1
|
Hirsch M, Hofmann L, Yakobov I, Kahremany S, Sameach H, Shenberger Y, Gevorkyan-Airapetov L, Ruthstein S. An efficient EPR spin-labeling method enables insights into conformational changes in DNA. BIOPHYSICAL REPORTS 2024; 4:100168. [PMID: 38945453 PMCID: PMC11298882 DOI: 10.1016/j.bpr.2024.100168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/20/2024] [Accepted: 06/27/2024] [Indexed: 07/02/2024]
Abstract
Electron paramagnetic resonance (EPR) is a powerful tool for elucidating both static and dynamic conformational alterations in macromolecules. However, to effectively utilize EPR for such investigations, the presence of paramagnetic centers, known as spin labels, is required. The process of spin labeling, particularly for nucleotides, typically demands intricate organic synthesis techniques. In this study, we introduce a unique addition-elimination reaction method with a simple spin-labeling process, facilitating the monitoring of structural changes within nucleotide sequences. Our investigation focuses on three distinct labeling positions with a DNA sequence, allowing the measurement of distance between two spin labels. The experimental mean distances obtained agreed with the calculated distances, underscoring the efficacy of this straightforward spin-labeling approach in studying complex biological processes such as transcription mechanism using EPR measurements.
Collapse
Affiliation(s)
- Melanie Hirsch
- Department of Chemistry and the Institute of Nanotechnology & Advanced Materials, Faculty of Exact Sciences, Bar Ilan University, Ramat-Gan, Israel
| | - Lukas Hofmann
- Department of Chemistry and the Institute of Nanotechnology & Advanced Materials, Faculty of Exact Sciences, Bar Ilan University, Ramat-Gan, Israel
| | - Idan Yakobov
- Department of Chemistry and the Institute of Nanotechnology & Advanced Materials, Faculty of Exact Sciences, Bar Ilan University, Ramat-Gan, Israel
| | - Shirin Kahremany
- Department of Chemistry and the Institute of Nanotechnology & Advanced Materials, Faculty of Exact Sciences, Bar Ilan University, Ramat-Gan, Israel
| | - Hila Sameach
- Department of Chemistry and the Institute of Nanotechnology & Advanced Materials, Faculty of Exact Sciences, Bar Ilan University, Ramat-Gan, Israel
| | - Yulia Shenberger
- Department of Chemistry and the Institute of Nanotechnology & Advanced Materials, Faculty of Exact Sciences, Bar Ilan University, Ramat-Gan, Israel
| | - Lada Gevorkyan-Airapetov
- Department of Chemistry and the Institute of Nanotechnology & Advanced Materials, Faculty of Exact Sciences, Bar Ilan University, Ramat-Gan, Israel
| | - Sharon Ruthstein
- Department of Chemistry and the Institute of Nanotechnology & Advanced Materials, Faculty of Exact Sciences, Bar Ilan University, Ramat-Gan, Israel.
| |
Collapse
|
2
|
Gauger M, Heinz M, Halbritter ALJ, Stelzl LS, Erlenbach N, Hummer G, Sigurdsson ST, Prisner TF. Structure and Internal Dynamics of Short RNA Duplexes Determined by a Combination of Pulsed EPR Methods and MD Simulations. Angew Chem Int Ed Engl 2024; 63:e202402498. [PMID: 38530284 DOI: 10.1002/anie.202402498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 03/24/2024] [Accepted: 03/25/2024] [Indexed: 03/27/2024]
Abstract
We used EPR spectroscopy to characterize the structure of RNA duplexes and their internal twist, stretch and bending motions. We prepared eight 20-base-pair-long RNA duplexes containing the rigid spin-label Çm, a cytidine analogue, at two positions and acquired orientation-selective PELDOR/DEER data. By using different frequency bands (X-, Q-, G-band), detailed information about the distance and orientation of the labels was obtained and provided insights into the global conformational dynamics of the RNA duplex. We used 19F Mims ENDOR experiments on three singly Çm- and singly fluorine-labeled RNA duplexes to determine the exact position of the Çm spin label in the helix. In a quantitative comparison to MD simulations of RNA with and without Çm spin labels, we found that state-of-the-art force fields with explicit parameterization of the spin label were able to describe the conformational ensemble present in our experiments. The MD simulations further confirmed that the Çm spin labels are excellent mimics of cytidine inducing only small local changes in the RNA structure. Çm spin labels are thus ideally suited for high-precision EPR experiments to probe the structure and, in conjunction with MD simulations, motions of RNA.
