1
|
Yuan C, Fan W, Zhou P, Xing R, Cao S, Yan X. High-entropy non-covalent cyclic peptide glass. NATURE NANOTECHNOLOGY 2024; 19:1840-1848. [PMID: 39187585 DOI: 10.1038/s41565-024-01766-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 07/19/2024] [Indexed: 08/28/2024]
Abstract
Biomolecule-based non-covalent glasses are biocompatible and biodegradable, and offer a sustainable alternative to conventional glass. Cyclic peptides (CPs) can serve as promising glass formers owing to their structural rigidity and resistance to enzymatic degradation. However, their potent crystallization tendency hinders their potential in glass construction. Here we engineered a series of CP glasses with tunable glass transition behaviours by modulating the conformational complexity of CP clusters. By incorporating multicomponent CPs, the formation of high-entropy CP glass is facilitated, which-in turn-inhibits the crystallization of individual CPs. The high-entropy CP glass demonstrates enhanced mechanical properties and enzyme tolerance compared with individual CP glass and a unique biorecycling capability that is unattainable by traditional glasses. These findings provide a promising paradigm for the design and development of stable non-covalent glasses based on naturally derived biomolecules, and advance their application in pharmaceutical formulations and smart functional materials.
Collapse
Affiliation(s)
- Chengqian Yuan
- State Key Laboratory of Biochemical Engineering, Key Laboratory of Biopharmaceutical Preparation and Delivery, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China
| | - Wei Fan
- State Key Laboratory of Biochemical Engineering, Key Laboratory of Biopharmaceutical Preparation and Delivery, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China
| | - Peng Zhou
- State Key Laboratory of Biochemical Engineering, Key Laboratory of Biopharmaceutical Preparation and Delivery, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China
| | - Ruirui Xing
- State Key Laboratory of Biochemical Engineering, Key Laboratory of Biopharmaceutical Preparation and Delivery, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, China
| | - Shuai Cao
- State Key Laboratory of Biochemical Engineering, Key Laboratory of Biopharmaceutical Preparation and Delivery, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China
| | - Xuehai Yan
- State Key Laboratory of Biochemical Engineering, Key Laboratory of Biopharmaceutical Preparation and Delivery, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China.
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, China.
- Center for Mesoscience, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
2
|
Tian Y, Li J, Wang A, Li Q, Jian H, Bai S. Peptide-Based Optical/Electronic Materials: Assembly and Recent Applications in Biomedicine, Sensing, and Energy Storage. Macromol Biosci 2023; 23:e2300171. [PMID: 37466295 DOI: 10.1002/mabi.202300171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 07/10/2023] [Accepted: 07/16/2023] [Indexed: 07/20/2023]
Abstract
The unique optical and electronic properties of living systems are impressive. Peptide-based supramolecular self-assembly systems attempt to mimic these properties by preparation optical/electronic function materials with specific structure through simple building blocks, rational molecular design, and specific kinetic stimulation. From the perspective of building blocks and assembly strategies, the unique optical and electronic properties of peptide-based nanostructures, including peptides self-assembly and peptides regulate the assembly of external function subunits, are systematically reviewed. Additionally, their applications in biomedicine, sensing, and energy storage are also highlighted. This bioinspired peptide-based function material is one of the hot candidates for the new generation of green intellect materials, with many advantages such as biocompatibility, environmental friendliness, and adjustable morphology.
Collapse
Affiliation(s)
- Yajie Tian
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Jieling Li
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Anhe Wang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Qi Li
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Honglei Jian
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Shuo Bai
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| |
Collapse
|
3
|
Wang Z, Hao A, Xing P. Halogen Interaction Effects on Chiral Self-Assemblies on Cyclodipeptide Scaffolds Across Hierarchy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2302517. [PMID: 37165600 DOI: 10.1002/smll.202302517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/27/2023] [Indexed: 05/12/2023]
Abstract
How halogenation affects protein or peptide folding and self-assembly hierarchically? This study tries to answer this question by using the halogen bonding mediated self-assemblies on cyclodipeptide scaffolds. Single-functionalized cyclodipeptides (Cyclo-GX) based on para-halogenated phenylalanine in the solid state form homochiral helical nanotubes via consecutive X···O bonds (X = Cl, Br, and I) independent of halogen kinds. In contrast, double-functionalized cyclodipeptides (Cyclo-XX) feature versatile self-assembly architectures depending on the para-substituents (X = H, F, Cl, Br, and I), affording nanotubular, lamellar, and triple helical nanotubular architectures. Cyclo-BrBr exclusively adopts intramolecular Type-IV X···X interaction that alters the molecular folding and packing, which also gives rise to opposite chirality at molecular folding (secondary structure), stacking (tertiary structure), and self-assembled nanohelices (quarternary structure) at macroscopic scale. It unveils how halogenation impacts on the self-assembly and chirality at hierarchical levels in specific peptides. Clusteroluminescence is found for the cyclodipeptides, achieving high quantum yield up to 71%, whereby circularly polarized luminescence is realized with tunable handedness by controlling halogen substituents.
