1
|
Liu C, Xia C, Song SY, Xu S. Ether-Directed Enantioselective C(sp 2)-H Borylation for the Synthesis of Axially Chiral Biaryls. Org Lett 2025; 27:4232-4237. [PMID: 40205663 DOI: 10.1021/acs.orglett.5c00919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2025]
Abstract
We report an ether-directed enantioselective C(sp2)-H borylation catalyzed by a chiral bidentate boryl ligand (CBL)/iridium system for constructing axially chiral biaryls. This method delivered diverse chiral biaryls with good to high enantioselectivities, accommodating varied electronic and steric substituents on the aryl rings. Gram-scale synthesis and downstream transformations of the C-B bond underscored its practicality.
Collapse
Affiliation(s)
- Changji Liu
- National Key Laboratory of Advanced Drug Delivery and Release Systems, School of Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250117, P. R. China
- State Key Laboratory of Low Carbon Catalysis and Carbon Dioxide Utilization, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Chengcai Xia
- National Key Laboratory of Advanced Drug Delivery and Release Systems, School of Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250117, P. R. China
| | - Shu-Yong Song
- National Key Laboratory of Advanced Drug Delivery and Release Systems, School of Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250117, P. R. China
| | - Senmiao Xu
- State Key Laboratory of Petroleum Molecular & Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
- College of Material Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, China
| |
Collapse
|
2
|
Sahoo SR, Singh VK. Organocatalytic Atroposelective Cross-Coupling of 2-Naphthols with Diaryliodonium Salts. Org Lett 2025; 27:4085-4089. [PMID: 40242989 DOI: 10.1021/acs.orglett.5c00279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2025]
Abstract
Due to their modularity and conciseness, atroposelective cross-coupling is one of the most attractive approaches for synthesizing axially chiral binaphthyl molecules. While transition metal-catalyzed cross-couplings provide reliable synthetic strategies, alternative methods that accommodate a broader range of substrates without their pre-functionalization are highly beneficial. Here, we demonstrate that using the bifunctional organocatalyst (DHQD)2PHAL enables atroposelective cross-coupling of 2-naphthols and diaryliodonium salts with high efficiency, and yields (up to 72%) and excellent enantioselectivity (up to >99% enantiomeric excess). Further transformations of the products highlight the versatility of other binaphthyl compounds while maintaining their axial chirality.
Collapse
Affiliation(s)
- Sushree Ranjan Sahoo
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India
| | - Vinod K Singh
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India
| |
Collapse
|
3
|
Liao G, Shi BF. Synthesis of Axially Chiral Compounds via Transition Metal-Catalyzed Atroposelective C-H Functionalization. Acc Chem Res 2025. [PMID: 40223767 DOI: 10.1021/acs.accounts.5c00173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/15/2025]
Abstract
ConspectusAxially chiral skeletons are prevalent in natural products and biologically important compounds, and they are widely utilized as privileged scaffolds in enantioselective catalysis. Consequently, the catalytic atroposelective synthesis of enantiopure atropisomers has garnered considerable attention. A variety of synthetic strategies involving metal catalysis or organocatalysis have been developed. Among these elegant approaches, transition metal-catalyzed enantioselective C-H activation has emerged as an atom- and step-economical strategy to streamline the construction of axially chiral compounds in recent years.In this Account, we discuss our efforts in the atroposelective synthesis of different types of axially chiral compounds, including biaryls, atropisomeric styrenes, and C-N atropisomers, via transition metal-catalyzed enantioselective C-H activation strategies. To this end, we have developed several approaches, including the chiral transient directing group (cTDG) strategy using catalytic Pd(OAc)2 and tert-leucine (Tle), as well as catalytic enantioselective systems involving Pd(II)/chiral phosphoric acid (CPA), Pd(II)/l-pyroglutamic acid (pGlu), Pd(0)/norbornene cooperative catalysis with a chiral biimidazoline (BiIM) ligand, and Co(II)/salicyloxazoline (Salox).At the outset, we successfully applied the cTDG strategy to access axially chiral biaryl aldehydes through Pd-catalyzed atroposelective C-H olefination, alkynylation, allylation, naphthylation, and alkylation. The efficacy of these methods has been demonstrated in the enantioselective synthesis of chiral aldehyde catalysts and natural products, such as TAN-1085, (+)-isochizandrin, and (+)-steganone. To facilitate the synthesis of biaryl atropisomers with diverse functionalities, we developed a novel Pd(II)/CPA catalytic system, which enables the preparation of various axially chiral quinolines, biaryl-2-amines, and atropisomeric biaryls bearing chalcogenoether units with high enantioselectivities. The Pd(II)/CPA system also allows for the synthesis of more challenging conjugated diene-based axially chiral styrenes.Nonbiaryl atropisomers, such as axially chiral styrenes and anilides, present synthetic challenges due to their conformational instability and higher degree of rotational freedom compared to their biaryl counterparts. We have addressed these challenges and achieved the highly efficient synthesis of atropisomeric styrenes and anilides using Pd(II)/pGlu and Pd(0)/norbornene/BiIM catalysis. In addition to palladium catalysis, cobalt(II)/Salox catalysis has also been developed for the construction of chiral biaryls, atropisomers with vicinal C-N and C-C stereogenic axes, remote distinct C-N diaxes, and chiral calix[4]arenes featuring both inherent and axial chirality. We anticipate that the enantioselective C-H activation strategy will find broad applications in the construction of synthetically useful axially chiral compounds.
Collapse
Affiliation(s)
- Gang Liao
- Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Bing-Feng Shi
- Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
4
|
Zhang J, Liu M, Zhang W, Guo C. Enantioselective electrochemical nickel-catalyzed vinylogous radical reactions. SCIENCE ADVANCES 2025; 11:eadu5594. [PMID: 40106571 PMCID: PMC11922052 DOI: 10.1126/sciadv.adu5594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 02/12/2025] [Indexed: 03/22/2025]
Abstract
Highly functionalized structural motifs with extended chiral carbon chains are prevalent in a wide range of bioactive compounds and play critical roles in the production of various functionalized molecules. Here, we describe a nickel-catalyzed asymmetric radical-based electrochemical functionalization of silyl polyenolates at α-, γ-, ε-, and η-positions. Driven by electric current, this methodology provides a sustainable route to access enantioenriched dicarbonyls via vinylogous radical pathways. It demonstrates excellent functional groups tolerance, mild reaction conditions, broad substrate compatibility, formation of quaternary stereocenters at remote positions, and high levels of regio- and enantioselectivity (up to 98% enantiomeric excess). Mechanistic investigations indicate that ferrocene-based electron transfer mediators are pivotal in the anodic oxidation process, facilitating the generation of nickel-bound α-carbonyl radicals while suppressing the undesired oxidation of silyl polyenolates, thus guiding the selection of mediators for electrocatalytic systems. The versatility of catalytic asymmetric electrosynthesis is highlighted by the preparation of valuable enantioenriched building blocks and the total synthesis of (-)-ethosuximide.
Collapse
Affiliation(s)
- Jiayin Zhang
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Minghao Liu
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Wenyuan Zhang
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Chang Guo
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China
| |
Collapse
|
5
|
Dana S, Pandit NK, Boos P, von Münchow T, Peters SE, Trienes S, Haberstock L, Herbst-Irmer R, Stalke D, Ackermann L. Parametrization of κ 2- N, O-Oxazoline Preligands for Enantioselective Cobaltaelectro-Catalyzed C-H Activations. ACS Catal 2025; 15:4450-4459. [PMID: 40144676 PMCID: PMC11934137 DOI: 10.1021/acscatal.5c00250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 02/20/2025] [Accepted: 02/20/2025] [Indexed: 03/28/2025]
Abstract
Enantioselective electrocatalyzed C-H activations have emerged as a transformative platform for the assembly of value-added chiral organic molecules. Despite the recent progress, the construction of multiple C(sp3)-stereogenic centers via a C(sp3)-C(sp3) bond formation has thus far proven to be elusive. In contrast, we herein report an annulative C-H activation strategy, generating chiral Fsp3-rich molecules with high levels of diastereo- and enantioselectivity. κ2-N,O-oxazoline preligands were effectively employed in enantioselective cobalt(III)-catalyzed C-H activation reactions. Using DFT-derived descriptors and regression statistical modeling, we performed a parametrization study on the modularity of chiral κ2-N,O-oxazoline preligands. The study resulted in a model describing ligands' selectivity characterized by key steric, electronic, and interaction behaviors.
Collapse
Affiliation(s)
| | | | | | - Tristan von Münchow
- WISCh (Wöhler-Research
Institute for Sustainable Chemistry), Georg-August-Universität
Göttingen, 37077 Göttingen, Germany
| | - Sven Erik Peters
- WISCh (Wöhler-Research
Institute for Sustainable Chemistry), Georg-August-Universität
Göttingen, 37077 Göttingen, Germany
| | - Sven Trienes
- WISCh (Wöhler-Research
Institute for Sustainable Chemistry), Georg-August-Universität
Göttingen, 37077 Göttingen, Germany
| | - Laura Haberstock
- WISCh (Wöhler-Research
Institute for Sustainable Chemistry), Georg-August-Universität
Göttingen, 37077 Göttingen, Germany
| | - Regine Herbst-Irmer
- WISCh (Wöhler-Research
Institute for Sustainable Chemistry), Georg-August-Universität
Göttingen, 37077 Göttingen, Germany
| | - Dietmar Stalke
- WISCh (Wöhler-Research
Institute for Sustainable Chemistry), Georg-August-Universität
Göttingen, 37077 Göttingen, Germany
| | - Lutz Ackermann
- WISCh (Wöhler-Research
Institute for Sustainable Chemistry), Georg-August-Universität
Göttingen, 37077 Göttingen, Germany
| |
Collapse
|
6
|
Yang JY, Du YR, Cheng FQ, An K, Hu Y, Li ZY. Construction of Axially Chiral Dialdehydes via Rhodium-Catalyzed Enantioselective C-H Amidation. Angew Chem Int Ed Engl 2025; 64:e202421412. [PMID: 39853834 DOI: 10.1002/anie.202421412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 01/04/2025] [Accepted: 01/24/2025] [Indexed: 01/26/2025]
Abstract
Achieving axially chiral biaryl dialdehydes through asymmetric catalysis remains significantly challenging due to the lack of efficient strategies. In this report, we developed a rhodium-catalyzed enantioselective C-H amidation through chiral transient directing group strategy. With this new approach, a series of axially chiral amido dialdehydes were achieved in up to 86 % yields with 99.5 : 0.5 er. Furthermore, detailed mechanistic studies indicated that both the imine formation and C-H bond cleavage steps were reversible. More interestingly, the X-ray crystallographic analysis of Int-2 showed probable C-H/π interaction between biaryl group and chiral amine moiety. This process offered a convenient route to access axially chiral dialdehyde derivatives. More broadly, it demonstrated a new tool through transient and C-H/π synergistic interactions, which would stimulate further development of asymmetric catalytic system in enantioselective C-H functionalization.