Collapse
Affiliation(s)
- Maximilian Gauger
- Institute of Physical and Theoretical Chemistry and Center of Biomolecular Magnetic Resonance, Goethe University Frankfurt, Max-von-Laue Str. 7, 60438, Frankfurt am Main, Germany
| | - Marcel Heinz
- Department of Theoretical Biophysics, Max Planck Institute of Biophysics, Max-von-Laue Str. 3, 60438, Frankfurt am Main, Germany
| | | | - Lukas S Stelzl
- Faculty of Biology, Johannes Gutenberg University, 55128, Mainz, Germany
- KOMET 1, Institute of Physics, Johannes Gutenberg University, Staudingerweg 9, 55128, Mainz, Germany
- Institute of Quantitative and Computational Bioscience (IQCB), Johannes Gutenberg University Mainz, 55128, Mainz, Germany
- Institute of Molecular Biology (IMB), 55128, Mainz, Germany
| | - Nicole Erlenbach
- Institute of Physical and Theoretical Chemistry and Center of Biomolecular Magnetic Resonance, Goethe University Frankfurt, Max-von-Laue Str. 7, 60438, Frankfurt am Main, Germany
| | - Gerhard Hummer
- Department of Theoretical Biophysics, Max Planck Institute of Biophysics, Max-von-Laue Str. 3, 60438, Frankfurt am Main, Germany
- Institute of Biophysics, Goethe University Frankfurt, Max-von-Laue Str. 1, 60438, Frankfurt am Main, Germany
| | | | - Thomas F Prisner
- Institute of Physical and Theoretical Chemistry and Center of Biomolecular Magnetic Resonance, Goethe University Frankfurt, Max-von-Laue Str. 7, 60438, Frankfurt am Main, Germany
| |
Collapse
|
3
|
Ackermann K, Heubach CA, Schiemann O, Bode BE. Pulse Dipolar Electron Paramagnetic Resonance Spectroscopy Distance Measurements at Low Nanomolar Concentrations: The Cu II-Trityl Case. J Phys Chem Lett 2024; 15:1455-1461. [PMID: 38294197 PMCID: PMC10860127 DOI: 10.1021/acs.jpclett.3c03311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/11/2024] [Accepted: 01/19/2024] [Indexed: 02/01/2024]
Abstract
Recent sensitivity enhancements in pulse dipolar electron paramagnetic resonance spectroscopy (PDS) have afforded distance measurements at submicromolar spin concentrations. This development opens the path for new science as more biomolecular systems can be investigated at their respective physiological concentrations. Here, we demonstrate that the combination of orthogonal spin-labeling using CuII ions and trityl yields a >3-fold increase in sensitivity compared to that of the established CuII-nitroxide labeling strategy. Application of the recently developed variable-time relaxation-induced dipolar modulation enhancement (RIDME) method yields a further ∼2.5-fold increase compared to the commonly used constant-time RIDME. This overall increase in sensitivity of almost an order of magnitude makes distance measurements in the range of 3 nm with protein concentrations as low as 10 nM feasible, >2 times lower than the previously reported concentration. We expect that experiments at single-digit nanomolar concentrations are imminent, which have the potential to transform biological PDS applications.
Collapse
Affiliation(s)
- Katrin Ackermann
- EaStCHEM
School of Chemistry and Biomedical Sciences Research Complex, Centre
of Magnetic Resonance, University of St
Andrews, North Haugh, St Andrews KY16 9ST, U.K.
| | - Caspar A. Heubach
- Clausius-Institute
of Physical and Theoretical Chemistry, University
of Bonn, Wegelerstrasse 12, 53115 Bonn, Germany
| | - Olav Schiemann
- Clausius-Institute
of Physical and Theoretical Chemistry, University
of Bonn, Wegelerstrasse 12, 53115 Bonn, Germany
| | - Bela E. Bode
- EaStCHEM
School of Chemistry and Biomedical Sciences Research Complex, Centre
of Magnetic Resonance, University of St
Andrews, North Haugh, St Andrews KY16 9ST, U.K.
| |
Collapse
|
4
|
Bogetti X, Saxena S. Integrating Electron Paramagnetic Resonance Spectroscopy and Computational Modeling to Measure Protein Structure and Dynamics. Chempluschem 2024; 89:e202300506. [PMID: 37801003 DOI: 10.1002/cplu.202300506] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/05/2023] [Accepted: 10/06/2023] [Indexed: 10/07/2023]
Abstract
Electron paramagnetic resonance (EPR) has become a powerful probe of conformational heterogeneity and dynamics of biomolecules. In this Review, we discuss different computational modeling techniques that enrich the interpretation of EPR measurements of dynamics or distance restraints. A variety of spin labels are surveyed to provide a background for the discussion of modeling tools. Molecular dynamics (MD) simulations of models containing spin labels provide dynamical properties of biomolecules and their labels. These simulations can be used to predict EPR spectra, sample stable conformations and sample rotameric preferences of label sidechains. For molecular motions longer than milliseconds, enhanced sampling strategies and de novo prediction software incorporating or validated by EPR measurements are able to efficiently refine or predict protein conformations, respectively. To sample large-amplitude conformational transition, a coarse-grained or an atomistic weighted ensemble (WE) strategy can be guided with EPR insights. Looking forward, we anticipate an integrative strategy for efficient sampling of alternate conformations by de novo predictions, followed by validations by systematic EPR measurements and MD simulations. Continuous pathways between alternate states can be further sampled by WE-MD including all intermediate states.