Collapse
Affiliation(s)
- Zhuoer Wang
- Key Laboratory of Colloid and Interface Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, P. R. China
| | - Aiyou Hao
- Key Laboratory of Colloid and Interface Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, P. R. China
| | - Pengyao Xing
- Key Laboratory of Colloid and Interface Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, P. R. China
| |
Collapse
|
4
|
Li X, Jian H, Han Q, Wang A, Li J, Man N, Li Q, Bai S, Li J. Three-dimensional (3D) bioprinting of medium toughened dipeptide hydrogel scaffolds with Hofmeister effect. J Colloid Interface Sci 2023; 639:1-6. [PMID: 36796110 DOI: 10.1016/j.jcis.2023.02.033] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 02/02/2023] [Accepted: 02/08/2023] [Indexed: 02/13/2023]
Abstract
Short peptide self-assembled hydrogels as 3D bioprinting inks show excellent biocompatibility and diverse functional expansion, and have broad application prospects in cell culture and tissue engineering. However, the preparation of biological hydrogel inks with adjustable mechanical strength and controllable degradation for 3D bioprinting still faces big challenges. Herein, we develop dipeptide bio-inks that can be gelled in-situ based on Hofmeister sequence, and prepare hydrogel scaffold by using a layer-by-layer 3D printing strategy. Excitingly, after the introduction of Dulbecco's Modified Eagle's medium (DMEM), which is necessary for cell culture, the hydrogel scaffolds show an excellent toughening effect, which matches the needs of cell culture. It's notable that in the whole process of preparation and 3D printing of hydrogel scaffolds, no cross-linking agent, ultraviolet (UV), heating or other exogenous factors are involved, ensuring high biosafety and biocompatibility. After two weeks of 3D culture, millimeter-sized cell spheres are obtained. This work provides an opportunity for the development of short peptide hydrogel bioinks without exogenous factors in 3D printing, tissue engineering, tumor simulant reconstruction and other biomedical fields.
Collapse
Affiliation(s)
- Xin Li
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Honglei Jian
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qingquan Han
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Anhe Wang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jieling Li
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ningyuan Man
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Qi Li
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Shuo Bai
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Junbai Li
- Beijing National Laboratory for Molecular Sciences, CAS Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
5
|
Wang Y, Geng Q, Zhang Y, Adler-Abramovich L, Fan X, Mei D, Gazit E, Tao K. Fmoc-diphenylalanine gelating nanoarchitectonics: A simplistic peptide self-assembly to meet complex applications. J Colloid Interface Sci 2023; 636:113-133. [PMID: 36623365 DOI: 10.1016/j.jcis.2022.12.166] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/19/2022] [Accepted: 12/30/2022] [Indexed: 01/05/2023]
Abstract
9-fluorenylmethoxycarbonyl-diphenylalanine (Fmoc-FF), has been has been extensively explored due to its ultrafast self-assembly kinetics, inherent biocompatibility, tunable physicochemical properties, and especially, the capability of forming self-sustained gels under physiological conditions. Consequently, various methodologies to develop Fmoc-FF gels and their corresponding applications in biomedical and industrial fields have been extensively studied. Herein, we systemically summarize the mechanisms underlying Fmoc-FF self-assembly, discuss the preparation methodologies of Fmoc-FF hydrogels, and then deliberate the properties as well as the diverse applications of Fmoc-FF self-assemblies. Finally, the contemporary shortcomings which limit the development of Fmoc-FF self-assembly are raised and the alternative solutions are proposed, along with future research perspectives.