Collapse
Affiliation(s)
- Jie-Ying Yang
- Anhui Laboratory of Molecule-Based Materials, Key Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, China
| | - Ya-Ru Du
- Anhui Laboratory of Molecule-Based Materials, Key Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, China
| | - Fu-Qiang Cheng
- Anhui Laboratory of Molecule-Based Materials, Key Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, China
| | - Kun An
- Anhui Laboratory of Molecule-Based Materials, Key Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, China
| | - Yuefei Hu
- Anhui Laboratory of Molecule-Based Materials, Key Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, China
| | - Zhong-Yuan Li
- Anhui Laboratory of Molecule-Based Materials, Key Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, China
| |
Collapse
|
7
|
Wang Q, Wang X, Liu Y, Zhang J, Song J, Guo C. Enantioselective Multicomponent Electrochemical Difunctionalization of Terminal Alkynes. J Am Chem Soc 2025. [PMID: 39996313 DOI: 10.1021/jacs.5c00830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2025]
Abstract
The direct functionalization of alkyne triple bonds using a radical strategy provides an efficient platform for creating a wide range of substituted alkenes. However, developing a multicomponent enantioselective radical reaction using feedstock alkynes to forge all-carbon quaternary stereocenters─while addressing challenges related to compatibility, selectivity, and efficiency─remains relatively rare. Here we report an enantioselective electrochemical nickel-catalyzed three-component cross-coupling of readily available terminal alkynes, diverse racemic alkyl radical precursors, and group transfer reagents (such as (TMS)3Si-H, RSe-SeR, RTe-TeR, and CHI3), achieving excellent regio-, stereo-, and enantioselectivities (more than 70 examples, up to 95% ee). Electricity-mediated difunctionalizations significantly expand the scope of both aliphatic and aromatic alkynes, demonstrating excellent functional group compatibility. The key to success lies in the rational design of anodically generated nickel-bound tertiary radical intermediates, which stereoselectively capture alkynes to form vinyl radicals and participate in subsequently diverse group transfer processes to enable the intermolecular and anti-stereoselective difunctionalization of alkynes. This approach allows the transformation of terminal alkynes into diverse structural entities with α-quaternary stereogenic centers.
Collapse
Affiliation(s)
- Qiannan Wang
- Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
| | - Xinyu Wang
- Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
| | - Yong Liu
- Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
| | - Jiayin Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Jin Song
- Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
| | - Chang Guo
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
8
|
Ma C, Guo JF, Xu SS, Mei TS. Recent Advances in Asymmetric Organometallic Electrochemical Synthesis (AOES). Acc Chem Res 2025; 58:399-414. [PMID: 39829007 DOI: 10.1021/acs.accounts.4c00656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
ConspectusIn recent years, our research group has dedicated significant effort to the field of asymmetric organometallic electrochemical synthesis (AOES), which integrates electrochemistry with asymmetric transition metal catalysis. On one hand, we have rationalized that organometallic compounds can serve as molecular electrocatalysts (mediators) to reduce overpotentials and enhance both the reactivity and selectivity of reactions. On the other hand, the conditions for asymmetric transition metal catalysis can be substantially improved through electrochemistry, enabling precise modulation of the transition metal's oxidation state by controlling electrochemical potentials and regulating the electron transfer rate via current adjustments. This synergistic approach addresses key challenges inherent in traditional asymmetric transition metal catalysis, particularly those related to the use of redox-active chemical reagents. Furthermore, the redox potentials of molecular electrocatalysts can be conveniently tuned by modifying their ligands, thereby governing the reaction regioselectivity and stereoselectivity. As a result, the AOES has emerged as a powerful and promising tool for the synthesis of chiral compounds.In this Account, we summarize and contextualize our recent efforts in the field of AOES. Our primary strategy involves leveraging the controllability of electrochemical potential and current to regulate the oxidation state of organometallics, thereby facilitating the desired reactions. An efficient asymmetric synthesis platform was established under mild conditions, significantly reducing the reliance on chemical redox reagents. Our research has been systematically categorized into three sections based on distinct electrolysis modes: asymmetric transition metal catalysis combined with anodic oxidation, cathodic reduction, and paired electrolysis. In each section, we highlight our innovative discoveries tailored to the unique characteristics of the respective electrolysis modes.In many transformations, transition metal-catalyzed reactions involving traditional chemical redox reagents and those utilizing electrochemistry exhibit similar reactivities. However, we also observed notable differences in certain cases. These findings include the following: (1) Enhanced efficiency in asymmetric electrochemical synthesis: for instance, the Rh-catalyzed enantioselective electrochemical functionalization of C-H bonds demonstrates superior efficiency. (2) Expanded scope of transformations: certain transformations, previously challenging in traditional transition metal catalysis, can be achieved through electrochemistry due to the tunability of redox potentials. A notable example is the enantioselective reductive coupling of aryl chlorides, which significantly expands the range of accessible transformations. Additionally, our mechanistic studies explore unique techniques intrinsic to electrochemistry, such as controlled potential electrolysis experiments, the impact of electrode materials on catalyst performance, and cyclic voltammetry studies. These investigations provide a more intuitive understanding of the behavior of metal catalysts through the study of electrochemical mechanisms, which can also guide the design of new catalytic systems.The advancements in this field offer a robust platform for environmentally friendly and sustainable selective asymmetric transformations. By integrating electrochemistry with transition metal catalysis, we have developed a versatile approach for organic synthesis that not only enhances the efficiency and selectivity of reactions but also reduces the environmental impact. We anticipate that this Account will stimulate further research and innovation in the realm of AOES, leading to the discovery of new catalytic systems and the development of more sustainable synthetic methodologies.
Collapse
Affiliation(s)
- Cong Ma
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Jian-Feng Guo
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Shi-Shuo Xu
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Tian-Sheng Mei
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| |
Collapse
|
9
|
Wang Y, Xu T, Pandey A, Jin S, Yan JX, Yuan Q, Zhang S, Wang JY, Liang R, Li G. Enantiopure Turbo Chirality Targets in Tri-Propeller Blades: Design, Asymmetric Synthesis, and Computational Analysis. Molecules 2025; 30:603. [PMID: 39942707 PMCID: PMC11819669 DOI: 10.3390/molecules30030603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 01/25/2025] [Accepted: 01/27/2025] [Indexed: 02/16/2025] Open
Abstract
Enantiopure turbo chirality in small organic molecules, without other chiral elements, is a fascinating topic that has garnered significant interest within the chemical and materials science community. However, further research into and application of this concept have been severely limited by the lack of effective asymmetric tools. To date, only a few enantiomers of turbo chiral targets have been isolated, and these were obtained through physical separation using chiral HPLC, typically on milligram scales. In this work, we report the first asymmetric approach to enantiopure turbo chirality in the absence of other chiral elements such as central and axial chirality. This is demonstrated by assembling aromatic phosphine oxides, where three propeller-like groups are anchored to a P(O) center via three axes. Asymmetric induction was successfully carried out using a chiral sulfonimine auxiliary, with absolute configurations and conformations unambiguously determined by X-ray diffraction analysis. The resulting turbo frameworks exhibit three propellers arranged in either a clockwise (P,P,P) or counterclockwise (M,M,M) configuration. In these arrangements, the bulkier sides of the aromatic rings are oriented toward the oxygen atom of the P=O bond rather than in the opposite direction. Additionally, the orientational configuration is controlled by the sulfonimine auxiliary as well, showing that one of the Naph rings is pushed away from the auxiliary group (-CH2-NHSO2-tBu) of the phenyl ring. Computational studies were conducted on relative energies for the rotational barriers of a turbo target along the P=O axis and the transition pathway between two enantiomers, meeting our expectations. This work is expected to have a significant impact on the fields of chemistry, biomedicine, and materials science in the future.
Collapse
Affiliation(s)
- Yu Wang
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China; (Y.W.)
| | - Ting Xu
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China; (Y.W.)
| | - Ankit Pandey
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409-1061, USA
| | - Shengzhou Jin
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China; (Y.W.)
| | - Jasmine X. Yan
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409-1061, USA
| | - Qingkai Yuan
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409-1061, USA
| | - Sai Zhang
- School of Pharmacy, Continuous Flow Engineering Laboratory of National Petroleum and Chemical Industry, Changzhou University, Changzhou 213164, China; (S.Z.)
| | - Jia-Yin Wang
- School of Pharmacy, Continuous Flow Engineering Laboratory of National Petroleum and Chemical Industry, Changzhou University, Changzhou 213164, China; (S.Z.)
| | - Ruibin Liang
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409-1061, USA
| | - Guigen Li
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China; (Y.W.)
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409-1061, USA
| |
Collapse
|
10
|
Liang K, Li N, Liu M, Song J, Guo C. Enantioselective Electrocatalysis for Cross-Dehydrogenative Heteroarylation with Indoles, Pyrroles, and Furans. Angew Chem Int Ed Engl 2025; 64:e202415723. [PMID: 39428829 DOI: 10.1002/anie.202415723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 10/20/2024] [Accepted: 10/21/2024] [Indexed: 10/22/2024]
Abstract
Oxidative cross-dehydrogenative C-H/C-H functionalizations represent an exemplary approach for synthesizing carbonyl compounds via α-heteroarylation. Here we present the development of a direct anodic oxidative coupling process between 2-acylimidazoles and divergent heterocyclic systems including indole, pyrrole, and furan, facilitated by ferrocene-assisted asymmetric nickel electrocatalysis with high levels of enantioselectivity. Mechanistic investigations indicate that the reaction initially involves the formation of a chiral Ni-bound α-carbonyl radical, which is then captured by the heteroarene radical cation via intermolecular stereoselective radical/radical cation coupling. The mild, scalable, and robust reaction conditions allow for a broad substrate scope and excellent functional group tolerance, enabling access to a wide range of chiral hetero-compounds. The consequential α-heteroaromatic carbonyl products can potentially be transformed into a plethora of synthetically valuable frameworks, as exemplified by their application in the asymmetric total synthesis of (-)-COX-2 inhibitor, (+)-acremoauxin A, and (+)-pemedolac.
Collapse
Affiliation(s)
- Kang Liang
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Ning Li
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Minghao Liu
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Jin Song
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Chang Guo
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China
| |
Collapse
|
11
|
Somprasong S, Wan B, Harutyunyan SR. Enantioselective nickel-catalyzed electrochemical reductive conjugate alkenylation of α,β-unsaturated ketones. Chem Sci 2025; 16:802-808. [PMID: 39640021 PMCID: PMC11615957 DOI: 10.1039/d4sc06891b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 11/18/2024] [Indexed: 12/07/2024] Open
Abstract
Catalytic electrochemical asymmetric catalysis is emerging as a promising strategy for the synthesis of chiral compounds. Herein, we report an asymmetric electrochemical nickel-catalysed reductive conjugate addition of alkenyl bromides/aryl iodides to α,β-unsaturated ketones in an undivided cell, leading to addition products with high yields and excellent enantioselectivities (up to 96% yield and 96% ee).
Collapse
Affiliation(s)
- Siriphong Somprasong
- Stratingh Institute for Chemistry, University of Groningen Nijenborgh 3 9747 AG Groningen The Netherlands
| | - Bin Wan
- Stratingh Institute for Chemistry, University of Groningen Nijenborgh 3 9747 AG Groningen The Netherlands
| | - Syuzanna R Harutyunyan
- Stratingh Institute for Chemistry, University of Groningen Nijenborgh 3 9747 AG Groningen The Netherlands
| |
Collapse
|
12
|
Li J, Liu M, Wei B, Peng L, Song J, Guo C. Enantioselective Nickel-Electrocatalyzed Cross-Dehydrogenative α- and γ-Nitroalkylation. J Am Chem Soc 2024; 146:34043-34052. [PMID: 39578233 DOI: 10.1021/jacs.4c13109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2024]
Abstract
Asymmetric catalytic versions of electricity-driven processes hold immense potential for the sustainable preparation of chiral compounds. However, the involvement of anodic oxidative cross-dehydrogenative coupling events between two distinct nucleophiles makes it challenging for a chiral catalyst to regulate the stereochemistry of the products. Our current electrocatalytic strategy for enantioconvergent cross-dehydrogenative α- and γ-nitroalkylation via radical-based pathways produces an array of enantioenriched nitroesters without supplementary stoichiometric oxidants. Mechanistic investigations reveal that the nickel catalyst plays a key role in both the electrochemical activation of the substrates and the stereoselectivity-defining events, affording the electrochemically generated Lewis acid-bound α-carbonyl radicals to interact with in situ-generated nitronate anions in a stereoselective manner. This electrocatalytic approach enables transformations that are highly challenging under thermal conditions, such as umpolung reactivity with readily available substrates, all-carbon quaternary stereocenter creation, and the control of remote stereochemistry.