Collapse
Affiliation(s)
- Xiaowei Bogetti
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, PA, 15260, USA
| | - Sunil Saxena
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, PA, 15260, USA
| |
Collapse
|
5
|
Abdullin D, Rauh Corro P, Hett T, Schiemann O. PDSFit: PDS data analysis in the presence of orientation selectivity, g-anisotropy, and exchange coupling. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2024; 62:37-60. [PMID: 38130168 DOI: 10.1002/mrc.5415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/24/2023] [Accepted: 11/01/2023] [Indexed: 12/23/2023]
Abstract
Pulsed dipolar electron paramagnetic resonance spectroscopy (PDS), encompassing techniques such as pulsed electron-electron double resonance (PELDOR or DEER) and relaxation-induced dipolar modulation enhancement (RIDME), is a valuable method in structural biology and materials science for obtaining nanometer-scale distance distributions between electron spin centers. An important aspect of PDS is the extraction of distance distributions from the measured time traces. Most software used for this PDS data analysis relies on simplifying assumptions, such as assuming isotropic g-factors of ~2 and neglecting orientation selectivity and exchange coupling. Here, the program PDSFit is introduced, which enables the analysis of PELDOR and RIDME time traces with or without orientation selectivity. It can be applied to spin systems consisting of up to two spin centers with anisotropic g-factors and to spin systems with exchange coupling. It employs a model-based fitting of the time traces using parametrized distance and angular distributions, and parametrized PDS background functions. The fitting procedure is followed by an error analysis for the optimized parameters of the distributions and backgrounds. Using five different experimental data sets published previously, the performance of PDSFit is tested and found to provide reliable solutions.
Collapse
Affiliation(s)
- Dinar Abdullin
- Clausius-Institute of Physical and Theoretical Chemistry, University of Bonn, Bonn, Germany
| | - Pablo Rauh Corro
- Clausius-Institute of Physical and Theoretical Chemistry, University of Bonn, Bonn, Germany
| | - Tobias Hett
- Clausius-Institute of Physical and Theoretical Chemistry, University of Bonn, Bonn, Germany
| | - Olav Schiemann
- Clausius-Institute of Physical and Theoretical Chemistry, University of Bonn, Bonn, Germany
| |
Collapse
|
6
|
Schumann SL, Kotnig S, Kutin Y, Drosou M, Stratmann LM, Streltsova Y, Schnegg A, Pantazis DA, Clever GH, Kasanmascheff M. Structure and Flexibility of Copper-Modified DNA G-Quadruplexes Investigated by 19 F ENDOR Experiments at 34 GHz. Chemistry 2023; 29:e202302527. [PMID: 37602522 DOI: 10.1002/chem.202302527] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 08/18/2023] [Accepted: 08/21/2023] [Indexed: 08/22/2023]
Abstract
DNA G-quadruplexes (GQs) are of great interest due to their involvement in crucial biological processes such as telomerase maintenance and gene expression. Furthermore, they are reported as catalytically active DNAzymes and building blocks in bio-nanotechnology. GQs exhibit remarkable structural diversity and conformational heterogeneity, necessitating precise and reliable tools to unravel their structure-function relationships. Here, we present insights into the structure and conformational flexibility of a unimolecular GQ with high spatial resolution via electron-nuclear double resonance (ENDOR) experiments combined with Cu(II) and fluorine labeling. These findings showcase the successful application of the 19 F-ENDOR methodology at 34 GHz, overcoming the limitations posed by the complexity and scarcity of higher-frequency spectrometers. Importantly, our approach retains both sensitivity and orientational resolution. This integrated study not only enhances our understanding of GQs but also expands the methodological toolbox for studying other macromolecules.
Collapse
Affiliation(s)
- Simon L Schumann
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Strasse 6, 44227, Dortmund, Germany
| | - Simon Kotnig
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Strasse 6, 44227, Dortmund, Germany
| | - Yury Kutin
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Strasse 6, 44227, Dortmund, Germany
| | - Maria Drosou
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470, Mülheim an der Ruhr, Germany
| | - Lukas M Stratmann
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Strasse 6, 44227, Dortmund, Germany
| | - Yana Streltsova
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Strasse 6, 44227, Dortmund, Germany
| | - Alexander Schnegg
- Max-Planck-Institut für Chemische Energiekonversion, Stiftstraße 34-36, 45470, Mülheim an der Ruhr, Germany
| | - Dimitrios A Pantazis
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470, Mülheim an der Ruhr, Germany
| | - Guido H Clever
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Strasse 6, 44227, Dortmund, Germany
| | - Müge Kasanmascheff
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Strasse 6, 44227, Dortmund, Germany
| |
Collapse
|
7
|
Igbaria-Jaber Y, Hofmann L, Gevorkyan-Airapetov L, Shenberger Y, Ruthstein S. Revealing the DNA Binding Modes of CsoR by EPR Spectroscopy. ACS OMEGA 2023; 8:39886-39895. [PMID: 37901548 PMCID: PMC10601412 DOI: 10.1021/acsomega.3c06336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 09/28/2023] [Indexed: 10/31/2023]
Abstract
In pathogens, a unique class of metalloregulator proteins, called gene regulatory proteins, sense specific metal ions that initiate gene transcription of proteins that export metal ions from the cell, thereby preventing toxicity and cell death. CsoR is a metalloregulator protein found in various bacterial systems that "sense" Cu(I) ions with high affinity. Upon copper binding, CsoR dissociates from the DNA promoter region, resulting in initiation of gene transcription. Crystal structures of CsoR in the presence and absence of Cu(I) from various bacterial systems have been reported, suggesting either a dimeric or tetrameric structure of these helical proteins. However, structural information about the CsoR-DNA complex is missing. Here, we applied electron paramagnetic resonance (EPR) spectroscopy to follow the conformational and dynamical changes that Mycobacterium tuberculosis CsoR undergoes upon DNA binding in solution. We showed that the quaternary structure is predominantly dimeric in solution, and only minor conformational and dynamical changes occur in the DNA bound state. Also, labeling of the unresolved C- terminus revealed no significant change in dynamics upon DNA binding. These observations are unique, since for other bacterial copper metalloregulators, such as the MerR and CopY families, major conformational changes were observed upon DNA binding, indicating a different mode of action for this protein family.