Collapse
Affiliation(s)
- Yunxiao Wang
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China; Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311200, China; Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, Hangzhou 311200, China
| | - Qiang Geng
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China; Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311200, China
| | - Yan Zhang
- Centre for Bioengineering and Biotechnology, College of Chemical Engineering, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao 266580, China
| | - Lihi Adler-Abramovich
- Department of Oral Biology, The Goldschleger School of Dental Medicine, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel; The Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv 6997801, Israel; Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, Hangzhou 311200, China.
| | - Xinyuan Fan
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China; Key Laboratory of Advanced Manufacturing Technology of Zhejiang Province, School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China; Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, Hangzhou 311200, China
| | - Deqing Mei
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China; Key Laboratory of Advanced Manufacturing Technology of Zhejiang Province, School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China
| | - Ehud Gazit
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, 6997801 Tel Aviv, Israel; Department of Materials Science and Engineering, Iby and Aladar Fleischman, Tel Aviv University, 6997801 Tel Aviv, Israel; Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, Hangzhou 311200, China.
| | - Kai Tao
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China; Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311200, China; Key Laboratory of Advanced Manufacturing Technology of Zhejiang Province, School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China; Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, Hangzhou 311200, China.
| |
Collapse
|
6
|
Identification of heterochirality-mediated stereochemical interactions in peptide architectures. Colloids Surf B Biointerfaces 2023; 224:113200. [PMID: 36774824 DOI: 10.1016/j.colsurfb.2023.113200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 01/26/2023] [Accepted: 02/07/2023] [Indexed: 02/11/2023]
Abstract
In this work, we illustrate a strategy for constructing heterochiral peptide architectures with distinct structural, mechanical and thermal characteristics. A series of nanotube structures based on diphenylalanine (FF) and its chiral derivatives were examined. Pronounced effects relating to heterochirality on mechanostability and thermal stability can be identified. The homochiral peptide FF and its enantiomer ff formed nanotubes with high thermal and mechanical stabilities (Young's modulus: 20.3 ± 5.9 GPa for FF and 21.2 ± 4.7 GPa for ff). In contrast, heterochiral nanotubes formed by Ff and fF manifest superstructures along the axial direction with differed thermal and mechanical strength (Young's modulus: 7.3 ± 2.4 GPa for Ff and 8.3 ± 2.1 GPa for fF). Combining their single-crystal XRD structure and in silico results, it was demonstrated that the spatial orientations of aromatic moieties were subtly changed by heterochirality of peptide building blocks, which led to intramolecular face-to-face interactions. As the result, both intermolecular axial and interchannel interactions in heterochiral nanotubes were weakened as reflected in the strikingly deteriorated mechanical and thermal stabilities. Conversely, two aromatic side chains of the homochiral peptides were staggered and formed interdigitated steric zippers, which served as strong glues that secured the robustness of nanotubes in both axial and radial orientation. Furthermore, the generality of the heterochiral-mediated stereochemical effects was demonstrated in other "FF class" dipeptides, including fluorinated Ff, FW and FL. Our results unequivocally revealed the relationship between amino acid chirality, peptide molecule packing, and physical stabilities of "FF class" dipeptide self-assembled materials and provide valuable molecular insights into chirality-mediated stereochemical interactions in determining the properties of peptide architectures.
Collapse
|
7
|
Santos D, Baptista RMF, Handa A, Almeida B, Rodrigues PV, Torres AR, Machado A, Belsley M, de Matos Gomes E. Bioinspired Cyclic Dipeptide Functionalized Nanofibers for Thermal Sensing and Energy Harvesting. MATERIALS (BASEL, SWITZERLAND) 2023; 16:2477. [PMID: 36984357 PMCID: PMC10055687 DOI: 10.3390/ma16062477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/09/2023] [Accepted: 03/17/2023] [Indexed: 06/18/2023]
Abstract
Nanostructured dipeptide self-assemblies exhibiting quantum confinement are of great interest due to their potential applications in the field of materials science as optoelectronic materials for energy harvesting devices. Cyclic dipeptides are an emerging outstanding group of ring-shaped dipeptides, which, because of multiple interactions, self-assemble in supramolecular structures with different morphologies showing quantum confinement and photoluminescence. Chiral cyclic dipeptides may also display piezoelectricity and pyroelectricity properties with potential applications in new sources of nano energy. Among those, aromatic cyclo-dipeptides containing the amino acid tryptophan are wide-band gap semiconductors displaying the high mechanical rigidity, photoluminescence and piezoelectric properties to be used in power generation. In this work, we report the fabrication of hybrid systems based on chiral cyclo-dipeptide L-Tryptophan-L-Tryptophan incorporated into biopolymer electrospun fibers. The micro/nanofibers contain self-assembled nano-spheres embedded into the polymer matrix, are wide-band gap semiconductors with 4.0 eV band gap energy, and display blue photoluminescence as well as relevant piezoelectric and pyroelectric properties with coefficients as high as 57 CN-1 and 35×10-6 Cm-2K-1, respectively. Therefore, the fabricated hybrid mats are promising systems for future thermal sensing and energy harvesting applications.
