1
|
Li TR, Das C, Cornu I, Prescimone A, Piccini G, Tiefenbacher K. Window[1]resorcin[3]arenes: A Novel Macrocycle Able to Self-Assemble to a Catalytically Active Hexameric Cage. JACS AU 2024; 4:1901-1910. [PMID: 38818056 PMCID: PMC11134363 DOI: 10.1021/jacsau.4c00097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/16/2024] [Accepted: 04/16/2024] [Indexed: 06/01/2024]
Abstract
The hexameric resorcin[4]arene capsule has been utilized as one of the most versatile supramolecular capsule catalysts. Enlarging its size would enable expansion of the substrate size scope. However, no larger catalytically active versions have been reported. Herein, we introduce a novel class of macrocycles, named window[1]resorcin[3]arene (wRS), that assemble to a cage-like hexameric host. The new host was studied by NMR, encapsulation experiments, and molecular dynamics simulations. The cage is able to bind tetraalkylammonium ions that are too large for encapsulation inside the hexameric resorcin[4]arene capsule. Most importantly, it retained its catalytic activity, and the accelerated conversion of a large substrate that does not fit the closed hexameric resorcin[4]arene capsule was observed. Thus, it will help to expand the limited substrate size scope of the closed hexameric resorcin[4]arene capsule.
Collapse
Affiliation(s)
- Tian-Ren Li
- Department
of Chemistry, University of Basel, Mattenstrasse 24a, 4058 Basel, Switzerland
| | - Chintu Das
- Institute
of Technical and Macromolecular Chemistry RWTH Aachen University, Worringerweg 2, 52074 Aachen, Germany
| | - Ivan Cornu
- Department
of Chemistry, University of Basel, Mattenstrasse 24a, 4058 Basel, Switzerland
| | - Alessandro Prescimone
- Department
of Chemistry, University of Basel, Mattenstrasse 24a, 4058 Basel, Switzerland
| | - GiovanniMaria Piccini
- Institute
of Technical and Macromolecular Chemistry RWTH Aachen University, Worringerweg 2, 52074 Aachen, Germany
| | - Konrad Tiefenbacher
- Department
of Chemistry, University of Basel, Mattenstrasse 24a, 4058 Basel, Switzerland
- Department
of Biosystems Science and Engineering, ETH
Zurich, Mattenstrasse
26, 4058 Basel, Switzerland
| |
Collapse
|
2
|
Jurek P, Szymański MP, Szumna A. Remote control of anion binding by CH-based receptors. Chem Commun (Camb) 2024; 60:3417-3420. [PMID: 38441137 DOI: 10.1039/d3cc06038a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
We show that the substitution of tetra(benzimidazole)resorcin[4]arenes with electron withdrawing groups on the upper rim enhances anion binding at the opposite edge by more than three orders of magnitude. Moreover, selective anion binding at either the OH/NH or CH binding sites is demonstrated.
Collapse
Affiliation(s)
- Paulina Jurek
- Institute of Organic Chemistry Polish Academy of Sciences, Kasprzaka 44/52, Warsaw 01-224, Poland.
| | - Marek P Szymański
- Institute of Organic Chemistry Polish Academy of Sciences, Kasprzaka 44/52, Warsaw 01-224, Poland.
| | - Agnieszka Szumna
- Institute of Organic Chemistry Polish Academy of Sciences, Kasprzaka 44/52, Warsaw 01-224, Poland.
| |
Collapse
|
3
|
Goodwin RJ, White NG. A Cationic Catechol Derivative Binds Anions in Competitive Aqueous Media. Chem Asian J 2024:e202301121. [PMID: 38269957 DOI: 10.1002/asia.202301121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 01/09/2024] [Indexed: 01/26/2024]
Abstract
A simple dihydroxy isoquinolinium molecule (3+ ) was prepared by a modification of a literature procedure. Interestingly, during optimisation of the synthesis a small amount of the natural product pseudopalmatine was isolated, and characterised for the first time by X-ray crystallography. Compound 3+ contains a catechol motif and positive charge on the same scaffold and was found to be a potent anion receptor, binding sulfate strongly in 8 : 2 d6 -acetone:D2 O and 7 : 3 d6 -acetone:D2 O (Ka >104 and 2,100 M-1 , respectively). Unsurprisingly, chloride binding was much weaker, even in the less polar solvent mixture 9 : 1 d6 -acetone:D2 O. The sulfate binding is remarkably strong for such a simple molecule, however anion binding studies were complicated by the tendency of the molecule to react with BPh4 - or BF4 - species during anion metathesis reactions. This gave two unusual zwitterions containing tetrahedral boronate centres, which were both characterised by X-ray crystallography.