Collapse
Affiliation(s)
- Yasmin Igbaria-Jaber
- Department of Chemistry and the Institute
of Nanotechnology and Advanced Materials (BINA), Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Lukas Hofmann
- Department of Chemistry and the Institute
of Nanotechnology and Advanced Materials (BINA), Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Lada Gevorkyan-Airapetov
- Department of Chemistry and the Institute
of Nanotechnology and Advanced Materials (BINA), Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Yulia Shenberger
- Department of Chemistry and the Institute
of Nanotechnology and Advanced Materials (BINA), Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Sharon Ruthstein
- Department of Chemistry and the Institute
of Nanotechnology and Advanced Materials (BINA), Bar-Ilan University, Ramat-Gan 52900, Israel
| |
Collapse
|
8
|
Sannikova NE, Kolokolov MI, Khlynova TA, Chubarov AS, Polienko YF, Fedin MV, Krumkacheva OA. Revealing light-induced structural shifts in G-quadruplex-porphyrin complexes: a pulsed dipolar EPR study. Phys Chem Chem Phys 2023; 25:22455-22466. [PMID: 37581249 DOI: 10.1039/d3cp01775c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2023]
Abstract
The binding of G-quadruplex structures (G4s) with photosensitizers is of considerable importance in medicinal chemistry and drug discovery due to their promising potential in photodynamic therapy applications. G4s can experience structural changes as a result of ligand interactions and light exposure. Understanding these modifications is essential to uncover the fundamental biological roles of the complexes and optimize their therapeutic potential. The structural diversity of G4s makes it challenging to study their complexes with ligands, necessitating the use of various complementary methods to fully understand these interactions. In this study, we introduce, for the first time, the application of laser-induced dipolar EPR as a method to characterize G-quadruplex DNA complexes containing photosensitizers and to investigate light-induced structural modifications in these systems. To demonstrate the feasibility of this approach, we studied complexes of the human telomeric G-quadruplex (HTel-22) with cationic 5,10,15,20-tetrakis(1-methyl-4-pyridinio) porphyrin tetra(p-toluenesulfonate) (TMPyP4). In addition to showcasing a new methodology, we also aimed to provide insights into the mechanisms underlying photoinduced HTel-22/TMPyP4 structural changes, thereby aiding in the advancement of approaches targeting G4s in photodynamic therapy. EPR revealed G-quadruplex unfolding and dimer formation upon light exposure. Our findings demonstrate the potential of EPR spectroscopy for examining G4 complexes with photosensitizers and contribute to a better understanding of G4s' interactions with ligands under light.
Collapse
Affiliation(s)
- Natalya E Sannikova
- International Tomography Center SB RAS, 630090 Novosibirsk, Russia.
- Novosibirsk State University, Pirogova Str. 2, Novosibirsk 630090, Russia
| | - Mikhail I Kolokolov
- International Tomography Center SB RAS, 630090 Novosibirsk, Russia.
- Novosibirsk State University, Pirogova Str. 2, Novosibirsk 630090, Russia
| | - Tamara A Khlynova
- International Tomography Center SB RAS, 630090 Novosibirsk, Russia.
- Novosibirsk State University, Pirogova Str. 2, Novosibirsk 630090, Russia
| | - Alexey S Chubarov
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Novosibirsk 630090, Russia
- Novosibirsk State University, Pirogova Str. 2, Novosibirsk 630090, Russia
| | - Yuliya F Polienko
- N.N. Vorozhtsov Institute of Organic Chemistry SB RAS, 630090 Novosibirsk, Russia
| | - Matvey V Fedin
- International Tomography Center SB RAS, 630090 Novosibirsk, Russia.
- Novosibirsk State University, Pirogova Str. 2, Novosibirsk 630090, Russia
| | - Olesya A Krumkacheva
- International Tomography Center SB RAS, 630090 Novosibirsk, Russia.