Collapse
Affiliation(s)
- Daniela Santos
- Laboratory for materials and Emergent Technologies (LAPMET), Centre of Physics of Minho and Porto Universities (CF-UM-UP), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Rosa M. F. Baptista
- Laboratory for materials and Emergent Technologies (LAPMET), Centre of Physics of Minho and Porto Universities (CF-UM-UP), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Adelino Handa
- Laboratory for materials and Emergent Technologies (LAPMET), Centre of Physics of Minho and Porto Universities (CF-UM-UP), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Bernardo Almeida
- Laboratory for materials and Emergent Technologies (LAPMET), Centre of Physics of Minho and Porto Universities (CF-UM-UP), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Pedro V. Rodrigues
- Institute for Polymers and Composites, University of Minho, Campus de Azurém, 4800-058 Guimaraes, Portugal
| | - Ana R. Torres
- Institute for Polymers and Composites, University of Minho, Campus de Azurém, 4800-058 Guimaraes, Portugal
| | - Ana Machado
- Institute for Polymers and Composites, University of Minho, Campus de Azurém, 4800-058 Guimaraes, Portugal
| | - Michael Belsley
- Laboratory for materials and Emergent Technologies (LAPMET), Centre of Physics of Minho and Porto Universities (CF-UM-UP), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Etelvina de Matos Gomes
- Laboratory for materials and Emergent Technologies (LAPMET), Centre of Physics of Minho and Porto Universities (CF-UM-UP), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| |
Collapse
|
8
|
Zhang Y, Li Q, Wu H, Wang Y, Wang Y, Rencus-Lazar S, Zhao Y, Wang J, Mei D, Xu H, Gazit E, Tao K. Racemic Amino Acid Assembly Enables Supramolecular β-Sheet Transition with Property Modulations. ACS NANO 2023; 17:2737-2744. [PMID: 36696300 DOI: 10.1021/acsnano.2c11006] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Amino acids are the most simplistic bio-building blocks and perform a variety of functions in metabolic activities. Increasing publications report that amino acid-based superstructures present amyloid-like characteristics, arising from their supramolecular β-sheet secondary structures driven by hydrogen-bonding-connected supramolecular β-strands, which are formed by head-to-tail hydrogen bonds between terminal amino and carboxyl groups of the adjacent residues. Therefore, the establishment of the structure-function relationships is critical for exploring the properties and applications of amino acid assemblies. Among the naturally encoded self-assembling amino acids, tyrosine (Y)-based superstructures have been found to show diverse properties and functions including high rigidity, promoting melanin formations, mood regulations, and preventing anxiety, thus showing promising potential as next-generation functional biomaterials for biomedical and bio-machine interface applications. However, the development of Y-based organizations of functional features is severely limited due to the intrinsic difficulty of modulating the energetically stable supramolecular β-sheet structures. Herein, we report that by the racemic assembly of l-Y and d-Y, the supramolecular secondary structures are modulated from the antiparallel β-sheets in the enantiomeric assemblies to the parallel ones in the racemate counterparts, thus leading to higher degrees of freedom, which finally induce distinct organization kinetics and modulation of the physicochemical properties including the optical shifts, elastic softening, and the piezoelectric outputs of the superstructures.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Biological and Energy Chemical Engineering, College of Chemical Engineering, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao266580, China
| | - Qi Li
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing100190, China
| | - Haoran Wu
- Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou311200, China
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou310030, China