Collapse
Affiliation(s)
- Rosemary J Goodwin
- Research School of Chemistry, Australian National University, Canberra, ACT, 2601, Australia
| | - Nicholas G White
- Research School of Chemistry, Australian National University, Canberra, ACT, 2601, Australia
| |
Collapse
|
4
|
Stares DL, Szumna A, Schalley CA. Encapsulation in Charged Droplets Generates Distorted Host-Guest Complexes. Chemistry 2023; 29:e202302112. [PMID: 37724745 DOI: 10.1002/chem.202302112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/18/2023] [Accepted: 09/19/2023] [Indexed: 09/21/2023]
Abstract
The ability of various hydrogen-bonded resorcinarene-based capsules to bind α,ω-alkylbisDABCOnium (DnD) guests of different lengths was investigated in solution and in the gas-phase. While no host-guest interactions were detected in solution, encapsulation could be achieved in the charged droplets formed during electrospray ionisation (ESI). This included guests, which are far too long in their most stable conformation to fit inside the cavity of the capsules. A combination of three mass spectrometric techniques, namely, collision-induced dissociation, hydrogen/deuterium exchange, and ion-mobility mass spectrometry, together with computational modelling allow us to determine the binding mode of the DnD guests inside the cavity of the capsules. Significant distortions of the guest into horseshoe-like arrangements are required to optimise cation-π interactions with the host, which also adopt distorted geometries with partially open hydrogen-bonding seams when binding longer guests. Such quasi "spring-loaded" capsules can form in the charged droplets during the ESI process as there is no competition between guest encapsulation and ion pair formation with the counterions that preclude encapsulation in solution. The encapsulation complexes are sufficiently stable in the gas-phase - even when strained - because non-covalent interactions significantly strengthen in the absence of solvent.
Collapse
Affiliation(s)
- Daniel L Stares
- Institut für Chemie und Biochemie, Freie Universität Berlin, Arnimallee 20, 14195, Berlin, Germany
| | - Agnieszka Szumna
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, Warsaw, Poland
| | - Christoph A Schalley
- Institut für Chemie und Biochemie, Freie Universität Berlin, Arnimallee 20, 14195, Berlin, Germany
| |
Collapse
|
5
|
Jurek P, Jędrzejewska H, Rode MF, Szumna A. Recognition-Induced Enhanced Emission of Core-Fluorescent ESIPT-type Macrocycles. Chemistry 2023; 29:e202203116. [PMID: 36214211 DOI: 10.1002/chem.202203116] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Indexed: 11/07/2022]
Abstract
Core-fluorescent cavitands based on 2-(2'-resorcinol)benzimidazole fluorophores (RBIs) merged with the resorcin[4]arene skeleton were designed and synthesized. The cavitands, due to the presence of intramolecular hydrogen bonds and increased acidity, show excited state intramolecular proton transfer (ESIPT) and readily undergo deprotonation to form dianionic cavitands, capable of strong binding to organic cations. The changes in fluorescence are induced by deprotonation and binding events and involve huge Stokes shifts (due to emission from anionic double keto tautomers) and cation-selective enhancement of emission originating from the restriction of intramolecular motion (RIR) upon recognition in the cavity. Ab initio calculations indicate that the macrocyclic scaffold stabilizes the ground state tautomeric forms of the fluorophores that are not observed for non-macrocyclic analogs. In the excited state, the emitting forms for both macrocyclic scaffolds and non-macrocyclic analogs are anionic double keto tautomers, which are the result of excited state intramolecular proton transfer (ESIPT) or excited state double proton transfer (ESDPT).