Collapse
Affiliation(s)
- Juan Li
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, China
| | - Minghao Liu
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Boyuan Wei
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, China
| | - Lingzi Peng
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Jin Song
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, China
| | - Chang Guo
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China
| |
Collapse
|
13
|
Xiao F, Xu X, Zhang J, Chen X, Ruan X, Wei Q, Zhang X, Huang Q. Rhodaelectro-Catalyzed Synthesis of Pyrano[3,4- b]indol-1(9 H)-ones via the Double Dehydrogenative Heck Reaction between Indole-2-carboxylic Acids and Alkenes. J Org Chem 2024; 89:17550-17561. [PMID: 39531595 DOI: 10.1021/acs.joc.4c02271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
A rhodaelectro-catalyzed double dehydrogenative Heck reaction of indole-2-carboxylic acids with alkenes has been developed for the synthesis of pyrano[3,4-b]indol-1(9H)-ones. The weakly coordinating carboxyl group is utilized twice as a directing group to activate the C-H bonds throughout the reaction. This reaction precedes an acceptorless dehydrogenation under exogenous oxidant-free conditions in an undivided cell with a constant current.
Collapse
Affiliation(s)
- Fengyi Xiao
- Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry & Materials Science, Fujian Normal University, Fuzhou, Fujian 350007, P. R. China
| | - Xinlu Xu
- Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry & Materials Science, Fujian Normal University, Fuzhou, Fujian 350007, P. R. China
| | - Jiaqi Zhang
- Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry & Materials Science, Fujian Normal University, Fuzhou, Fujian 350007, P. R. China
| | - Ximan Chen
- Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry & Materials Science, Fujian Normal University, Fuzhou, Fujian 350007, P. R. China
| | - Xin Ruan
- Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry & Materials Science, Fujian Normal University, Fuzhou, Fujian 350007, P. R. China
| | - Qi Wei
- Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry & Materials Science, Fujian Normal University, Fuzhou, Fujian 350007, P. R. China
| | - Xiaofeng Zhang
- Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry & Materials Science, Fujian Normal University, Fuzhou, Fujian 350007, P. R. China
| | - Qiufeng Huang
- Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry & Materials Science, Fujian Normal University, Fuzhou, Fujian 350007, P. R. China
| |
Collapse
|
14
|
Jia L, Li B, Wang X, Zhao J, Qu J, Zhou Y. Construction of axially chiral 2-arylpyrroles using catalytic asymmetric Suzuki-Miyaura cross-coupling: an efficient approach to esaxerenone. Org Biomol Chem 2024; 22:8749-8754. [PMID: 39177493 DOI: 10.1039/d4ob01174k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
A general and efficient method has been developed to access axially chiral 2-arylpyrroles using catalytic asymmetric Suzuki-Miyaura cross-coupling. A wide range of axially chiral arylpyrroles were obtained in high yields with good to excellent enantioselectivities. The key to success is the use of a combined catalytic system involving a palladium catalyst and chiral ferrocene diphosphine ligand for achieving effective enantiocontrol. More importantly, this axially chiral CF3-substituted 2-arylpyrrole serves as a key intermediate in the preparation of the anti-hypertensive and diabetic nephropathy drug esaxerenone. It was directly asymmetrically synthesized with high enantioselectivity (92% ee). Thus, a new strategy is provided for the catalytic asymmetric synthesis of esaxerenone.
Collapse
Affiliation(s)
- Ling Jia
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Engineering, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China.
| | - Bing Li
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Engineering, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China.
| | - Xi Wang
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Engineering, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China.
| | - Jinfeng Zhao
- Instrumental Analysis Center, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
| | - Jingping Qu
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
| | - Yuhan Zhou
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Engineering, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China.
| |
Collapse
|
15
|
Kushwaha P, Saxena A, von Münchow T, Dana S, Saha B, Ackermann L. Metallaelectro-catalyzed alkyne annulations via C-H activations for sustainable heterocycle syntheses. Chem Commun (Camb) 2024; 60:12333-12364. [PMID: 39370984 PMCID: PMC11456994 DOI: 10.1039/d4cc03871a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 09/25/2024] [Indexed: 10/08/2024]
Abstract
Alkyne annulation represents a versatile and powerful strategy for the assembly of structurally complex compounds. Recent advances successfully enabled electrocatalytic alkyne annulations, significantly expanding the potential applications of this promising technique towards sustainable synthesis. The metallaelectro-catalyzed C-H activation/annulation stands out as a highly efficient approach that leverages electricity, combining the benefits of electrosynthesis with the power of transition-metal catalyzed C-H activation. Particularly attractive is the pairing of the electro-oxidative C-H activation with the valuable hydrogen evolution reaction (HER), thereby addressing the growing demand for green energy solutions. Herein, we provide an overview of the evolution of electrochemical C-H annulations with alkynes for the construction of heterocycles, with a topical focus on the underlying mechanism manifolds.
Collapse
Affiliation(s)
- Preeti Kushwaha
- Amity Institute of Click chemistry Research & Studies, Amity University, Noida, 201303, Uttar Pradesh, India
- Amity Institute of Biotechnology, Amity University, Noida, 201303, Uttar Pradesh, India.
| | - Anjali Saxena
- Amity Institute of Biotechnology, Amity University, Noida, 201303, Uttar Pradesh, India.
| | - Tristan von Münchow
- Wöhler Research Institute for Sustainable Chemistry (WISCh), Georg-August-Universität Göttingen, 37077, Göttingen, Germany.
| | - Suman Dana
- Wöhler Research Institute for Sustainable Chemistry (WISCh), Georg-August-Universität Göttingen, 37077, Göttingen, Germany.
| | - Biswajit Saha
- Amity Institute of Biotechnology, Amity University, Noida, 201303, Uttar Pradesh, India.
| | - Lutz Ackermann
- Wöhler Research Institute for Sustainable Chemistry (WISCh), Georg-August-Universität Göttingen, 37077, Göttingen, Germany.
| |
Collapse
|
16
|
Campbell JW, Cotnam MJ, Annan FR, Hilborn JW, Thompson A. Synthesis of chiral systems featuring the pyrrole unit: a review. Chem Commun (Camb) 2024; 60:11385-11414. [PMID: 39292192 DOI: 10.1039/d4cc03601h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Synthetic strategies towards pyrroles within chiral frameworks are summarised, focussing on reports published 2010-2023. The synthesis of pyrroles featuring substituents bearing chiral centres are summarised, as are those whereby pyrroles are located within axially chiral systems courtesy of restricted bond rotation.
Collapse
Affiliation(s)
- Jacob W Campbell
- Department of Chemistry, Dalhousie University, P. O. Box 15000, Halifax, Nova Scotia, B3H 4R2, Canada.
| | - Michael J Cotnam
- Department of Chemistry, Dalhousie University, P. O. Box 15000, Halifax, Nova Scotia, B3H 4R2, Canada.
| | - Francisca R Annan
- Department of Chemistry, Dalhousie University, P. O. Box 15000, Halifax, Nova Scotia, B3H 4R2, Canada.
| | - James W Hilborn
- Department of Chemistry, Dalhousie University, P. O. Box 15000, Halifax, Nova Scotia, B3H 4R2, Canada.
| | - Alison Thompson
- Department of Chemistry, Dalhousie University, P. O. Box 15000, Halifax, Nova Scotia, B3H 4R2, Canada.
| |
Collapse
|
17
|
Wang Y, Song RP, Li XY, Chen WL, Tian Y, Zhang SH, Shao YD, Cheng DJ. Catalytic Asymmetric Reductive Amination for Axially Chiral Aryl Aldehydes via Desymmetrization/Kinetic Resolution Cascade. Org Lett 2024; 26:7161-7165. [PMID: 39158186 DOI: 10.1021/acs.orglett.4c02540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/20/2024]
Abstract
Herein we present an efficient chiral phosphoric-acid-catalyzed atropoenantioselective asymmetric reductive amination of biaryl dialdehydes. The process involves desymmetrization and the following kinetic resolution, with a wide range of axially chiral aryl aldehydes obtained with high optical purities.
Collapse
Affiliation(s)
- Yi Wang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Rui-Ping Song
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Xin-Yue Li
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Wen-Li Chen
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Yu Tian
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Shu-Hui Zhang
- School of Chemistry and Chemical Engineering, Heze University, Heze 274015, China
| | - You-Dong Shao
- School of Chemistry and Chemical Engineering, Heze University, Heze 274015, China
| | - Dao-Juan Cheng
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| |
Collapse
|
18
|
von Münchow T, Liu YR, Parmar R, Peters SE, Trienes S, Ackermann L. Cobaltaelectro-Catalyzed C-H Activation for Central and Axial Double Enantio-Induction. Angew Chem Int Ed Engl 2024; 63:e202405423. [PMID: 38758011 DOI: 10.1002/anie.202405423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/22/2024] [Accepted: 05/03/2024] [Indexed: 05/18/2024]
Abstract
In recent years, enantioselective electrocatalysis has surfaced as an increasingly-effective platform for sustainable molecular synthesis. Despite indisputable progress, strategies that allow the control of two distinct stereogenic elements with high selectivity remain elusive. In contrast, we, herein, describe electrochemical cobalt-catalyzed C-H activations that enable the installation of chiral stereogenic centers along with a chiral axis with high levels of enantio- and diastereoselectivities. The developed electrocatalysis strategy allowed for C-H/N-H activations/annulations with cyclic and non-cyclic alkenes providing expedient access to various central as well as atropo-chiral dihydroisoquinolinones paired to the valuable hydrogen evolution reaction. Studies on the atropo-stability of the obtained compounds demonstrated that the exceedingly mild conditions ensured by the electrocatalytic process were key for the achieved high stereoselectivities.