- Key Laboratory of Advanced Manufacturing Technology of Zhejiang Province, School of Mechanical Engineering, Zhejiang University, Hangzhou310030, China
- Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, Hangzhou311200, China
| | - Yancheng Wang
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou310030, China
- Key Laboratory of Advanced Manufacturing Technology of Zhejiang Province, School of Mechanical Engineering, Zhejiang University, Hangzhou310030, China
| | - Yan Wang
- Department of Biological and Energy Chemical Engineering, College of Chemical Engineering, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao266580, China
| | - Sigal Rencus-Lazar
- Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, Hangzhou311200, China
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, 6997801, Tel Aviv, Israel
| | - Yurong Zhao
- Department of Biological and Energy Chemical Engineering, College of Chemical Engineering, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao266580, China
| | - Jiqian Wang
- Department of Biological and Energy Chemical Engineering, College of Chemical Engineering, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao266580, China
| | - Deqing Mei
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou310030, China
- Key Laboratory of Advanced Manufacturing Technology of Zhejiang Province, School of Mechanical Engineering, Zhejiang University, Hangzhou310030, China
| | - Hai Xu
- Department of Biological and Energy Chemical Engineering, College of Chemical Engineering, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao266580, China
| | - Ehud Gazit
- Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, Hangzhou311200, China
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, 6997801, Tel Aviv, Israel
- Department of Materials Science and Engineering, Iby and Aladar Fleischman, Tel Aviv University, 6997801, Tel Aviv, Israel
| | - Kai Tao
- Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou311200, China
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou310030, China
- Key Laboratory of Advanced Manufacturing Technology of Zhejiang Province, School of Mechanical Engineering, Zhejiang University, Hangzhou310030, China
- Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, Hangzhou311200, China
| |
Collapse
|
9
|
Yuan H, Xue B, Yang D, Rencus-Lazar S, Cao Y, Gazit E, Tan D, Yang R. Rational Design of Biological Crystals with Enhanced Physical Properties by Hydrogen Bonding Interactions. RESEARCH (WASHINGTON, D.C.) 2023; 6:0046. [PMID: 36930775 PMCID: PMC10013789 DOI: 10.34133/research.0046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 12/21/2022] [Indexed: 01/12/2023]
Abstract
Hydrogen bonds are non-covalent interactions and essential for assembling supermolecules into ordered structures in biological systems, endowing crystals with fascinating physical properties, and inspiring the construction of eco-friendly electromechanical devices. However, the interplay between hydrogen bonding and the physical properties is not fully understood at the molecular level. Herein, we demonstrate that the physical property of biological crystals with double-layer structures could be enhanced by rationally controlling hydrogen bonding interactions between amino and carboxyl groups. Different hydrogen bonding interactions result in various thermal, mechanical, electronic, and piezoelectric properties. In particular, the weak interaction between O and H atoms contributes to low mechanical strength that permits important ion displacement under stress, giving rise to a strong piezoelectric response. This study not only reveals the correlation between the hydrogen bonding and physical properties in double-layer structures of biological crystals but also demonstrates the potential of these crystals as functional biomaterials for high-performance energy-harvesting devices. Theoretical calculations and experimental verifications in this work provide new insights into the rational design of biomaterials with desirable physical properties for bioelectrical devices by modulating intermolecular interactions.