Collapse
Affiliation(s)
- Paulina Jurek
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland
| | - Hanna Jędrzejewska
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland
| | - Michał F Rode
- Institute of Physics Polish Academy of Sciences, Aleja Lotników 32/46, 02-668, Warsaw, Poland
| | - Agnieszka Szumna
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland
| |
Collapse
|
6
|
Chloride anion-induced dimer capsule based on a polyfluorinated macrocycle meta-WreathArene. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.108042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
7
|
Montà-González G, Sancenón F, Martínez-Máñez R, Martí-Centelles V. Purely Covalent Molecular Cages and Containers for Guest Encapsulation. Chem Rev 2022; 122:13636-13708. [PMID: 35867555 PMCID: PMC9413269 DOI: 10.1021/acs.chemrev.2c00198] [Citation(s) in RCA: 93] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Cage compounds offer unique binding pockets similar to enzyme-binding sites, which can be customized in terms of size, shape, and functional groups to point toward the cavity and many other parameters. Different synthetic strategies have been developed to create a toolkit of methods that allow preparing tailor-made organic cages for a number of distinct applications, such as gas separation, molecular recognition, molecular encapsulation, hosts for catalysis, etc. These examples show the versatility and high selectivity that can be achieved using cages, which is impossible by employing other molecular systems. This review explores the progress made in the field of fully organic molecular cages and containers by focusing on the properties of the cavity and their application to encapsulate guests.
Collapse
Affiliation(s)
- Giovanni Montà-González
- Instituto
Interuniversitario de Investigación de Reconocimiento Molecular
y Desarrollo Tecnológico (IDM) Universitat
Politècnica de València, Universitat de València. Camino de Vera, s/n 46022, Valencia, Spain
| | - Félix Sancenón
- Instituto
Interuniversitario de Investigación de Reconocimiento Molecular
y Desarrollo Tecnológico (IDM) Universitat
Politècnica de València, Universitat de València. Camino de Vera, s/n 46022, Valencia, Spain,CIBER
de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, 28029 Madrid, Spain,Centro
de Investigación Príncipe Felipe, Unidad Mixta UPV-CIPF
de Investigación de Mecanismos de Enfermedades y Nanomedicina,
Valencia, Universitat Politècnica
de València, 46012 Valencia, Spain,Instituto
de Investigación Sanitaria la Fe, Unidad Mixta de Investigación
en Nanomedicina y Sensores, Universitat
Politènica de València, 46026 València, Spain,Departamento
de Química, Universitat Politècnica
de València, 46022 Valencia, Spain
| | - Ramón Martínez-Máñez
- Instituto
Interuniversitario de Investigación de Reconocimiento Molecular
y Desarrollo Tecnológico (IDM) Universitat
Politècnica de València, Universitat de València. Camino de Vera, s/n 46022, Valencia, Spain,CIBER
de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, 28029 Madrid, Spain,Centro
de Investigación Príncipe Felipe, Unidad Mixta UPV-CIPF
de Investigación de Mecanismos de Enfermedades y Nanomedicina,
Valencia, Universitat Politècnica
de València, 46012 Valencia, Spain,Instituto
de Investigación Sanitaria la Fe, Unidad Mixta de Investigación
en Nanomedicina y Sensores, Universitat
Politènica de València, 46026 València, Spain,Departamento
de Química, Universitat Politècnica
de València, 46022 Valencia, Spain,R.M.-M.: email,
| | - Vicente Martí-Centelles
- Instituto
Interuniversitario de Investigación de Reconocimiento Molecular
y Desarrollo Tecnológico (IDM) Universitat
Politècnica de València, Universitat de València. Camino de Vera, s/n 46022, Valencia, Spain,V.M.-C.:
email,
| |
Collapse
|
8
|
Hkiri S, Steinmetz M, Schurhammer R, Sémeril D. Encapsulated Neutral Ruthenium Catalyst for Substrate‐Selective Oxidation of Alcohols. Chemistry 2022; 28:e202201887. [DOI: 10.1002/chem.202201887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Indexed: 11/06/2022]
Affiliation(s)
- Shaima Hkiri
- Synthèse Organométallique et Catalyse, UMR-CNRS 7177-Institut de Chimie de Strasbourg Université de Strasbourg 4 rue Blaise Pascal 67008 Strasbourg France
| | - Maxime Steinmetz
- Synthèse Organométallique et Catalyse, UMR-CNRS 7177-Institut de Chimie de Strasbourg Université de Strasbourg 4 rue Blaise Pascal 67008 Strasbourg France
| | - Rachel Schurhammer
- Laboratoire de Modélisation et Simulations Moléculaires, UMR-CNRS 7140-Chimie de la Matière Complexe Université de Strasbourg 4 rue Blaise Pascal 67008 Strasbourg France
| | - David Sémeril
- Synthèse Organométallique et Catalyse, UMR-CNRS 7177-Institut de Chimie de Strasbourg Université de Strasbourg 4 rue Blaise Pascal 67008 Strasbourg France
| |
Collapse
|
9
|
Chao Y, Thikekar TU, Fang W, Chang R, Xu J, Ouyang N, Xu J, Gao Y, Guo M, Zuilhof H, Sue ACH. "Rim-Differentiated" Pillar[6]arenes. Angew Chem Int Ed Engl 2022; 61:e202204589. [PMID: 35451151 DOI: 10.1002/anie.202204589] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Indexed: 11/06/2022]
Abstract
A "rim-differentiated" pillar[6]arene (RD-P[6]) was obtained successfully, with the assistance of a dimeric silver trifluoroacetate template, among eight different constitutional isomers in a direct and regioselective manner. The solid-state conformation of this macrocycle could switch from the 1,3,5-alternate to a truly rim-differentiated one upon guest inclusion. This highly symmetric RD-P[6] not only hosts metal-containing molecules inside its cavity, but also can form a pillar[6]arene-C60 adduct through co-crystallization on account of donor-acceptor interactions. The development of synthetic strategies to desymmetrize pillararenes offers new opportunities for engineering complex molecular architectures and organic electronic materials.