- Novosibirsk State University, Pirogova Str. 2, Novosibirsk 630090, Russia
| |
Collapse
|
9
|
Takezawa Y, Kanemaru D, Kudo N, Shionoya M. Phenanthroline-modified DNA three-way junction structures stabilized by interstrand 3 : 1 metal complexation. Dalton Trans 2023; 52:11025-11029. [PMID: 37309206 DOI: 10.1039/d3dt01508d] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Incorporation of interstrand metal complexes into DNA is a versatile strategy for metal-dependent stabilization and structural induction of DNA supramolecular structures. In this study, we have synthesized DNA three-way junction (3WJ) structures modified with phenanthroline (phen) ligands. The phen-modified 3WJ was found to be thermally stabilized (ΔTm = +16.9 °C) by the formation of an interstrand NiII(phen)3 complex. Furthermore, NiII-mediated structure induction of 3WJs was demonstrated with the phen-modified strands and their unmodified counterparts. This study suggests that ligand-modified 3WJs would be useful structural motifs for the construction of metal-responsive DNA molecular systems.
Collapse
Affiliation(s)
- Yusuke Takezawa
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| | - Daisuke Kanemaru
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| | - Naofumi Kudo
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| | - Mitsuhiko Shionoya
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| |
Collapse
|
10
|
Wort JL, Ackermann K, Giannoulis A, Bode BE. Enhanced sensitivity for pulse dipolar EPR spectroscopy using variable-time RIDME. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2023; 352:107460. [PMID: 37167826 DOI: 10.1016/j.jmr.2023.107460] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 04/03/2023] [Accepted: 04/19/2023] [Indexed: 05/13/2023]
Abstract
Pulse dipolar EPR spectroscopy (PDS) measurements are an important complementary tool in structural biology and are increasingly applied to macromolecular assemblies implicated in human health and disease at physiological concentrations. This requires ever higher sensitivity, and recent advances have driven PDS measurements into the mid-nanomolar concentration regime, though optimization and acquisition of such measurements remains experimentally demanding and time expensive. One important consideration is that constant-time acquisition represents a hard limit for measurement sensitivity, depending on the maximum measured distance. Determining this distance a priori has been facilitated by machine-learning structure prediction (AlphaFold2 and RoseTTAFold) but is often confounded by non-representative behaviour in frozen solution that may mandate multiple rounds of optimization and acquisition. Herein, we endeavour to simultaneously enhance sensitivity and streamline PDS measurement optimization to one-step by benchmarking a variable-time acquisition RIDME experiment applied to CuII-nitroxide and CuII-CuII model systems. Results demonstrate marked sensitivity improvements of both 5- and 6-pulse variable-time RIDME of between 2- and 5-fold over the constant-time analogues.
Collapse
Affiliation(s)
- Joshua L Wort
- EaStCHEM School of Chemistry, Biomedical Sciences Research Complex and Centre of Magnetic Resonance, University of St Andrews, North Haugh, St Andrews, Scotland
| | - Katrin Ackermann
- EaStCHEM School of Chemistry, Biomedical Sciences Research Complex and Centre of Magnetic Resonance, University of St Andrews, North Haugh, St Andrews, Scotland
| | - Angeliki Giannoulis
- EaStCHEM School of Chemistry, Biomedical Sciences Research Complex and Centre of Magnetic Resonance, University of St Andrews, North Haugh, St Andrews, Scotland
| | - Bela E Bode
- EaStCHEM School of Chemistry, Biomedical Sciences Research Complex and Centre of Magnetic Resonance, University of St Andrews, North Haugh, St Andrews, Scotland.
| |
Collapse
|
11
|
Hasanbasri Z, Moriglioni NA, Saxena S. Efficient sampling of molecular orientations for Cu(II)-based DEER on protein labels. Phys Chem Chem Phys 2023; 25:13275-13288. [PMID: 36939213 DOI: 10.1039/d3cp00404j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
Abstract
Combining rigid Cu(II) labels and pulsed-EPR techniques enables distance constraint measurements that are incisive probes of protein structure and dynamics. However, the labels can lead to a dipolar signal that is biased by the relative orientation of the two spins, which is typically unknown a priori in a bilabeled protein. This effect, dubbed orientational selectivity, becomes a bottleneck in measuring distances. This phenomenon also applies to other pulsed-EPR techniques that probe electron-nucleus interactions. In this work, we dissect orientational selectivity by generating an in silico sample of Cu(II)-labeled proteins to evaluate pulse excitation in the context of double electron-electron resonance (DEER) at Q-band frequencies. This approach enables the observation of the contribution of each protein orientation to the dipolar signal, which provides direct insights into optimizing acquisition schemes to mitigate orientational effects. Furthermore, we incorporate the excitation profile of realistic pulses to identify the excited spins. With this method, we show that rectangular pulses, despite their imperfect inversion capability, can sample similar spin orientations as other sophisticated pulses with the same bandwidth. Additionally, we reveal that the efficiency of exciting spin-pairs in DEER depends on the frequency offset of two pulses used in the experiment and the relative orientation of the two spins. Therefore, we systematically examine the frequency offset of the two pulses used in this double resonance experiment to determine the optimal frequency offset for optimal distance measurements. This procedure leads to a protocol where two measurements are sufficient to acquire orientational-independent DEER at Q-band. Notably, this procedure is feasible with any commercial pulsed-EPR spectrometer. Furthermore, we experimentally validate the computational results using DEER experiments on two different proteins. Finally, we show that increasing the amplitude of the rectangular pulse can increase the efficiency of DEER experiments by almost threefold. Overall, this work provides an attractive new approach for analyzing pulsed-EPR spectroscopy to obtain microscopic nuances that cannot be easily discerned from analytical or numerical calculations.