Collapse
Affiliation(s)
- Tristan von Münchow
- Institut für Organische und Biomolekulare Chemie, Wöhler-Research Institute for Sustainable Chemistry (WISCh), Georg-August-Universität Göttingen, Tammannstraße 2, 37077, Göttingen, Germany
| | - Yi-Ru Liu
- Institut für Organische und Biomolekulare Chemie, Wöhler-Research Institute for Sustainable Chemistry (WISCh), Georg-August-Universität Göttingen, Tammannstraße 2, 37077, Göttingen, Germany
| | - Rahul Parmar
- Institut für Organische und Biomolekulare Chemie, Wöhler-Research Institute for Sustainable Chemistry (WISCh), Georg-August-Universität Göttingen, Tammannstraße 2, 37077, Göttingen, Germany
| | - Sven Erik Peters
- Institut für Organische und Biomolekulare Chemie, Wöhler-Research Institute for Sustainable Chemistry (WISCh), Georg-August-Universität Göttingen, Tammannstraße 2, 37077, Göttingen, Germany
| | - Sven Trienes
- Institut für Organische und Biomolekulare Chemie, Wöhler-Research Institute for Sustainable Chemistry (WISCh), Georg-August-Universität Göttingen, Tammannstraße 2, 37077, Göttingen, Germany
| | - Lutz Ackermann
- Institut für Organische und Biomolekulare Chemie, Wöhler-Research Institute for Sustainable Chemistry (WISCh), Georg-August-Universität Göttingen, Tammannstraße 2, 37077, Göttingen, Germany
| |
Collapse
|
19
|
Li Q, Yu Z, Liu Q, Guo Y, Fu Z, Yang Y, Bin Z, Wu D, Lan J. Crafting 1,4-diaryl spirobifluorene hosts in OLEDs via interannular C-H arylation: synergistic effects of molecular linearity and orthogonality. Chem Sci 2024; 15:10547-10555. [PMID: 38994415 PMCID: PMC11234861 DOI: 10.1039/d4sc02178a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 05/30/2024] [Indexed: 07/13/2024] Open
Abstract
In this work, we present a design concept of introducing linear structures into the orthogonal configuration of 9,9'-spirobifluorene (SBF), aiming to enhance carrier mobilities while maintaining high triplet energies (E T), which are two critical parameters for optimizing host materials in organic light-emitting diodes (OLEDs). To validate our proposed design, four pivotal model molecules of 1,4-diaryl SBFs were synthesized via interannular C-H arylation of bi(hetero)aryl-2-formaldehydes, a task challenging to accomplish using previous synthetic methodologies. The orthogonal configuration and the steric hindrance of SBF lead to high E T through the conjugation breaking at C1 and C4 positions, rendering 1,4-diaryl SBFs suitable as universal pure hydrocarbon (PHC) hosts for red, green, and blue (RGB) phosphorescent OLEDs (PhOLEDs). Meanwhile, the linearity and relatively good planarity of the para-quaterphenyl structure promote high carrier mobilities through orderly intermolecular packing. The synergistic effects of linearity and orthogonality in 1-(para-biphenyl)-4-phenyl-SBF result in exceptional device performance with external quantum efficiencies (EQEs) of 26.0%, 26.1%, and 22.5% for RGB PhOLEDs, respectively. Notably, the green PhOLED exhibits minimal efficiency roll-off, positioning its device performances among the state-of-the-art in PHC hosts.
Collapse
Affiliation(s)
- Qian Li
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University 29 Wangjiang Road Chengdu 610064 People's Republic of China
| | - Zhiqian Yu
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University 29 Wangjiang Road Chengdu 610064 People's Republic of China
| | - Qianhui Liu
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University 29 Wangjiang Road Chengdu 610064 People's Republic of China
| | - Yusong Guo
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University 29 Wangjiang Road Chengdu 610064 People's Republic of China
| | - Zhangyi Fu
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University 29 Wangjiang Road Chengdu 610064 People's Republic of China
| | - Yudong Yang
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University 29 Wangjiang Road Chengdu 610064 People's Republic of China
| | - Zhengyang Bin
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University 29 Wangjiang Road Chengdu 610064 People's Republic of China
| | - Di Wu
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University 29 Wangjiang Road Chengdu 610064 People's Republic of China
| | - Jingbo Lan
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University 29 Wangjiang Road Chengdu 610064 People's Republic of China
| |
Collapse
|
20
|
Schmidt TA, Hutskalova V, Sparr C. Atroposelective catalysis. Nat Rev Chem 2024; 8:497-517. [PMID: 38890539 DOI: 10.1038/s41570-024-00618-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/13/2024] [Indexed: 06/20/2024]
Abstract
Atropisomeric compounds-stereoisomers that arise from the restricted rotation about a single bond-have attracted widespread attention in recent years due to their immense potential for applications in a variety of fields, including medicinal chemistry, catalysis and molecular nanoscience. This increased interest led to the invention of new molecular motors, the incorporation of atropisomers into drug discovery programmes and a wide range of novel atroposelective reactions, including those that simultaneously control multiple stereogenic axes. A diverse set of synthetic methodologies, which can be grouped into desymmetrizations, (dynamic) kinetic resolutions, cross-coupling reactions and de novo ring formations, is available for the catalyst-controlled stereoselective synthesis of various atropisomer classes. In this Review, we generalize the concepts for the catalyst-controlled stereoselective synthesis of atropisomers within these categories with an emphasis on recent advancements and underdeveloped atropisomeric scaffolds beyond stereogenic C(sp2)-C(sp2) axes. We also discuss more complex systems with multiple stereogenic axes or higher-order stereogenicity.
Collapse
Affiliation(s)
- Tanno A Schmidt
- Department of Chemistry, University of Basel, Basel, Switzerland
| | | | - Christof Sparr
- Department of Chemistry, University of Basel, Basel, Switzerland.
| |
Collapse
|
21
|
Parmar D, Kumar R, Sharma U. Chiral amino acids: evolution in atroposelective C-H activation. Org Biomol Chem 2024; 22:5032-5051. [PMID: 38837336 DOI: 10.1039/d4ob00739e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
This review covers the journey of chiral amino acids as ligands in atroposelective C-H bond activation/functionalization via transition metal catalysis. Herein, we intend to demonstrate how these chiral amino acids have evolved and flourished in this stimulating field. Unprotected amino acids, mono-N-protected amino acids, and di-N-protected amino acids have been devised for atroposelective C-H activation. In each section, we have briefly discuss the key successes of amino acids in the atroposelective synthesis of biaryls, heterobiaryls, and non-biaryl atropisomers and their advantages in atroposelective C-H activation.
Collapse
Affiliation(s)
- Diksha Parmar
- C-H Activation & Phytochemistry Lab, Chemical Technology Division, CSIR-IHBT, Palampur 176061, India
| | - Rohit Kumar
- C-H Activation & Phytochemistry Lab, Chemical Technology Division, CSIR-IHBT, Palampur 176061, India
| | - Upendra Sharma
- C-H Activation & Phytochemistry Lab, Chemical Technology Division, CSIR-IHBT, Palampur 176061, India
| |
Collapse
|
22
|
Sun Y, Yang T, Wang Q, Shi L, Song MP, Niu JL. Atroposelective N-N Axes Synthesis via Electrochemical Cobalt Catalysis. Org Lett 2024; 26:5063-5068. [PMID: 38864356 DOI: 10.1021/acs.orglett.4c01025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Abstract
Here, we disclosed an unprecedented cobalt electrocatalyzed atroposelective C-H activation and annulation for the efficient construction of diversely functionalized N-N axes in an undivided cell. A broad range of allene substrates and benzamides bearing different functionalities are compatible with generating axially chiral products with good yields and excellent enantioselectivities (up to 92% yield and 99% ee). A series of synthetic applications and control experiments were also performed, which further expanded the practicality of this strategy.
Collapse
Affiliation(s)
- Yingjie Sun
- College of Chemistry, Pingyuan Laboratory, Zhengzhou University, Zhengzhou 450001, China
| | - Taixin Yang
- College of Chemistry, Pingyuan Laboratory, Zhengzhou University, Zhengzhou 450001, China
| | - Qiuling Wang
- College of Chemistry, Pingyuan Laboratory, Zhengzhou University, Zhengzhou 450001, China
| | - Linlin Shi
- College of Chemistry, Pingyuan Laboratory, Zhengzhou University, Zhengzhou 450001, China
| | - Mao-Ping Song
- College of Chemistry, Pingyuan Laboratory, Zhengzhou University, Zhengzhou 450001, China
| | - Jun-Long Niu
- College of Chemistry, Pingyuan Laboratory, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
23
|
Li Y, Xu J, Oliveira JC, Scheremetjew A, Ackermann L. Electrochemical Enantioselective C-H Annulation by Achiral Rhodium(III)/Chiral Brønsted Base Domino Catalysis. ACS Catal 2024; 14:8160-8167. [PMID: 38868099 PMCID: PMC11165455 DOI: 10.1021/acscatal.4c01886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/26/2024] [Accepted: 05/02/2024] [Indexed: 06/14/2024]
Abstract
Rhodium(III)-catalyzed enantioselective C-H activation has emerged as a powerful tool for assembling enabling chiral molecules. However, this approach is significantly hampered by the cumbersome synthetic routes for preparing chiral rhodium catalysts. In sharp contrast, we herein report on an electrochemical domino catalysis system that exploits an achiral Cp*-rhodium catalyst along with an easily accessible chiral Brønsted base for an enantioselective C-H activation/annulation reaction of alkenes by benzoic acids. Our strategy offers an environmentally benign and most user-friendly approach for assembling synthetically useful chiral phthalides in good enantioselectivity, employing electricity as the sustainable oxidant.
Collapse
Affiliation(s)
- Yanjun Li
- Institut
für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077 Göttingen, Germany
| | - Jiawei Xu
- Institut
für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077 Göttingen, Germany
| | - João C.
A. Oliveira
- Institut
für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077 Göttingen, Germany
| | - Alexej Scheremetjew
- Institut
für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077 Göttingen, Germany
| | - Lutz Ackermann
- Institut
für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077 Göttingen, Germany
| |
Collapse
|
24
|
Hu Q, Wei B, Wang M, Liu M, Chen XW, Ran CK, Wang G, Chen Z, Li H, Song J, Yu DG, Guo C. Enantioselective Nickel-Electrocatalyzed Reductive Propargylic Carboxylation with CO 2. J Am Chem Soc 2024; 146:14864-14874. [PMID: 38754389 DOI: 10.1021/jacs.4c04211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
The exploitation of carbon dioxide (CO2) as a sustainable, plentiful, and harmless C1 source for the catalytic synthesis of enantioenriched carboxylic acids has long been acknowledged as a pivotal task in synthetic chemistry. Herein, we present a current-driven nickel-catalyzed reductive carboxylation reaction with CO2 fixation, facilitating the formation of C(sp3)-C(sp2) bonds by circumventing the handling of moisture-sensitive organometallic reagents. This electroreductive protocol serves as a practical platform, paving the way for the synthesis of enantioenriched propargylic carboxylic acids (up to 98% enantiomeric excess) from racemic propargylic carbonates and CO2. The efficacy of this transformation is exemplified by its successful utilization in the asymmetric total synthesis of (S)-arundic acid, (R)-PIA, (S)-chizhine D, (S)-cochlearin G, and (S,S)-alexidine, thereby underscoring the potential of asymmetric electrosynthesis to achieve complex molecular architectures sustainably.
Collapse
Affiliation(s)
- Qingdong Hu
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Boyuan Wei
- Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
| | - Mingxu Wang
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Minghao Liu
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Xiao-Wang Chen
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Chuan-Kun Ran
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Gefei Wang
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Ziting Chen
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Haoze Li
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Jin Song
- Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
| | - Da-Gang Yu
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Chang Guo
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
25
|
Zhang Q, Zhang J, Zhu W, Lu R, Guo C. Enantioselective nickel-catalyzed anodic oxidative dienylation and allylation reactions. Nat Commun 2024; 15:4477. [PMID: 38796470 PMCID: PMC11127924 DOI: 10.1038/s41467-024-48936-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 05/17/2024] [Indexed: 05/28/2024] Open
Abstract
Precision control of stereochemistry in radical reactions remains a formidable challenge due to the prevalence of incidental racemic background reactions resulting from undirected substrate oxidation in the absence of chiral induction. In this study, we devised an thoughtful approach-electricity-driven asymmetric Lewis acid catalysis-to circumvent this impediment. This methodology facilitates both asymmetric dienylation and allylation reactions, resulting in the formation of all-carbon quaternary stereocenters and demonstrating significant potential in the modular synthesis of functional and chiral benzoxazole-oxazoline (Boox) ligands. Notably, the involvement of chiral Lewis acids in both the electrochemical activation and stereoselectivity-defining radical stages offers innovative departures for designing single electron transfer-based reactions, significantly underscoring the relevance of this approach as a multifaceted and universally applicable strategy for various fields of study, including electrosynthesis, organic chemistry, and drug discovery.