Collapse
Affiliation(s)
- Yang Chao
- Institute for Molecular Design and Synthesis, School of Pharmaceutical Science & Technology, Tianjin University, 92 Weijin Road, Nankai District, Tianjin, 300072, P. R. China.,College of Chemistry and Chemical Engineering, Xiamen University, 422 Siming South Road, Siming District, Xiamen, 361005, P. R. China
| | - Tushar Ulhas Thikekar
- College of Chemistry and Chemical Engineering, Xiamen University, 422 Siming South Road, Siming District, Xiamen, 361005, P. R. China
| | - Wangjian Fang
- Institute for Molecular Design and Synthesis, School of Pharmaceutical Science & Technology, Tianjin University, 92 Weijin Road, Nankai District, Tianjin, 300072, P. R. China
| | - Rong Chang
- College of Chemistry and Chemical Engineering, Xiamen University, 422 Siming South Road, Siming District, Xiamen, 361005, P. R. China
| | - Jiong Xu
- Institute for Molecular Design and Synthesis, School of Pharmaceutical Science & Technology, Tianjin University, 92 Weijin Road, Nankai District, Tianjin, 300072, P. R. China
| | - Nianfeng Ouyang
- Institute for Molecular Design and Synthesis, School of Pharmaceutical Science & Technology, Tianjin University, 92 Weijin Road, Nankai District, Tianjin, 300072, P. R. China
| | - Jun Xu
- Institute for Molecular Design and Synthesis, School of Pharmaceutical Science & Technology, Tianjin University, 92 Weijin Road, Nankai District, Tianjin, 300072, P. R. China
| | - Yan Gao
- Institute for Molecular Design and Synthesis, School of Pharmaceutical Science & Technology, Tianjin University, 92 Weijin Road, Nankai District, Tianjin, 300072, P. R. China
| | - Minjie Guo
- Institute for Molecular Design and Synthesis, School of Pharmaceutical Science & Technology, Tianjin University, 92 Weijin Road, Nankai District, Tianjin, 300072, P. R. China
| | - Han Zuilhof
- Institute for Molecular Design and Synthesis, School of Pharmaceutical Science & Technology, Tianjin University, 92 Weijin Road, Nankai District, Tianjin, 300072, P. R. China.,Laboratory of Organic Chemistry, Wageningen University, Stippeneng 4, 6708 WE, Wageningen, The Netherlands.,Department of Chemical and Materials Engineering, Faculty of Engineering, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Andrew C-H Sue
- College of Chemistry and Chemical Engineering, Xiamen University, 422 Siming South Road, Siming District, Xiamen, 361005, P. R. China
| |
Collapse
|
10
|
Abdurakhmanova ER, Cmoch P, Szumna A. Three modes of interactions between anions and phenolic macrocycles: a comparative study. Org Biomol Chem 2022; 20:5095-5103. [PMID: 35699382 DOI: 10.1039/d2ob00880g] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Macrocyclic polyphenolic compounds such as resorcin[4]arenes can be considered as multidentate anion receptors. In the current work, we combine new experimental data and reports from the previous literature (solution data and deposited crystal structures from the CCDC) to systematically analyze binding motifs between resorcin[4]arene derivatives and anions, determine the role of supporting interactions from CH donors, ion pairing and estimate their relative strength. We have found that in medium polarity solvents (THF) anion binding is a main driving force for the formation of complexes between resorcinarenes and Alk4NX salts. Three binding modes have been detected using 1H NMR and DOSY, depending on the type of additional interactions. Mode I was observed for upper-rim unsubstituted resorcinarenes, which use OH groups and aromatic CH from the upper rim as hydrogen bond donors to form multidentate and multivalent binding sites at the upper rim. Mode II was observed for upper-rim halogenated resorcinarenes (tetrabromo- and tetraiodo-derivatives), which use OH groups and aliphatic CH atoms from the bridges to support the chelation of anions between aromatic units. This binding mode is also multidentate and multivalent, but weaker and more anion-selective than mode I (works effectively for chlorides but not for bromides). For O-substituted derivatives, mode III is observed, with anions bound in a nest formed by aromatic CH atoms in the lower rim (multidentate but monovalent binding). The relative strength of these three binding modes, their solvent-dependence, and emergence in the crystal structures (CCDC) have been evaluated.