Collapse
Affiliation(s)
- Hui Yuan
- School of Advanced Materials and Nanotechnology, Xidian University, Xi'an 710126, China.,The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Department of Materials Science and Engineering, The Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Bin Xue
- National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing 210093, Jiangsu, China
| | - Dingyi Yang
- School of Advanced Materials and Nanotechnology, Xidian University, Xi'an 710126, China
| | - Sigal Rencus-Lazar
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Department of Materials Science and Engineering, The Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Yi Cao
- National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing 210093, Jiangsu, China
| | - Ehud Gazit
- School of Advanced Materials and Nanotechnology, Xidian University, Xi'an 710126, China.,The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Department of Materials Science and Engineering, The Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Dan Tan
- School of Advanced Materials and Nanotechnology, Xidian University, Xi'an 710126, China
| | - Rusen Yang
- School of Advanced Materials and Nanotechnology, Xidian University, Xi'an 710126, China
| |
Collapse
|
10
|
Tian Y, Li J, Wang A, Shang Z, Jian H, Li Q, Bai S, Yan X. Long-range ordered amino acid assemblies exhibit effective optical-to-electrical transduction and stable photoluminescence. Acta Biomater 2022; 154:135-144. [PMID: 36216126 DOI: 10.1016/j.actbio.2022.09.073] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 09/07/2022] [Accepted: 09/29/2022] [Indexed: 12/14/2022]
Abstract
Bio-endogenous peptide molecules are ideal components for fabrication of biocompatible and environmentally friendly semiconductors materials. However, to date, their applications have been limited due to the difficulty in obtaining stable, high-performance devices. Herein, simple amino acid derivatives fluorenylmethoxycarbonyl-leucine (Fmoc-L) and fluorenylmethoxycarbonyl-tryptophan (Fmoc-W) are utilized to form long-range ordered supramolecular nanostructures by tight aromatic stacking and extensive hydrogen bonding with mechanical, electrical and optical properties. For the first time, without addition of any photosensitizers, pure Fmoc-L microbelts and Fmoc-W microwires exhibit Young's modulus up to 28.79 and 26.96 GPa, and unprecedently high values of photocurrent responses up to 2.2 and 2.3 μA/cm2, respectively. Meanwhile, Fmoc-W microwires with stable blue fluorescent emission under continuous excitation are successfully used as LED phosphors. Mechanism analysis shows that these two amino acids derivatives firstly formed dimers to reduce the bandgap, then further assemble into bioinspired semiconductor materials using the dimers as the building blocks. In this process, aromatic residues of amino acids are more conducive to the formation of semiconducting characteristics than fluorenyl groups. STATEMENT OF SIGNIFICANCE: Long-range ordered amino acid derivative assemblies with mechanical, electrical and optical properties were fabricated by a green and facile biomimetic strategy. These amino acid assemblies have Young's modulus comparable to that of concrete and exhibit typical semiconducting characteristics. Even without the addition of any photosensitizer, pure amino acid assemblies can still produce a strong photocurrent response and an unusually stable photoluminescence. The results suggest that amino acid structures with hydrophilic C-terminal and aromatic residues are more conducive to the formation of semiconducting characteristics. This work unlocks the potential for amino acid molecules to self-assemble into high-performance bioinspired semiconductors, providing a reference for customized development of biocompatible and environmentally friendly semiconductor materials through rational molecular design.
Collapse
Affiliation(s)
- Yajie Tian
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Jieling Li
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China.
| | - Anhe Wang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Zhixin Shang
- College of Textile and Clothing, Dezhou University, Dezhou 253023, China
| | - Honglei Jian
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Qi Li
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Shuo Bai
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China.
| | - Xuehai Yan
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China.
| |
Collapse
|
11
|
Fazal T, Iqbal S, Shah M, Ismail B, Shaheen N, Alrbyawi H, Al-Anazy MM, Elkaeed EB, Somaily HH, Pashameah RA, Alzahrani E, Farouk AE. Improvement in Optoelectronic Properties of Bismuth Sulphide Thin Films by Chromium Incorporation at the Orthorhombic Crystal Lattice for Photovoltaic Applications. Molecules 2022; 27:molecules27196419. [PMID: 36234955 PMCID: PMC9570543 DOI: 10.3390/molecules27196419] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 09/23/2022] [Accepted: 09/24/2022] [Indexed: 11/23/2022] Open
Abstract
By using the chemical bath deposition approach, binary bismuth sulphides (Bi2S3) and chromium-doped ternary bismuth sulphides (Bi2−xCrxS3) thin films were effectively produced, and their potential for photovoltaic applications was examined. Structural elucidation revealed that Bi2S3 deposited by this simple and cost-effective method retained its orthorhombic crystal lattice by doping up to 3 at.%. The morphological analysis confirmed the crack-free deposition, hence making them suitable for solar cell applications. Optical analysis showed that deposited thin films have a bandgap in the range of 1.30 to 1.17 eV, values of refractive index (n) from 2.9 to 1.3, and an extinction coefficient (k) from 1.03 to 0.3. From the Hall measurements, it followed that the dominant carriers in all doped and undoped samples are electrons, and the carrier density in doped samples is almost two orders of magnitude larger than in Bi2S3. Hence, this suggests that doping is an effective tool to improve the optoelectronic behavior of Bi2S3 thin films by engineering the compositional, structural, and morphological properties.