Collapse
Affiliation(s)
- Qinglin Zhang
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei, China
| | - Jiayin Zhang
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei, China
| | - Wangjie Zhu
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei, China
| | - Ruimin Lu
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei, China
| | - Chang Guo
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei, China.
| |
Collapse
|
26
|
Gaucherand A, Yen-Pon E, García-López D, Naubron JV, Chentouf S, Giorgi M, Humbel S, Jean M, Rodriguez J, Bonne D. Padlocking dihydrofurannulation for the control of small degree of helicity built on a fused-tetracyclic core. Chem Sci 2024; 15:7300-7307. [PMID: 38756805 PMCID: PMC11095505 DOI: 10.1039/d4sc00745j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 03/15/2024] [Indexed: 05/18/2024] Open
Abstract
Enantioselective construction of small molecules displaying a configurationally stable helical shape built on a fused-tetracyclic core is a daunting synthetic challenge even more pronounced when five-membered rings are incorporated in the structure. The resulting higher configurational lability strongly hampers their access, and therefore the development of new efficient methodologies is timely and highly desirable. In this context, we describe a padlocking approach via the enantioselective organocatalytic domino furannulation of appropriately designed achiral fused-tricyclic precursors resulting in the synthesis of configurationally locked helically chiral tetracyclic scaffolds featuring one or two five-membered rings with the simultaneous control of central and helical chiralities.
Collapse
Affiliation(s)
- Arthur Gaucherand
- Aix Marseille Université, CNRS, Centrale Marseille, iSm2 Marseille France
| | - Expédite Yen-Pon
- Aix Marseille Université, CNRS, Centrale Marseille, iSm2 Marseille France
| | - Diego García-López
- Aix Marseille Université, CNRS, Centrale Marseille, iSm2 Marseille France
| | - Jean-Valère Naubron
- Aix Marseille Université, CNRS, Centrale Marseille, FSCM, Spectropole Marseille France
| | - Sara Chentouf
- Aix Marseille Université, CNRS, Centrale Marseille, FSCM, Spectropole Marseille France
| | - Michel Giorgi
- Aix Marseille Université, CNRS, Centrale Marseille, FSCM, Spectropole Marseille France
| | - Stéphane Humbel
- Aix Marseille Université, CNRS, Centrale Marseille, iSm2 Marseille France
| | - Marion Jean
- Aix Marseille Université, CNRS, Centrale Marseille, iSm2 Marseille France
| | - Jean Rodriguez
- Aix Marseille Université, CNRS, Centrale Marseille, iSm2 Marseille France
| | - Damien Bonne
- Aix Marseille Université, CNRS, Centrale Marseille, iSm2 Marseille France
| |
Collapse
|
27
|
Higham JI, Ma TK, Bull JA. When is an Imine Directing Group a Transient Imine Directing Group in C-H Functionalization? Chemistry 2024; 30:e202400345. [PMID: 38375941 DOI: 10.1002/chem.202400345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 02/19/2024] [Accepted: 02/20/2024] [Indexed: 02/21/2024]
Abstract
'Transient' C-H functionalization has emerged in recent years to describe the use of a dynamic linkage, often an imine, to direct cyclometallation and subsequent functionalization. As the field continues to grow in popularity, we consider the features that make an imine directing group transient. A transient imine should be i) formed dynamically in situ, ii) avoid discrete introduction or cleavage steps, and iii) offer the potential for catalysis in both the directing group and metal. This concept article contrasts transient imines with pioneering early studies of imines as directing groups for the formation of metallacycles and the use of preformed imines in C-H functionalization. Leading developments in the use of catalytic additives to form transient directing groups (as aldehyde or amine) are covered including selected highlights of the most recent examples of catalytic imine directed C-H functionalization with transition metals.
Collapse
Affiliation(s)
- Joe I Higham
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, White City Campus, Wood Lane, London, W12 0BZ, UK
| | - Tsz-Kan Ma
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, White City Campus, Wood Lane, London, W12 0BZ, UK
| | - James A Bull
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, White City Campus, Wood Lane, London, W12 0BZ, UK
| |
Collapse
|
28
|
Fan P, Li L, Qian D. Catalytic asymmetric construction of helicenes via transformation of biaryls. Org Biomol Chem 2024; 22:3186-3197. [PMID: 38591656 DOI: 10.1039/d4ob00012a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
This review showcases a systematic overview of the available tools for the catalytic asymmetric transformation of biaryl substrates toward the construction of challenging enantioenriched helicenes and the conceptual aspects associated with each type of transformation. Depending on the properties of the biaryl and the nature of the process, several methodologies have been developed, including olefin metathesis, hydroarylation of alkynes, C-X (X = C, O, N) coupling, and C-H functionalization. Pioneering studies and an array of representative reactions are discussed to underscore the potential of these synthetic protocols.
Collapse
Affiliation(s)
- Peiling Fan
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Key Laboratory of Research and Development for Natural Products, School of Pharmacy, Yunnan University, Kunming 650500, P.R. China.
- School of Chemical Science and Technology, Yunnan University, Kunming 650500, P.R. China
| | - Lun Li
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Key Laboratory of Research and Development for Natural Products, School of Pharmacy, Yunnan University, Kunming 650500, P.R. China.
- School of Chemical Science and Technology, Yunnan University, Kunming 650500, P.R. China
| | - Deyun Qian
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Key Laboratory of Research and Development for Natural Products, School of Pharmacy, Yunnan University, Kunming 650500, P.R. China.
- School of Chemical Science and Technology, Yunnan University, Kunming 650500, P.R. China
| |
Collapse
|
29
|
Zhou G, Zhou T, Jiang AL, Qian PF, Li JY, Jiang BY, Chen ZJ, Shi BF. Electrooxidative Rhodium(III)/Chiral Carboxylic Acid-Catalyzed Enantioselective C-H Annulation of Sulfoximines with Alkynes. Angew Chem Int Ed Engl 2024; 63:e202319871. [PMID: 38289019 DOI: 10.1002/anie.202319871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Indexed: 02/21/2024]
Abstract
The combination of achiral Cp*Rh(III) with chiral carboxylic acids (CCAs) represents an efficient catalytic system in transition metal-catalyzed enantioselective C-H activation. However, this hybrid catalysis is limited to redox-neutral C-H activation reactions and the adopt to oxidative enantioselective C-H activation remains elusive and pose a significant challenge. Herein, we describe the development of an electrochemical Cp*Rh(III)-catalyzed enantioselective C-H annulation of sulfoximines with alkynes enabled by chiral carboxylic acid (CCA) in an operationally friendly undivided cell at room temperature. A broad range of enantioenriched 1,2-benzothiazines are obtained in high yields with excellent enantioselectivities (up to 99 % yield and 98 : 2 er). The practicality of this method is demonstrated by scale-up reaction in a batch reactor with external circulation. A crucial chiral Cp*Rh(III) intermediate is isolated, characterized, and transformed, providing rational support for a Rh(III)/Rh(I) electrocatalytic cycle.
Collapse
Affiliation(s)
- Gang Zhou
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, 310027, Hangzhou, China
| | - Tao Zhou
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, 310027, Hangzhou, China
- College of Material Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, 311121, Hangzhou, Zhejiang, China
| | - Ao-Lian Jiang
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, 310027, Hangzhou, China
| | - Pu-Fan Qian
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, 310027, Hangzhou, China
| | - Jun-Yi Li
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, 310027, Hangzhou, China
| | - Bo-Yang Jiang
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, 310027, Hangzhou, China
| | - Zi-Jia Chen
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, 310027, Hangzhou, China
| | - Bing-Feng Shi
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, 310027, Hangzhou, China
- College of Material Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, 311121, Hangzhou, Zhejiang, China
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, 314001, Jiaxing, Zhejiang, China
| |
Collapse
|
30
|
Hou XX, Wei D. Mechanism and Origin of Stereoselectivity for the NHC-Catalyzed Desymmetrization Reaction for the Synthesis of Axially Chiral Biaryl Aldehydes. J Org Chem 2024; 89:3133-3142. [PMID: 38359780 DOI: 10.1021/acs.joc.3c02575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
Organocatalytic desymmetrization reaction is a powerful tool for constructing axial chirality, but the theoretical study on the origin of stereoselectivity still lags behind even now. In this work, the N-heterocyclic carbene (NHC)-catalyzed desymmetrization reaction of biaryl frameworks for the synthesis of axially chiral aldehydes has been selected and theoretically investigated by using density functional theory (DFT). The fundamental pathway involves several steps, i.e., desymmetrization, formation of Breslow oxidation, esterification, and NHC regeneration. The desymmetrization and formation of Breslow processes have been identified as stereoselectivity-determining and rate-determining steps. Further weak interaction analyses proved that the C-H···O hydrogen bond and C-H···π interactions are responsible for the stability of the key stereoselective desymmetrization transition states. This research contributes to understanding the nature of NHC-catalyzed desymmetrization reactions for the synthesis of axially chiral compounds.
Collapse
Affiliation(s)
- Xiao-Xiao Hou
- College of Chemistry, and Institute of Green Catalysis, Zhengzhou University, 100 Science Avenue, Zhengzhou 450001, Henan, P. R. China
| | - Donghui Wei
- College of Chemistry, and Institute of Green Catalysis, Zhengzhou University, 100 Science Avenue, Zhengzhou 450001, Henan, P. R. China
| |
Collapse
|
31
|
Huang C, Tao Y, Cao X, Zhou C, Lu Q. Asymmetric Paired Electrocatalysis: Enantioselective Olefin-Sulfonylimine Coupling. J Am Chem Soc 2024; 146:1984-1991. [PMID: 38113828 DOI: 10.1021/jacs.3c10194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Asymmetric electrocatalysis offers exciting new strategies for the synthesis of chiral molecules through novel reaction pathways. However, simultaneous activation of reactants on both electrodes via asymmetric paired electrolysis, which is more energy efficient and economic than single half-electrode synthesis, remains a formidable challenge. Herein, an asymmetric olefin-sulfonylimine coupling via paired electrocatalysis is presented for the first time. In this protocol, Co-catalyzed hydrogen atom transfer on the anode and Ni-catalyzed sulfonylimine reduction on the cathode were seamlessly cross-coupled. The new catalytic system enables the formation of chiral amine products bearing a tetrasubstituted carbon stereocenter with a high enantioselectivity (up to 96% ee).