Collapse
Affiliation(s)
- Zikri Hasanbasri
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, USA.
| | | | - Sunil Saxena
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, USA.
| |
Collapse
|
12
|
Bogetti X, Hasanbasri Z, Hunter HR, Saxena S. An optimal acquisition scheme for Q-band EPR distance measurements using Cu 2+-based protein labels. Phys Chem Chem Phys 2022; 24:14727-14739. [PMID: 35574729 DOI: 10.1039/d2cp01032a] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Recent advances in site-directed Cu2+ labeling of proteins and nucleic acids have added an attractive new methodology to measure the structure-function relationship in biomolecules. Despite the promise, accessing the higher sensitivity of Q-band Double Electron Electron Resonance (DEER) has been challenging for Cu2+ labels designed for proteins. Q-band DEER experiments on this label typically require many measurements at different magnetic fields, since the pulses can excite only a few orientations at a given magnetic field. Herein, we analyze such orientational effects through simulations and show that three DEER measurements, at strategically selected magnetic fields, are generally sufficient to acquire an orientational-averaged DEER time trace for this spin label at Q-band. The modeling results are experimentally verified on Cu2+ labeled human glutathione S-transferase (hGSTA1-1). The DEER distance distribution measured at the Q-band shows good agreement with the distance distribution sampled by molecular dynamics (MD) simulations and X-band experiments. The concordance of MD sampled distances and experimentally measured distances adds growing evidence that MD simulations can accurately predict distances for the Cu2+ labels, which remains a key bottleneck for the commonly used nitroxide label. In all, this minimal collection scheme reduces data collection time by as much as six-fold and is generally applicable to many octahedrally coordinated Cu2+ systems. Furthermore, the concepts presented here may be applied to other metals and pulsed EPR experiments.
Collapse
Affiliation(s)
- Xiaowei Bogetti
- Department of Chemistry, University of Pittsburgh, PA 15260, USA.
| | - Zikri Hasanbasri
- Department of Chemistry, University of Pittsburgh, PA 15260, USA.
| | - Hannah R Hunter
- Department of Chemistry, University of Pittsburgh, PA 15260, USA.
| | - Sunil Saxena
- Department of Chemistry, University of Pittsburgh, PA 15260, USA.
| |
Collapse
|
13
|
Miao Q, Nitsche C, Orton H, Overhand M, Otting G, Ubbink M. Paramagnetic Chemical Probes for Studying Biological Macromolecules. Chem Rev 2022; 122:9571-9642. [PMID: 35084831 PMCID: PMC9136935 DOI: 10.1021/acs.chemrev.1c00708] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Indexed: 12/11/2022]
Abstract
Paramagnetic chemical probes have been used in electron paramagnetic resonance (EPR) and nuclear magnetic resonance (NMR) spectroscopy for more than four decades. Recent years witnessed a great increase in the variety of probes for the study of biological macromolecules (proteins, nucleic acids, and oligosaccharides). This Review aims to provide a comprehensive overview of the existing paramagnetic chemical probes, including chemical synthetic approaches, functional properties, and selected applications. Recent developments have seen, in particular, a rapid expansion of the range of lanthanoid probes with anisotropic magnetic susceptibilities for the generation of structural restraints based on residual dipolar couplings and pseudocontact shifts in solution and solid state NMR spectroscopy, mostly for protein studies. Also many new isotropic paramagnetic probes, suitable for NMR measurements of paramagnetic relaxation enhancements, as well as EPR spectroscopic studies (in particular double resonance techniques) have been developed and employed to investigate biological macromolecules. Notwithstanding the large number of reported probes, only few have found broad application and further development of probes for dedicated applications is foreseen.