Collapse
Affiliation(s)
- Tanzeela Fazal
- Department of Chemistry, Abbottabad University of Science and Technology (AUST), Abbottabad 22500, Pakistan
- Correspondence: (T.F.); (S.I.); (B.I.)
| | - Shahid Iqbal
- Department of Chemistry, School of Natural Sciences (SNS), National University of Science and Technology (NUST), H-12, Islamabad 46000, Pakistan
- Correspondence: (T.F.); (S.I.); (B.I.)
| | - Mazloom Shah
- Department of Chemistry, Abbottabad University of Science and Technology (AUST), Abbottabad 22500, Pakistan
| | - Bushra Ismail
- Department of Chemistry, COMSATS University Islamabad (CUI), Abbottabad Campus, Islamabad 22060, Pakistan
- Correspondence: (T.F.); (S.I.); (B.I.)
| | - Nusrat Shaheen
- Department of Chemistry, Abbottabad University of Science and Technology (AUST), Abbottabad 22500, Pakistan
| | - Hamad Alrbyawi
- Pharmaceutics and Pharmaceutical Technology Department, College of Pharmacy, Taibah University, Medina 42353, Saudi Arabia
| | - Murefah Mana Al-Anazy
- Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Eslam B. Elkaeed
- Department of Pharmaceutical Sciences, College of Pharmacy, AlMaarefa University, Riyadh 13713, Saudi Arabia
| | - H. H. Somaily
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
- Department of Physics, Faculty of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
| | - Rami Adel Pashameah
- Department of Chemistry, Faculty of Applied Science, Umm Al-Qura University, Makkah 24230, Saudi Arabia
| | - Eman Alzahrani
- Department of Chemistry, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Abd-ElAziem Farouk
- Department of Biotechnology College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| |
Collapse
|
12
|
Modulating vectored non-covalent interactions for layered assembly with engineerable properties. Biodes Manuf 2022. [DOI: 10.1007/s42242-022-00186-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
13
|
Freitas AI, Domingues L, Aguiar TQ. Tag-mediated single-step purification and immobilization of recombinant proteins toward protein-engineered advanced materials. J Adv Res 2022; 36:249-264. [PMID: 35127175 PMCID: PMC8799874 DOI: 10.1016/j.jare.2021.06.010] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 06/08/2021] [Accepted: 06/10/2021] [Indexed: 12/12/2022] Open
Abstract
Background The potential applications of protein-engineered functional materials are so wide and exciting that the interest in these eco-friendly advanced materials will further expand in the future. Tag-mediated protein purification/immobilization technologies have emerged as green and cost-effective approaches for the fabrication of such materials. Strategies that combine the purification and immobilization of recombinant proteins/peptides onto/into natural, synthetic or hybrid materials in a single-step are arising and attracting increasing interest. Aim of Review This review highlights the most significant advances of the last 5 years within the scope of tag-mediated protein purification/immobilization and elucidates their contributions for the development of efficient single-step purification and immobilization strategies. Recent progresses in the field of protein-engineered materials created using innovative protein-tag combinations and future opportunities created by these new technologies are also summarized and identified herein. Key Scientific Concepts of Review Protein purification/immobilization tags present a remarkable ability to establish specific non-covalent/covalent interactions between solid materials and biological elements, which prompted the creation of tailor-made and advanced functional materials, and of next-generation hybrid materials. Affinity tags can bind to a wide range of materials (of synthetic, natural or hybrid nature), being most suitable for protein purification. Covalently binding tags are most suitable for long-term protein immobilization, but can only bind naturally to protein-based materials. Hybrid affinity-covalently binding tags have allowed efficient one-step purification and immobilization of proteins onto different materials, as well as the development of innovative protein-engineered materials. Self-aggregating tags have been particularly useful in combination with other tags for generating protein-engineered materials with self-assembling, flexible and/or responsive properties. While these tags have been mainly explored for independent protein purification, immobilization or functionalization purposes, efficient strategies that combine tag-mediated purification and immobilization/functionalization in a single-step will be essential to guarantee the sustainable manufacturing of advanced protein-engineered materials.