Collapse
Affiliation(s)
- Cheng Huang
- The Institute for Advanced Studies (IAS), Wuhan University, Wuhan 430072, P. R. China
| | - Yongsheng Tao
- The Institute for Advanced Studies (IAS), Wuhan University, Wuhan 430072, P. R. China
| | - Xiyang Cao
- The Institute for Advanced Studies (IAS), Wuhan University, Wuhan 430072, P. R. China
| | - Cong Zhou
- The Institute for Advanced Studies (IAS), Wuhan University, Wuhan 430072, P. R. China
| | - Qingquan Lu
- The Institute for Advanced Studies (IAS), Wuhan University, Wuhan 430072, P. R. China
| |
Collapse
|
32
|
Zhang J, Zhu W, Chen Z, Zhang Q, Guo C. Dual-Catalyzed Stereodivergent Electrooxidative Homocoupling of Benzoxazolyl Acetate. J Am Chem Soc 2024; 146:1522-1531. [PMID: 38166394 DOI: 10.1021/jacs.3c11429] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
The development of a reliable strategy for stereodivergent radical reactions that allows convenient access to all stereoisomers of homocoupling adducts with multiple stereogenic centers remains an unmet goal in organic synthesis. Herein, we describe a dual-catalyzed electrooxidative C(sp3)-H/C(sp3)-H homocoupling with complete absolute and relative stereocontrol for the synthesis of molecules with contiguous quaternary stereocenters in a general and predictable manner. The stereodivergent electrooxidative homocoupling reaction is achieved by synergistically utilizing two distinct chiral catalysts that convert identical racemic substrates into inherently distinctive reactive chiral intermediates, dictate enantioselective radical addition, and allow access to the full complement of stereoisomeric products via simple catalyst permutation. The successful execution of the dual-electrocatalytic strategy programmed via electrooxidative activation provides a significant conceptual advantage and will serve as a useful foundation for further research into cooperative stereocontrolled radical transformations and diversity-oriented synthesis.
Collapse
Affiliation(s)
- Jiayin Zhang
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Wangjie Zhu
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Ziting Chen
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Qinglin Zhang
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Chang Guo
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
33
|
Cai Y, Lv Y, Shu L, Jin Z, Chi YR, Li T. Access to Axially Chiral Aryl Aldehydes via Carbene-Catalyzed Nitrile Formation and Desymmetrization Reaction. RESEARCH (WASHINGTON, D.C.) 2024; 7:0293. [PMID: 38628355 PMCID: PMC11020146 DOI: 10.34133/research.0293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 12/08/2023] [Indexed: 04/19/2024]
Abstract
An approach utilizing N-heterocyclic carbene for nitrile formation and desymmetrization reaction is developed. The process involves kinetic resolution, with the axially chiral aryl monoaldehydes obtained in moderate yields with excellent optical purities. These axially chiral aryl monoaldehydes can be conveniently transformed into functionalized molecules, showing great potential as catalysts in organic chemistry.
Collapse
Affiliation(s)
- Yuanlin Cai
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education,
Guizhou University, Guiyang 550025, China
| | - Ya Lv
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education,
Guizhou University, Guiyang 550025, China
| | - Liangzhen Shu
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education,
Guizhou University, Guiyang 550025, China
| | - Zhichao Jin
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education,
Guizhou University, Guiyang 550025, China
| | - Yonggui Robin Chi
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education,
Guizhou University, Guiyang 550025, China
- School of Chemistry, Chemical Engineering, and Biotechnology,
Nanyang Technological University, Singapore 637371, Singapore
| | - Tingting Li
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education,
Guizhou University, Guiyang 550025, China
| |
Collapse
|
34
|
Yuan C, Fu S, Kang X, Cheng C, Jiang C, Liu Y, Cui Y. Mixed-Linker Chiral 2D Covalent Organic Frameworks with Controlled Layer Stacking for Electrochemical Asymmetric Catalysis. J Am Chem Soc 2024; 146:635-645. [PMID: 38148276 DOI: 10.1021/jacs.3c10478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
Covalent organic frameworks (COFs) have undergone extensive research as heterogeneous catalysts for a wide range of significant reactions, but they have not yet been investigated in the realm of electrochemical asymmetric catalysis, despite their recognition as an economical and sustainable strategy for producing enantiopure compounds. Here, we report a mixed-linker strategy to design multicomponent two-dimensional (2D) chiral COFs with tunable layer stacking for highly enantioselective electrocatalysis. By crystallizing mixtures of triamines with and without the MacMillan imidazolidinone catalyst or aryl substituent (ethyl and isopropyl) and a dialdehyde derivative of thieno-[3,2-b]thiophene, we synthesized and structurally characterized a series of three-component homochiral 2D COFs featuring either AA or ABC stacking. The stacking modes that can be synthetically controlled through steric tuning using different aryl substituents affect their chemical stability and electrochemical performance. With the MacMillan catalyst periodically appended on their channels, all three COFs with conductive thiophene moieties can be highly enantioselective and recyclable electrocatalysts for the asymmetric α-arylation of aldehydes, affording alkylated anilines with up to 97% enantiomeric excess by an anodic oxidation/organocatalytic protocol. Presumably due to their higher charge transfer ability, the ABC stacking COFs exhibit improved reactivity compared to the AA stacking analogue. This work therefore advances COFs as electrocatalysts for asymmetric catalysis and may facilitate the design of more redox-active crystalline organic polymers for electrochemical enantioselective processes.
Collapse
Affiliation(s)
- Chen Yuan
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai 200240, P. R. China
- Analytical & Testing Centre, Sichuan University, Chengdu 610064, P. R. China
| | - Shiguo Fu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai 200240, P. R. China
| | - Xing Kang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai 200240, P. R. China
| | - Cheng Cheng
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai 200240, P. R. China
| | - Chao Jiang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai 200240, P. R. China
| | - Yan Liu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai 200240, P. R. China
| | - Yong Cui
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai 200240, P. R. China
| |
Collapse
|
35
|
Lin Z, Oliveira JC, Scheremetjew A, Ackermann L. Palladium-Catalyzed Electrooxidative Double C-H Arylation. J Am Chem Soc 2024; 146:228-239. [PMID: 38150013 PMCID: PMC10785825 DOI: 10.1021/jacs.3c08479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 12/08/2023] [Accepted: 12/13/2023] [Indexed: 12/28/2023]
Abstract
The electrochemical transition metal-catalyzed cross-dehydrogenative reaction has emerged as a promising platform to achieve a sustainable and atom-economic organic synthesis that avoids hazardous oxidants and minimizes undesired byproducts and circuitous functional group operations. However, a poor mechanistic understanding still prevents the widespread adoption of this strategy. In this regard, we herein present an electrochemical palladium-catalyzed oxidative coupling strategy to access biaryls in the absence of a stoichiometric chemical oxidant. The robust palladaelectrocatalysis considerably suppresses the occurrence of homocoupling and oxygenation, being compatible even with electron-deficient arenes. Late-stage functionalization and Boscalid precursor synthesis further highlighted the practical importance of our electrolysis. Remarkably, mechanistic studies including the evaluation of the reaction order of each component by variable time normalization analysis (VTNA) and initial rate analysis, H/D exchange experiment, kinetic isotope effect, and stoichiometric organometallic experiments provided strong support for the involvement of transmetalation between two organopalladium complexes in the turnover limiting step. Therefore, matching the concentrations or lifetimes of two distinct organopalladium intermediates is revealed to be a pivot to the success of electrooxidative catalysis. Moreover, the presence of cationic copper(II) seems to contribute to the stabilization of the palladium(0) catalyst instead of playing a role in the oxidation of the catalyst.
Collapse
Affiliation(s)
- Zhipeng Lin
- Institut
für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077 Göttingen, Germany
- Wöhler
Research Institute for Sustainable Chemistry (WISCh), Georg-August-Universität Göttingen, Tammannstraße 2, 37077 Göttingen, Germany
| | - João C.
A. Oliveira
- Institut
für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077 Göttingen, Germany
- Wöhler
Research Institute for Sustainable Chemistry (WISCh), Georg-August-Universität Göttingen, Tammannstraße 2, 37077 Göttingen, Germany
| | - Alexej Scheremetjew
- Institut
für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077 Göttingen, Germany
- Wöhler
Research Institute for Sustainable Chemistry (WISCh), Georg-August-Universität Göttingen, Tammannstraße 2, 37077 Göttingen, Germany
| | - Lutz Ackermann
- Institut
für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077 Göttingen, Germany
- Wöhler
Research Institute for Sustainable Chemistry (WISCh), Georg-August-Universität Göttingen, Tammannstraße 2, 37077 Göttingen, Germany
| |
Collapse
|
36
|
Feng J, Liu RR. Catalytic Asymmetric Synthesis of N-N Biaryl Atropisomers. Chemistry 2024; 30:e202303165. [PMID: 37850396 DOI: 10.1002/chem.202303165] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/16/2023] [Accepted: 10/18/2023] [Indexed: 10/19/2023]
Abstract
Atropisomers have emerged as important structural scaffolds in natural products, drug design, and asymmetric synthesis. Recently, N-N biaryl atropisomers have drawn increasing interest due to their unique structure and relatively stable axes. However, its asymmetric synthesis remains scarce compared to its well-developed C-C biaryl analogs. In this concept, we summarize the asymmetric synthesis of N-N biaryl atropisomers including N-N pyrrole-pyrrole, N-N pyrrole-indole, N-N indole-indole, and N-N indole-carbazole, during which a series synthetic strategies are highlighted. Also, a synthetic evolution is briefly reviewed and an outlook of N-N biaryl atropisomers synthesis is offered.
Collapse
Affiliation(s)
- Jia Feng
- College of Chemistry and Chemical Engineering, Qingdao University, NingXia Road 308#, Qingdao, 266071, China
| | - Ren-Rong Liu
- College of Chemistry and Chemical Engineering, Qingdao University, NingXia Road 308#, Qingdao, 266071, China
| |
Collapse
|
37
|
Li ZY, Liu F, Li H, Guo X, Jiao L, Hao E. Rhodium-Catalyzed Two-Fold, Regioselective and Enantioselective C-H Activation: an Efficient Strategy to Chiral Single-Benzene-Based Fluorophores. Org Lett 2024. [PMID: 38180822 DOI: 10.1021/acs.orglett.3c03467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2024]
Abstract
A Rh-catalyzed two-fold, regioselective and enantioselective C-H activation via chiral transient directing group strategy has been demonstrated in moderate to good yields with commendable enantioselectivities. The newly synthesized chiral fluorophores exhibit favorable photophysical properties, including large Stokes shifts, good fluorescence quantum yields, aggregation-induced emission in aqueous solution, and intense emission and circularly polarized luminescence in the solid state, indicating great potential applications as chiral fluorescent probes or optoelectronic materials.
Collapse
Affiliation(s)
- Zhong-Yuan Li
- Key Laboratory of Functional Molecular Solids, Ministry of Education; Anhui Laboratory of Molecule-Based Materials; and School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Fang Liu
- Key Laboratory of Functional Molecular Solids, Ministry of Education; Anhui Laboratory of Molecule-Based Materials; and School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Heng Li
- Key Laboratory of Functional Molecular Solids, Ministry of Education; Anhui Laboratory of Molecule-Based Materials; and School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Xing Guo
- Key Laboratory of Functional Molecular Solids, Ministry of Education; Anhui Laboratory of Molecule-Based Materials; and School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Lijuan Jiao
- Key Laboratory of Functional Molecular Solids, Ministry of Education; Anhui Laboratory of Molecule-Based Materials; and School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Erhong Hao
- Key Laboratory of Functional Molecular Solids, Ministry of Education; Anhui Laboratory of Molecule-Based Materials; and School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| |
Collapse
|
38
|
Arjun V, Jeganmohan M. Chiral Transient Ligand Enabled Enantioselective Synthesis of Atropisomers Decorated with Unactivated Olefins via a Palladium-Catalyzed C-H Olefination. Org Lett 2023; 25:7606-7611. [PMID: 37843003 DOI: 10.1021/acs.orglett.3c02721] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
Herein, atroposelective synthesis of axially chiral biaryls with unactivated olefins by a palladium-catalyzed C-H olefination using a chiral transient directing group strategy has been disclosed. This protocol is well compatible with a variety of biaryl-2-aldehydes as well as various olefins such as allyl sulfonamides and allyl sulfones to provide the atroposelective olefinated products in synthetically useful yields with excellent enantioselectivities up to >99% ee. In addition, a wide number of axially chiral biaryl alcohols were synthesized by the simple diversification of the products in excellent enantioselectivity.
