
- Department of Chemistry University of Richmond, Richmond, Virginia 23173, United States
| |
Collapse
|
5
|
Zhigarev VA, Nikiforov RY, Lakhtin VG, Shandryuk GA, Belov NA, Gringolts ML. Synthesis, thermal and gas permeation properties of new silicon containing ROMP polytricyclodecadienes. POLYMER 2023. [DOI: 10.1016/j.polymer.2023.125864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
|
6
|
Exploring the Limits of Reactivity of N-Methyl-1,2,4-triazoline-3,5-dione (MeTAD) with Disubstituted Bicycloalkadienes in the Homo-Diels–Alder Reaction. ORGANICS 2022. [DOI: 10.3390/org4010002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The [2+2+2] cycloaddition (homo-Diels–Alder reaction) of N-substituted 1,2,4-triazoline-3,5-diones (TADs) with bicycloalkadienes produces strained heterocyclic compounds. A reaction with the unsubstituted dienes occurs readily to produce only the expected homo-Diels–Alder adducts. However, previous work in the literature showed that the attachment of a single electron-withdrawing group to the diene system results in the formation of not only the expected homo-Diels–Alder adducts, but also interesting “insertion” products. To probe the limits of reactivity of these diene systems, we investigated the reaction of N-methyl-1,2,4-triazoline-3,5-dione (MeTAD) with bicycloalkadienes substituted with two electron-withdrawing groups, i.e., two carbomethoxy or two cyano groups. We hoped to learn whether the reaction still proceeded, and if so, whether the homo-Diels–Alder adducts and/or other types of products were formed. We found that a reaction between MeTAD and the dienes takes place upon substitution with two carbomethoxy groups, albeit at a considerably slower rate than other reactions. The only products observed were the homo-Diels–Alder adducts. However, attachment of two CN groups completely inhibited reactivity.
Collapse
|
7
|
Zhou Q, Thøgersen MK, Rezayee NM, Jørgensen KA, Houk KN. Ambimodal Bispericyclic [6 + 4]/[4 + 6] Transition State Competes with Diradical Pathways in the Cycloheptatriene Dimerization: Dynamics and Experimental Characterization of Thermal Dimers. J Am Chem Soc 2022; 144:22251-22261. [DOI: 10.1021/jacs.2c10407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Qingyang Zhou
- The College of Chemistry, Nankai University, Tianjin 300071, China
| | - Mathias K. Thøgersen
- Department of Chemistry, Aarhus University, Langelandsgade 140, Aarhus C DK-8000, Denmark
| | - Nomaan M. Rezayee
- Department of Chemistry, Aarhus University, Langelandsgade 140, Aarhus C DK-8000, Denmark
| | - Karl Anker Jørgensen
- Department of Chemistry, Aarhus University, Langelandsgade 140, Aarhus C DK-8000, Denmark
| | - K. N. Houk
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095-1569, United States
| |
Collapse
|
8
|
Seeman JI, Tantillo DJ. Understanding chemistry: from "heuristic (soft) explanations and reasoning by analogy" to "quantum chemistry". Chem Sci 2022; 13:11461-11486. [PMID: 36320403 PMCID: PMC9575397 DOI: 10.1039/d2sc02535c] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 09/06/2022] [Indexed: 12/02/2022] Open
Abstract
"Soft theories," i.e., "heuristic models based on reasoning by analogy" largely drove chemistry understanding for 150 years or more. But soft theories have their limitations and with the expansion of chemistry in the mid-20th century, more and more inexplicable (by soft theory) experimental results were being obtained. In the past 50 years, quantum chemistry, most often in the guise of applied theoretical chemistry including computational chemistry, has provided (a) the underlying "hard evidence" for many soft theories and (b) the explanations for chemical phenomena that were unavailable by soft theories. In this publication, we define "hard theories" as "theories derived from quantum chemistry." Both soft and hard theories can be qualitative and quantitative, and the "Houk quadrant" is proposed as a helpful categorization tool. Furthermore, the language of soft theories is often used appropriately to describe quantum chemical results. A valid and useful way of doing science is the appropriate use and application of both soft and hard theories along with the best nomenclature available for successful communication of results and ideas.