Collapse
Affiliation(s)
- Qing Miao
- Leiden
Institute of Chemistry, Leiden University, Einsteinweg 55, Leiden 2333 CC, The Netherlands
- School
of Chemistry &Chemical Engineering, Shaanxi University of Science & Technology, Xi’an710021, China
| | - Christoph Nitsche
- Research
School of Chemistry, The Australian National
University, Sullivans Creek Road, Canberra, Australian Capital Territory 2601, Australia
| | - Henry Orton
- Research
School of Chemistry, The Australian National
University, Sullivans Creek Road, Canberra, Australian Capital Territory 2601, Australia
- ARC
Centre of Excellence for Innovations in Peptide & Protein Science,
Research School of Chemistry, Australian
National University, Sullivans Creek Road, Canberra, Australian Capital Territory 2601, Australia
| | - Mark Overhand
- Leiden
Institute of Chemistry, Leiden University, Einsteinweg 55, Leiden 2333 CC, The Netherlands
| | - Gottfried Otting
- Research
School of Chemistry, The Australian National
University, Sullivans Creek Road, Canberra, Australian Capital Territory 2601, Australia
- ARC
Centre of Excellence for Innovations in Peptide & Protein Science,
Research School of Chemistry, Australian
National University, Sullivans Creek Road, Canberra, Australian Capital Territory 2601, Australia
| | - Marcellus Ubbink
- Leiden
Institute of Chemistry, Leiden University, Einsteinweg 55, Leiden 2333 CC, The Netherlands
| |
Collapse
|
14
|
Abstract
Different types of spin labels are currently available for structural studies of biomolecules both in vitro and in cells using Electron Paramagnetic Resonance (EPR) and pulse dipolar spectroscopy (PDS). Each type of label has its own advantages and disadvantages, that will be addressed in this chapter. The spectroscopically distinct properties of the labels have fostered new applications of PDS aimed to simultaneously extract multiple inter-label distances on the same sample. In fact, combining different labels and choosing the optimal strategy to address their inter-label distances can increase the information content per sample, and this is pivotal to better characterize complex multi-component biomolecular systems. In this review, we provide a brief background of the spectroscopic properties of the four most common orthogonal spin labels for PDS measurements and focus on the various methods at disposal to extract homo- and hetero-label distances in proteins. We also devote a section to possible artifacts arising from channel crosstalk and provide few examples of applications in structural biology.
Collapse
|
15
|
Takezawa Y, Sakakibara S, Shionoya M. Bipyridine-Modified DNA Three-Way Junctions with Amide linkers: Metal-Dependent Structure Induction and Self-Sorting. Chemistry 2021; 27:16626-16633. [PMID: 34623721 DOI: 10.1002/chem.202102977] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Indexed: 11/12/2022]
Abstract
DNA three-way junction (3WJ) structures are essential building blocks for the construction of DNA nanoarchitectures. We have synthesized a bipyridine (bpy)-modified DNA 3WJ by using a newly designed bpy-modified nucleoside, Ubpy -3, in which a bpy ligand is tethered via a stable amide linker. The thermal stability of the bpy-modified 3WJ was greatly enhanced by the formation of an interstrand NiII (bpy)3 complex at the junction core (ΔTm =+17.7 °C). Although the stereochemistry of the modification site differs from that of the previously reported bpy-modified nucleoside Ubpy -2, the degree of the NiII -mediated stabilization observed with Ubpy -3 was comparable to that of Ubpy -2. Structure induction of the 3WJs and the duplexes was carried out by the addition or removal of NiII ions. Furthermore, NiII -mediated self-sorting of 3WJs was performed by using the bpy-modified strands and their unmodified counterparts. Both transformations were driven by the formation of NiII (bpy)3 complexes. The structural induction and self-sorting of bpy-modified 3WJs are expected to have many potential applications in the development of metal-responsive DNA materials.
Collapse
Affiliation(s)
- Yusuke Takezawa
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Shiori Sakakibara
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Mitsuhiko Shionoya
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| |
Collapse
|
16
|
Meichsner SL, Kutin Y, Kasanmascheff M. In‐Cell Characterization of the Stable Tyrosyl Radical in
E. coli
Ribonucleotide Reductase Using Advanced EPR Spectroscopy. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202102914] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Shari L. Meichsner
- Department of Chemistry and Chemical Biology TU Dortmund University Otto-Hahn-Strasse 6 44227 Dortmund Germany
| | - Yury Kutin
- Department of Chemistry and Chemical Biology TU Dortmund University Otto-Hahn-Strasse 6 44227 Dortmund Germany
| | - Müge Kasanmascheff
- Department of Chemistry and Chemical Biology TU Dortmund University Otto-Hahn-Strasse 6 44227 Dortmund Germany
| |
Collapse
|
17
|
Meichsner SL, Kutin Y, Kasanmascheff M. In-Cell Characterization of the Stable Tyrosyl Radical in E. coli Ribonucleotide Reductase Using Advanced EPR Spectroscopy. Angew Chem Int Ed Engl 2021; 60:19155-19161. [PMID: 33844392 PMCID: PMC8453577 DOI: 10.1002/anie.202102914] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/11/2021] [Indexed: 12/21/2022]
Abstract
The E. coli ribonucleotide reductase (RNR), a paradigm for class Ia enzymes including human RNR, catalyzes the biosynthesis of DNA building blocks and requires a di‐iron tyrosyl radical (Y122.) cofactor for activity. The knowledge on the in vitro Y122. structure and its radical distribution within the β2 subunit has accumulated over the years; yet little information exists on the in vivo Y122.. Here, we characterize this essential radical in whole cells. Multi‐frequency EPR and electron‐nuclear double resonance (ENDOR) demonstrate that the structure and electrostatic environment of Y122. are identical under in vivo and in vitro conditions. Pulsed dipolar EPR experiments shed light on a distinct in vivo Y122. per β2 distribution, supporting the key role of Y. concentrations in regulating RNR activity. Additionally, we spectroscopically verify the generation of an unnatural amino acid radical, F3Y122., in whole cells, providing a crucial step towards unique insights into the RNR catalysis under physiological conditions.