Collapse
Affiliation(s)
- Vadivel Arjun
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India
| | - Masilamani Jeganmohan
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India
| |
Collapse
|
39
|
Xie T, Huang J, Li J, Peng L, Song J, Guo C. Cu-catalyzed asymmetric regiodivergent electrosynthesis and its application in the enantioselective total synthesis of (-)-fumimycin. Nat Commun 2023; 14:6749. [PMID: 37875470 PMCID: PMC10598217 DOI: 10.1038/s41467-023-42603-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 10/16/2023] [Indexed: 10/26/2023] Open
Abstract
Quaternary amino acids are one of the essential building blocks and precursors of medicinally important compounds. Various synthetic strategies towards their synthesis have been reported. On the other hand, developing core-structure-oriented cross-dehydrogenative coupling (CDC) reactions, is a largely unsolved problem. Herein, we describe a copper-catalyzed regiodivergent electrochemical CDC reaction of Schiff bases and commercially available hydroquinones to obtain three classes of chiral quaternary amino acid derivatives for the efficient assembly of complex scaffolds with excellent stereocontrol. The electrochemical anodic oxidation process with slow releasing of quinones serves as an internal syringe pump and provides high levels of reaction efficiency and enantiomeric control. The utility of this strategy is highlighted through the synthetic utility in the asymmetric total synthesis of (-)-fumimycin.
Collapse
Affiliation(s)
- Tian Xie
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Jianming Huang
- Institutes of Physical Science and Information Technology, Key Laboratory of Environment-Friendly Polymeric Materials of Anhui Province, Anhui University, Hefei, 230601, China
| | - Juan Li
- Institutes of Physical Science and Information Technology, Key Laboratory of Environment-Friendly Polymeric Materials of Anhui Province, Anhui University, Hefei, 230601, China
| | - Lingzi Peng
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Jin Song
- Institutes of Physical Science and Information Technology, Key Laboratory of Environment-Friendly Polymeric Materials of Anhui Province, Anhui University, Hefei, 230601, China
| | - Chang Guo
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China.
| |
Collapse
|
40
|
Sun B, Wang ZH, Wang YZ, Gu YC, Ma C, Mei TS. Parallel paired electrolysis-enabled asymmetric catalysis: simultaneous synthesis of aldehydes/aryl bromides and chiral alcohols. Sci Bull (Beijing) 2023; 68:2033-2041. [PMID: 37507259 DOI: 10.1016/j.scib.2023.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/25/2023] [Accepted: 06/27/2023] [Indexed: 07/30/2023]
Abstract
Metal-catalyzed asymmetric electro-reductive couplings have emerged as a powerful tool for organic synthesis, wherein a sacrificial anode is typically required. Herein, a parallel paired electrolysis (PPE)-enabled asymmetric catalysis has been developed, and the alcohols and ketones could be simultaneously converted to the corresponding aldehydes and chiral tertiary alcohols with high yields and enantioselectivity in an undivided cell. Additionally, this Ni-catalyzed asymmetric reductive coupling can well match the anodic oxidative C-H bond bromination of (hetero)arenes. This protocol opens an alternative avenue for organic synthesis.
Collapse
Affiliation(s)
- Bing Sun
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Zhen-Hua Wang
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Yun-Zhao Wang
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Yu-Cheng Gu
- Syngenta, Jealott's Hill International Research Centre, Berkshire RE42 6EY, UK
| | - Cong Ma
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Tian-Sheng Mei
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China.
| |
Collapse
|
41
|
Wang X, Si XJ, Sun Y, Wei Z, Xu M, Yang D, Shi L, Song MP, Niu JL. C-N Axially Chiral Heterobiaryl Isoquinolinone Skeletons Construction via Cobalt-Catalyzed Atroposelective C-H Activation/Annulation. Org Lett 2023; 25:6240-6245. [PMID: 37595028 DOI: 10.1021/acs.orglett.3c01685] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/20/2023]
Abstract
Herein, the atroposelective construction of isoquinolinones bearing a C-N chiral axis has been successfully developed via a Co-catalyzed C-H bond activation and annulation process. This conversion can be effectively carried out in an environmentally friendly oxygen atmosphere to generate the target C-N axially chiral frameworks with excellent reactivities and enantioselectivities (up to >99% ee) in the absence of any additives. Additionally, the current protocol has proved to be an alternative approach for the C-N axial architectures fabrication under electrochemical conditions for cobalt/Salox catalysis, and this strategy allowed the efficient and atom-economical synthesis of various axially chiral isoquinolinones under mild reaction conditions.
Collapse
Affiliation(s)
- Xinhai Wang
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Xiao-Ju Si
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Yingjie Sun
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Zhisen Wei
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Miao Xu
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Dandan Yang
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Linlin Shi
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Mao-Ping Song
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Jun-Long Niu
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| |
Collapse
|
42
|
Yue H, Zhu C, Rueping M. Electrochemical cobalt catalysis enabled construction of diverse chiral skeletons via C-H activation. Sci Bull (Beijing) 2023; 68:1730-1732. [PMID: 37500403 DOI: 10.1016/j.scib.2023.07.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Affiliation(s)
- Huifeng Yue
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou 350108, China.
| | - Chen Zhu
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Magnus Rueping
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia.
| |
Collapse
|
43
|
Guo F, Fang S, He J, Su Z, Wang T. Enantioselective organocatalytic synthesis of axially chiral aldehyde-containing styrenes via S NAr reaction-guided dynamic kinetic resolution. Nat Commun 2023; 14:5050. [PMID: 37598233 PMCID: PMC10439945 DOI: 10.1038/s41467-023-40840-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 08/14/2023] [Indexed: 08/21/2023] Open
Abstract
The precise and efficient construction of axially chiral scaffolds, particularly toward the aryl-alkene atropoisomers with impeccably full enantiocontrol and highly structural diversity, remains greatly challenging. Herein, we disclose an organocatalytic asymmetric nucleophilic aromatic substitution (SNAr) reaction of aldehyde-substituted styrenes involving a dynamic kinetic resolution process via a hemiacetal intermediate, offering a novel and facile way to significant axial styrene scaffolds. Upon treatment of the aldehyde-containing styrenes bearing (o-hydroxyl)aryl unit with commonly available fluoroarenes in the presence of chiral peptide-phosphonium salts, the SNAr reaction via an exquisite bridged biaryl lactol intermediate undergoes smoothly to furnish a series of axially chiral aldehyde-containing styrenes decorated with various functionalities and bioactive fragments in high stereoselectivities (up to >99% ee) and complete E/Z selectivities. These resulting structural motifs are important building blocks for the preparation of diverse functionalized axial styrenes, which have great potential as efficient and privileged chiral ligands/catalysts in asymmetric synthesis.
Collapse
Affiliation(s)
- Fengyuan Guo
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu, PR China
| | - Siqiang Fang
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu, PR China
| | - Jiajia He
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu, PR China
| | - Zhishan Su
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu, PR China.
| | - Tianli Wang
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu, PR China.
- Beijing National Laboratory for Molecular Sciences, Beijing, China.
| |
Collapse
|
44
|
Xiong M, Chen F, Shu Y, Wu X, Tang J, Yang F, Xing D. Iridium(I)-Catalyzed Atroposelective Alkenylation of Heterobiaryls with Terminal Alkynes. Org Lett 2023; 25:5703-5708. [PMID: 37523590 DOI: 10.1021/acs.orglett.3c01453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
Herein we report an iridium(I)-catalyzed atroposelective alkenylation of isoquinoline-derived heterobiaryls with terminal alkynes. In the presence of a cationic iridium(I) catalyst with (R)-SEGPHOS as the chiral ligand, this atom-economical alkenylation protocol allows the rapid construction of a series of axially chiral alkenylated heterobiaryls in moderate to good yields with good to high enantioselectivities.
Collapse
Affiliation(s)
- Maoqian Xiong
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Feifei Chen
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Yuhang Shu
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Xiang Wu
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Jie Tang
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Fan Yang
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Dong Xing
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| |
Collapse
|
45
|
Lin Y, von Münchow T, Ackermann L. Cobaltaelectro-Catalyzed C-H Annulation with Allenes for Atropochiral and P-Stereogenic Compounds: Late-Stage Diversification and Continuous Flow Scale-Up. ACS Catal 2023; 13:9713-9723. [PMID: 38076330 PMCID: PMC10704562 DOI: 10.1021/acscatal.3c02072] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/14/2023] [Indexed: 01/25/2024]
Abstract
The 3d metallaelectro-catalyzed C-H activation has been identified as an increasingly viable strategy to access valuable organic molecules in a resource-economic fashion under exceedingly mild reaction conditions. However, the development of enantioselective 3d metallaelectro-catalyzed C-H activation is very challenging and in its infancy. Here, we disclose the merger of cobaltaelectro-catalyzed C-H activation with asymmetric catalysis for the highly enantioselective annulation of allenes. A broad range of C-N axially chiral and P-stereogenic compounds were thereby obtained in good yields of up to 98% with high enantioselectivities of up to >99% ee. The practicality of this approach was demonstrated by the diversification of complex bioactive compounds and drug molecules as well as decagram scale enantioselective electrocatalysis in continuous flow.
Collapse
Affiliation(s)
- Ye Lin
- Institut
für Organische und Biomolekulare Chemie, Georg-August-Universität
Göttingen, Tammannstraße 2, 37077 Göttingen, Germany
| | - Tristan von Münchow
- Institut
für Organische und Biomolekulare Chemie, Georg-August-Universität
Göttingen, Tammannstraße 2, 37077 Göttingen, Germany
| | - Lutz Ackermann
- Institut
für Organische und Biomolekulare Chemie, Georg-August-Universität
Göttingen, Tammannstraße 2, 37077 Göttingen, Germany
- WISCh
(Wöhler-Research Institute for Sustainable Chemistry), Georg-August-Universität
Göttingen, Tammannstraße
2, 37077 Göttingen, Germany
| |
Collapse
|
46
|
Lin Z, Dhawa U, Hou X, Surke M, Yuan B, Li SW, Liou YC, Johansson MJ, Xu LC, Chao CH, Hong X, Ackermann L. Electrocatalyzed direct arene alkenylations without directing groups for selective late-stage drug diversification. Nat Commun 2023; 14:4224. [PMID: 37454167 DOI: 10.1038/s41467-023-39747-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 06/22/2023] [Indexed: 07/18/2023] Open
Abstract
Electrooxidation has emerged as an increasingly viable platform in molecular syntheses that can avoid stoichiometric chemical redox agents. Despite major progress in electrochemical C-H activations, these arene functionalizations generally require directing groups to enable the C-H activation. The installation and removal of these directing groups call for additional synthesis steps, which jeopardizes the inherent efficacy of the electrochemical C-H activation approach, leading to undesired waste with reduced step and atom economy. In sharp contrast, herein we present palladium-electrochemical C-H olefinations of simple arenes devoid of exogenous directing groups. The robust electrocatalysis protocol proved amenable to a wide range of both electron-rich and electron-deficient arenes under exceedingly mild reaction conditions, avoiding chemical oxidants. This study points to an interesting approach of two electrochemical transformations for the success of outstanding levels of position-selectivities in direct olefinations of electron-rich anisoles. A physical organic parameter-based machine learning model was developed to predict position-selectivity in electrochemical C-H olefinations. Furthermore, late-stage functionalizations set the stage for the direct C-H olefinations of structurally complex pharmaceutically relevant compounds, thereby avoiding protection and directing group manipulations.