Collapse
Affiliation(s)
- Jeffrey I Seeman
- Department of Chemistry, University of Richmond Richmond VA 23173 USA
| | - Dean J Tantillo
- Department of Chemistry, University of California - Davis Davis CA 95616 USA
| |
Collapse
|
9
|
Barotcu AZ, Karanfil A, Şahin E, Kelebekli L. Stereoselective synthesis of novel bis-homoinositols with bicyclo[4.2.0]octane motifs. Carbohydr Res 2022; 519:108611. [PMID: 35716487 DOI: 10.1016/j.carres.2022.108611] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 06/03/2022] [Accepted: 06/06/2022] [Indexed: 11/29/2022]
Abstract
Starting from cyclooctatetraene, bis-homoconduritols with cis-inositol and allo-inositol (or bicyclo[4.2.0]octane motif) structures were synthesized. Photooxygenation of trans-7,8-dibromo-bicyclo[4.2.0]octa-2,4-diene allowed the preparation of tricyclic endoperoxide. The compound diacetate was obtained by reduction of endoperoxide with thiourea followed by acetylation reaction. Removal of halides with zinc dust in acetic acid yielded the dien-diacetate, a key compound of the designed molecules. OsO4 oxidation of diendiacetate followed by acetylation gave the corresponding hexaacetates. Finally, the novel desired bis-homoinositols were obtained in high yield by the ammonolysis of acetate groups. The structures of all synthesized compounds were characterized by spectroscopic methods.
Collapse
Affiliation(s)
- Ayşenur Zeren Barotcu
- Department of Chemistry, Faculty of Sciences and Arts, Ordu University, 52200, Ordu, Turkey
| | - Abdullah Karanfil
- Department of Chemistry, Faculty of Sciences and Arts, Ordu University, 52200, Ordu, Turkey
| | - Ertan Şahin
- Department of Chemistry, Faculty of Sciences, Ataturk University, 25240, Erzurum, Turkey
| | - Latif Kelebekli
- Department of Chemistry, Faculty of Sciences and Arts, Ordu University, 52200, Ordu, Turkey.
| |
Collapse
|
10
|
Seeman JI. The Many Chemists Who Could Have Proposed the Woodward-Hoffmann Rules But Didn't: The Organic Chemists Who Discovered the Smoking Guns [ ]. CHEM REC 2022; 22:e202200065. [PMID: 35713274 DOI: 10.1002/tcr.202200065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/06/2022] [Indexed: 01/25/2023]
Abstract
It is a reasonable question to ask, why, as of 1965 when the five Woodward-Hoffmann communications appeared, did no other organic chemist discover the orbital symmetry rules for pericyclic reactions? Two theoretical chemists - Luitzen Oosterhoff (in 1961) and Kenichi Fukui (in 1964) had discovered portions of the orbital symmetry rules before Woodward and Hoffmann. Why not organic chemists? Indeed, perhaps the greatest motivation to discover the mechanism of a mysterious reaction is to uncover key examples of that mysterious reaction in your very own laboratory. The stories of 20 chemists and R. B. Woodward are discussed in this paper which is Paper 6 in a 27-paper series on the history of Woodward-Hoffmann rules. Social, political, and scientific explanations will also be presented as partial explanations as to why none of these individuals - except Woodward with Hoffmann - solved the pericyclic no-mechanism problem.
Collapse
Affiliation(s)
- Jeffrey I Seeman
- Department of Chemistry, University of Richmond, Richmond, VA 23173, USA
| |
Collapse
|
11
|
Yadav S, Misra N, Khanna P, Mansi, Batra K, Khanna L. A DFT Study on Diels-Alder Reaction of Dibenzazepine and 2,5-Dimethylfuran Using Different Solvents and Temperature Conditions. Polycycl Aromat Compd 2022. [DOI: 10.1080/10406638.2022.2056622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Shilpa Yadav
- University School of Basic & Applied Sciences, Guru Gobind Singh Indraprastha University, New Delhi, India
| | - Neeti Misra
- Department of Chemistry, Acharya Narendra Dev College, University of Delhi, New Delhi, India
| | - Pankaj Khanna
- Department of Chemistry, Acharya Narendra Dev College, University of Delhi, New Delhi, India
| | - Mansi
- University School of Basic & Applied Sciences, Guru Gobind Singh Indraprastha University, New Delhi, India
| | - Kriti Batra
- University School of Basic & Applied Sciences, Guru Gobind Singh Indraprastha University, New Delhi, India
| | - Leena Khanna
- University School of Basic & Applied Sciences, Guru Gobind Singh Indraprastha University, New Delhi, India
| |
Collapse
|