Collapse
Affiliation(s)
- Shari L Meichsner
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Strasse 6, 44227, Dortmund, Germany
| | - Yury Kutin
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Strasse 6, 44227, Dortmund, Germany
| | - Müge Kasanmascheff
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Strasse 6, 44227, Dortmund, Germany
| |
Collapse
|
18
|
Gamble Jarvi A, Bogetti X, Singewald K, Ghosh S, Saxena S. Going the dHis-tance: Site-Directed Cu 2+ Labeling of Proteins and Nucleic Acids. Acc Chem Res 2021; 54:1481-1491. [PMID: 33476119 DOI: 10.1021/acs.accounts.0c00761] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
In this Account, we showcase site-directed Cu2+ labeling in proteins and DNA, which has opened new avenues for the measurement of the structure and dynamics of biomolecules using electron paramagnetic resonance (EPR) spectroscopy. In proteins, the spin label is assembled in situ from natural amino acid residues and a metal complex and requires no post-expression synthetic modification or purification procedures. The labeling scheme exploits a double histidine (dHis) motif, which utilizes endogenous or site-specifically mutated histidine residues to coordinate a Cu2+ complex. Pulsed EPR measurements on such Cu2+-labeled proteins potentially yield distance distributions that are up to 5 times narrower than the common protein spin label-the approach, thus, overcomes the inherent limitation of the current technology, which relies on a spin label with a highly flexible side chain. This labeling scheme provides a straightforward method that elucidates biophysical information that is costly, complicated, or simply inaccessible by traditional EPR labels. Examples include the direct measurement of protein backbone dynamics at β-sheet sites, which are largely inaccessible through traditional spin labels, and rigid Cu2+-Cu2+ distance measurements that enable higher precision in the analysis of protein conformations, conformational changes, interactions with other biomolecules, and the relative orientations of two labeled protein subunits. Likewise, a Cu2+ label has been developed for use in DNA, which is small, is nucleotide independent, and is positioned within the DNA helix. The placement of the Cu2+ label directly reports on the biologically relevant backbone distance. Additionally, for both of these labeling techniques, we have developed models for interpretation of the EPR distance information, primarily utilizing molecular dynamics (MD) simulations. Initial results using force fields developed for both protein and DNA labels have agreed with experimental results, which has been a major bottleneck for traditional spin labels. Looking ahead, we anticipate new combinations of MD and EPR to further our understanding of protein and DNA conformational changes, as well as working synergistically to investigate protein-DNA interactions.
Collapse
Affiliation(s)
- Austin Gamble Jarvi
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Xiaowei Bogetti
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Kevin Singewald
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Shreya Ghosh
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Sunil Saxena
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| |
Collapse
|
19
|
Stratmann LM, Kutin Y, Kasanmascheff M, Clever GH. Precise Distance Measurements in DNA G-Quadruplex Dimers and Sandwich Complexes by Pulsed Dipolar EPR Spectroscopy. Angew Chem Int Ed Engl 2021; 60:4939-4947. [PMID: 33063395 PMCID: PMC7984025 DOI: 10.1002/anie.202008618] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 09/12/2020] [Indexed: 12/20/2022]
Abstract
DNA G-quadruplexes show a pronounced tendency to form higher-order structures, such as π-stacked dimers and aggregates with aromatic binding partners. Reliable methods for determining the structure of these non-covalent adducts are scarce. Here, we use artificial square-planar Cu(pyridine)4 complexes, covalently incorporated into tetramolecular G-quadruplexes, as rigid spin labels for detecting dimeric structures and measuring intermolecular Cu2+ -Cu2+ distances via pulsed dipolar EPR spectroscopy. A series of G-quadruplex dimers of different spatial dimensions, formed in tail-to-tail or head-to-head stacking mode, were unambiguously distinguished. Measured distances are in full agreement with results of molecular dynamics simulations. Furthermore, intercalation of two well-known G-quadruplex binders, PIPER and telomestatin, into G-quadruplex dimers resulting in sandwich complexes was investigated, and previously unknown binding modes were discovered. Additionally, we present evidence that free G-tetrads also intercalate into dimers. Our transition metal labeling approach, combined with pulsed EPR spectroscopy, opens new possibilities for examining structures of non-covalent DNA aggregates.
Collapse
Affiliation(s)
- Lukas M. Stratmann
- Faculty of Chemistry and Chemical BiologyTU Dortmund UniversityOtto-Hahn-Strasse 644227DortmundGermany
| | - Yury Kutin
- Faculty of Chemistry and Chemical BiologyTU Dortmund UniversityOtto-Hahn-Strasse 644227DortmundGermany
| | - Müge Kasanmascheff
- Faculty of Chemistry and Chemical BiologyTU Dortmund UniversityOtto-Hahn-Strasse 644227DortmundGermany
| | - Guido H. Clever
- Faculty of Chemistry and Chemical BiologyTU Dortmund UniversityOtto-Hahn-Strasse 644227DortmundGermany
| |
Collapse
|