Collapse
Affiliation(s)
- Zhipeng Lin
- Wöhler Research Institute for Sustainable Chemistry (WISCh), Georg-August-Universität Göttingen, Göttingen, Germany
| | - Uttam Dhawa
- Wöhler Research Institute for Sustainable Chemistry (WISCh), Georg-August-Universität Göttingen, Göttingen, Germany
| | - Xiaoyan Hou
- Wöhler Research Institute for Sustainable Chemistry (WISCh), Georg-August-Universität Göttingen, Göttingen, Germany
| | - Max Surke
- Wöhler Research Institute for Sustainable Chemistry (WISCh), Georg-August-Universität Göttingen, Göttingen, Germany
| | - Binbin Yuan
- Wöhler Research Institute for Sustainable Chemistry (WISCh), Georg-August-Universität Göttingen, Göttingen, Germany
| | - Shu-Wen Li
- Center of Chemistry for Frontier Technologies, Department of Chemistry, State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou, China
| | - Yan-Cheng Liou
- Wöhler Research Institute for Sustainable Chemistry (WISCh), Georg-August-Universität Göttingen, Göttingen, Germany
| | - Magnus J Johansson
- Medicinal Chemistry, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
- Department of Organic Chemistry, Stockholm University, Stockholm, Sweden
| | - Li-Cheng Xu
- Center of Chemistry for Frontier Technologies, Department of Chemistry, State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou, China
| | - Chen-Hang Chao
- Center of Chemistry for Frontier Technologies, Department of Chemistry, State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou, China
| | - Xin Hong
- Center of Chemistry for Frontier Technologies, Department of Chemistry, State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou, China.
- Beijing National Laboratory for Molecular Sciences, Beijing, PR China.
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, School of Science, Westlake University, Hangzhou, Zhejiang Province, China.
| | - Lutz Ackermann
- Wöhler Research Institute for Sustainable Chemistry (WISCh), Georg-August-Universität Göttingen, Göttingen, Germany.
- German Centre for Cardiovascular Research (DZHK), Berlin, Germany.
| |
Collapse
|
47
|
Tang Y, Wang Y, Yuan Q, Zhang S, Wang JY, Jin S, Xu T, Pan J, Surowiec K, Li G. Aggregation-Induced Catalysis: Asymmetric Catalysis with Chiral Aggregates. RESEARCH (WASHINGTON, D.C.) 2023; 6:0163. [PMID: 37303602 PMCID: PMC10254464 DOI: 10.34133/research.0163] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 05/17/2023] [Indexed: 06/13/2023]
Abstract
So far, there have been 4 methods to control chirality including the use of chiral auxiliaries, reagents, solvents, and catalysts documented in literature and textbooks. Among them, asymmetric catalysts are normally divided into homogeneous and heterogeneous catalysis. In this report, we present a new type of asymmetric control-asymmetric catalysis via chiral aggregates that would not belong to the above categories. This new strategy is represented by catalytic asymmetric dihydroxylation reaction of olefins in which chiral ligands are aggregated by taking advantage of typical aggregation-induced emission systems containing tetrahydrofuran and H2O cosolvents. It was proven that the chiral induction can be enhanced from er of 78:22 to 97:3 simply by changing the ratios of these 2 cosolvents. The formation of chiral aggregates of asymmetric dihydroxylation ligands, (DHQD)2PHAL and (DHQ)2PHAL, has been proven by aggregation-induced emission and a new analytical tool-aggregation-induced polarization established by our laboratory. In the meanwhile, chiral aggregates were found to be formed either by adding NaCl into tetrahydrofuran/H2O systems or by increasing concentrations of chiral ligands. The present strategy also showed promising reverse control of enantioselectivity in the Diels-Alder reaction. This work is anticipated to be extended broadly to general catalysis, especially to asymmetric catalysis in the future.
Collapse
Affiliation(s)
- Yao Tang
- Department of Chemistry and Biochemistry,
Texas Tech University, Lubbock, TX 79409-1061, USA
| | - Yu Wang
- School of Chemistry and Chemical Engineering,
Nanjing University, Nanjing 210093, China
| | - Qingkai Yuan
- Department of Chemistry and Biochemistry,
Texas Tech University, Lubbock, TX 79409-1061, USA
| | - Sai Zhang
- Department of Chemistry and Biochemistry,
Texas Tech University, Lubbock, TX 79409-1061, USA
| | - Jia-Yin Wang
- School of Chemistry and Chemical Engineering,
Nanjing University, Nanjing 210093, China
- School of Pharmacy, Continuous Flow Engineering Laboratory of National Petroleum and Chemical Industry,
Changzhou University, Changzhou, Jiangsu 213164, China
| | - Shengzhou Jin
- School of Chemistry and Chemical Engineering,
Nanjing University, Nanjing 210093, China
| | - Ting Xu
- School of Chemistry and Chemical Engineering,
Nanjing University, Nanjing 210093, China
| | - Junyi Pan
- School of Chemistry and Chemical Engineering,
Nanjing University, Nanjing 210093, China
| | - Kazimierz Surowiec
- Department of Chemistry and Biochemistry,
Texas Tech University, Lubbock, TX 79409-1061, USA
| | - Guigen Li
- Department of Chemistry and Biochemistry,
Texas Tech University, Lubbock, TX 79409-1061, USA
- School of Chemistry and Chemical Engineering,
Nanjing University, Nanjing 210093, China
| |
Collapse
|
48
|
Guo SM, Huh S, Coehlo M, Shen L, Pieters G, Baudoin O. A C-H activation-based enantioselective synthesis of lower carbo[n]helicenes. Nat Chem 2023; 15:872-880. [PMID: 37024717 PMCID: PMC10239729 DOI: 10.1038/s41557-023-01174-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 02/28/2023] [Indexed: 04/08/2023]
Abstract
The three-dimensional structure of carbohelicenes has fascinated generations of molecular chemists and has been exploited in a wide range of applications. Their strong circularly polarized luminescence has attracted considerable attention in recent years due to promising applications in new optical materials. Although the enantioselective synthesis of fused carbo- and heterohelicenes has been achieved, a direct catalytic enantioselective method allowing the synthesis of lower, non-fused carbo[n]helicenes (n = 4-6) is still lacking. We report here that Pd-catalysed enantioselective C-H arylation in the presence of a unique bifunctional phosphine-carboxylate ligand provides a simple and general access to these lower carbo[n]helicenes. Computational mechanistic studies indicate that both the C-H activation and reductive elimination steps contribute to the overall enantioselectivity. The observed enantio-induction seems to arise from a combination of non-covalent interactions and steric repulsion between the substrate and ligand during the two key reductive elimination steps. The photophysical and chiroptical properties of the synthesized scalemic [n]helicenes have been systematically studied.
Collapse
Affiliation(s)
- Shu-Min Guo
- Department of Chemistry, University of Basel, Basel, Switzerland
| | - Soohee Huh
- Department of Chemistry, University of Basel, Basel, Switzerland
| | - Max Coehlo
- Département Médicaments et Technologies pour la Santé (DMTS), SCBM, Université Paris-Saclay, CEA, INRAE, Gif-sur-Yvette, France
| | - Li Shen
- Department of Chemistry, University of Basel, Basel, Switzerland
| | - Grégory Pieters
- Département Médicaments et Technologies pour la Santé (DMTS), SCBM, Université Paris-Saclay, CEA, INRAE, Gif-sur-Yvette, France
| | - Olivier Baudoin
- Department of Chemistry, University of Basel, Basel, Switzerland.
| |
Collapse
|
49
|
Geng J, Wei X, He B, Hao Y, Qu J, Wang B. Desymmetrization of Prochiral N-Pyrazolyl Maleimides via Organocatalyzed Asymmetric Michael Addition with Pyrazolones: Construction of Tri- N-Heterocyclic Scaffolds Bearing Both Central and Axial Chirality. Molecules 2023; 28:molecules28114279. [PMID: 37298754 DOI: 10.3390/molecules28114279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 05/20/2023] [Accepted: 05/22/2023] [Indexed: 06/12/2023] Open
Abstract
The desymmetrization of N-pyrazolyl maleimides was realized through an asymmetric Michael addition by using pyrazolones under mild conditions, leading to the formation of a tri-N-heterocyclic pyrazole-succinimide-pyrazolone assembly in high yields with excellent enantioselectivities (up to 99% yield, up to 99% ee). The use of a quinine-derived thiourea catalyst was essential for achieving stereocontrol of the vicinal quaternary-tertiary stereocenters together with the C-N chiral axis. Salient features of this protocol included a broad substrate scope, atom economy, mild conditions and simple operation. Moreover, a gram-scale experiment and derivatization of the product further illustrated the practicability and potential application value of this methodology.
Collapse
Affiliation(s)
- Jianqi Geng
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Sciences, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
| | - Xingfu Wei
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Sciences, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
| | - Biru He
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Sciences, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
| | - Yuting Hao
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Sciences, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
| | - Jingping Qu
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Sciences, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
| | - Baomin Wang
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Sciences, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
| |
Collapse
|
50
|
Yang N, Shen C, Zhang G, Gan F, Ding Y, Crassous J, Qiu H. Helicity-modulated remote C-H functionalization. SCIENCE ADVANCES 2023; 9:eadg6680. [PMID: 37115920 PMCID: PMC10146887 DOI: 10.1126/sciadv.adg6680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Remote C-H functionalization is highly important for the conversion and utilization of arenes, but the conventional routes are comprehensively developed with the assistance of transition metal catalysts or templates. We report a facile metal/template-free electrochemical strategy for remote C-H functionalization in a helical system, where aromatic or aliphatic hydrogen act as a directing group to promote the alkoxylation at the opposite site of the helical skeleton by generating a unique helical "back-biting" environment. Such helicity-modulated C-H functionalization is prevalent for carbo[n]helicenes (n = 6 to 9, primitive or substituted) and hetero[6]helicenes and also occurs when the aryl hydrogen on the first position is replaced by a methyl group or a phenyl group. Thus, the relatively inert helicene skeleton can be precisely furnished with a rich array of alkoxy pendants with tunable functional moieties. Notably, the selective decoration of a methoxy group on N-methylated aza[6]helicene close or distant to the nitrogen atom leads to distinct luminescence variation upon changing the solvents.
Collapse
Affiliation(s)
- Na Yang
- School of Chemistry and Chemical Engineering, Zhangjiang Institute for Advanced Study, Frontiers Science Center for Transformative Molecules, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Chengshuo Shen
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China
- Corresponding author. (H.Q.); (C.S.)
| | - Guoli Zhang
- School of Chemistry and Chemical Engineering, Zhangjiang Institute for Advanced Study, Frontiers Science Center for Transformative Molecules, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Fuwei Gan
- School of Chemistry and Chemical Engineering, Zhangjiang Institute for Advanced Study, Frontiers Science Center for Transformative Molecules, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yongle Ding
- School of Chemistry and Chemical Engineering, Zhangjiang Institute for Advanced Study, Frontiers Science Center for Transformative Molecules, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jeanne Crassous
- Institut des Sciences Chimiques de Rennes, Université de Rennes, UMR CNRS 6226, Campus de Beaulieu, Rennes 35042, France
| | - Huibin Qiu
- School of Chemistry and Chemical Engineering, Zhangjiang Institute for Advanced Study, Frontiers Science Center for Transformative Molecules, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
- Corresponding author. (H.Q.); (C.S.)
| |
Collapse
|