Collapse
Affiliation(s)
- Ana I. Freitas
- CEB - Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal
| | - Lucília Domingues
- CEB - Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal
| | - Tatiana Q. Aguiar
- CEB - Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal
| |
Collapse
|
14
|
Bucci R, Bossi A, Erba E, Vaghi F, Saha A, Yuran S, Maggioni D, Gelmi ML, Reches M, Pellegrino S. Nucleobase morpholino β amino acids as molecular chimeras for the preparation of photoluminescent materials from ribonucleosides. Sci Rep 2020; 10:19331. [PMID: 33168883 PMCID: PMC7652887 DOI: 10.1038/s41598-020-76297-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 10/23/2020] [Indexed: 11/10/2022] Open
Abstract
Bioinspired smart materials represent a tremendously growing research field and the obtainment of new building blocks is at the molecular basis of this technology progress. In this work, colloidal materials have been prepared in few steps starting from ribonucleosides. Nucleobase morpholino β-amino acids are the chimera key intermediates allowing Phe-Phe dipeptides' functionalization with adenine and thymine. The obtained compounds self-aggregate showing enhanced photoluminescent features, such as deep blue fluorescence and phosphorescence emissions.
Collapse
Affiliation(s)
- Raffaella Bucci
- DISFARM-Dipartimento Di Scienze Farmaceutiche, Sezione Chimica Generale E Organica "A. Marchesini", Università Degli Studi Di Milano, Via Venezian 21, 20133, Milan, Italy
| | - Alberto Bossi
- Istituto Di Scienze E Tecnologie Chimiche "G. Natta" del Consiglio Nazionale Delle Ricerche (CNR-SCITEC), via Fantoli 16/15, 20138, Milan, Italy
- SmartMatLab Center, via C. Golgi 19, 20133, Milan, Italy
| | - Emanuela Erba
- DISFARM-Dipartimento Di Scienze Farmaceutiche, Sezione Chimica Generale E Organica "A. Marchesini", Università Degli Studi Di Milano, Via Venezian 21, 20133, Milan, Italy
| | - Francesco Vaghi
- DISFARM-Dipartimento Di Scienze Farmaceutiche, Sezione Chimica Generale E Organica "A. Marchesini", Università Degli Studi Di Milano, Via Venezian 21, 20133, Milan, Italy
| | - Abhijit Saha
- Institute of Chemistry and the Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Institute of Chemistry, Jerusalem, Israel
| | - Sivan Yuran
- Institute of Chemistry and the Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Institute of Chemistry, Jerusalem, Israel
| | - Daniela Maggioni
- SmartMatLab Center, via C. Golgi 19, 20133, Milan, Italy
- Dipartimento Di Chimica, Università Degli Studi Di Milano, Via Golgi 19, 20133, Milan, Italy
| | - Maria Luisa Gelmi
- DISFARM-Dipartimento Di Scienze Farmaceutiche, Sezione Chimica Generale E Organica "A. Marchesini", Università Degli Studi Di Milano, Via Venezian 21, 20133, Milan, Italy
| | - Meital Reches
- Institute of Chemistry and the Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Institute of Chemistry, Jerusalem, Israel
| | - Sara Pellegrino
- DISFARM-Dipartimento Di Scienze Farmaceutiche, Sezione Chimica Generale E Organica "A. Marchesini", Università Degli Studi Di Milano, Via Venezian 21, 20133, Milan, Italy.
| |
Collapse
|
15
|
Kong J, Wang Y, Qi W, Huang M, Su R, He Z. Green fluorescent protein inspired fluorophores. Adv Colloid Interface Sci 2020; 285:102286. [PMID: 33164780 DOI: 10.1016/j.cis.2020.102286] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 10/11/2020] [Accepted: 10/12/2020] [Indexed: 12/20/2022]
Abstract
Green fluorescence proteins (GFP) are appealing to a variety of biomedical and biotechnology applications, such as protein fusion, subcellular localizations, cell visualization, protein-protein interaction, and genetically encoded sensors. To mimic the fluorescence of GFP, various compounds, such as GFP chromophores analogs, hydrogen bond-rich proteins, and aromatic peptidyl nanostructures that preclude free rotation of the aryl-alkene bond, have been developed to adapt them for a fantastic range of applications. Herein, we firstly summarize the structure and luminescent mechanism of GFP. Based on this, the design strategy, fluorescent properties, and the advanced applications of GFP-inspired fluorophores are then carefully discussed. The diverse advantages of bioinspired fluorophores, such as biocompatibility, structural simplicity, and capacity to form a variety of functional nanostructures, endow them potential candidates as the next-generation bio-organic optical materials.
Collapse
|