Collapse
Affiliation(s)
- Esma R Abdurakhmanova
- Institute of Organic Chemistry Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland.
| | - Piotr Cmoch
- Institute of Organic Chemistry Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland.
| | - Agnieszka Szumna
- Institute of Organic Chemistry Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland.
| |
Collapse
|
11
|
Chao Y, Thikekar TU, Fang W, Chang R, Xu J, Ouyang N, Xu J, Gao Y, Guo M, Zuilhof H, Sue ACH. "Rim‐Differentiated" Pillar[6]arenes. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202204589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Yang Chao
- Tianjin University School of Pharmaceutical Science and Technology CHINA
| | | | - Wangjian Fang
- Tianjin University School of Pharmaceutical Science & Technology CHINA
| | - Rong Chang
- Xiamen University College of Chemistry and Chemical Engineering CHINA
| | - Jiong Xu
- Xiamen University College of Chemistry and Chemical Engineering CHINA
| | - Nianfeng Ouyang
- Xiamen University College of Chemistry & Chemical Engineering CHINA
| | - Jun Xu
- Tianjin University School of Pharmaceutical Science and Technology CHINA
| | - Yan Gao
- Tianjin University School of Pharmaceutical Science and Technology CHINA
| | - Minjie Guo
- Tianjin University School of Pharmaceutical Science & Technology CHINA
| | - Han Zuilhof
- WUR: Wageningen University & Research Chemistry NETHERLANDS
| | - Andrew Chi-Hau Sue
- Xiamen University College of Chemistry and Chemical Engineering 422 Siming S. Rd.Siming Dist. 361005 Xiamen CHINA
| |
Collapse
|
12
|
Wan X, Li S, Tian Y, Xu J, Shen LC, Zuilhof H, Zhang M, Sue ACH. Twisted pentagonal prisms: AgnL2 metal-organic pillars. Chem 2022. [DOI: 10.1016/j.chempr.2022.04.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
13
|
Chwastek M, Cmoch P, Szumna A. Anion-Based Self-assembly of Resorcin[4]arenes and Pyrogallol[4]arenes. J Am Chem Soc 2022; 144:5350-5358. [PMID: 35274940 PMCID: PMC8972256 DOI: 10.1021/jacs.1c11793] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
![]()
Spatial sequestration
of molecules is a prerequisite for the complexity
of biological systems, enabling the occurrence of numerous, often
non-compatible chemical reactions and processes in one cell at the
same time. Inspired by this compartmentalization concept, chemists
design and synthesize artificial nanocontainers (capsules and cages)
and use them to mimic the biological complexity and for new applications
in recognition, separation, and catalysis. Here, we report the formation
of large closed-shell species by interactions of well-known polyphenolic
macrocycles with anions. It has been known since many years that C-alkyl
resorcin[4]arenes (R4C) and C-alkyl pyrogallol[4]arenes
(P4C) narcissistically self-assemble in nonpolar solvents
to form hydrogen-bonded capsules. Here, we show a new interaction
model that additionally involves anions as interacting partners and
leads to even larger capsular species. Diffusion-ordered spectroscopy
and titration experiments indicate that the anion-sealed species have
a diameter of >26 Å and suggest stoichiometry (M)6(X–)24 and tight ion pairing
with cations. This self-assembly is effective in a nonpolar environment
(THF and benzene but not in chloroform), however, requires initiation
by mechanochemistry (dry milling) in the case of non-compatible solubility.
Notably, it is common among various polyphenolic macrocycles (M) having diverse geometries and various conformational lability.
Collapse
Affiliation(s)
- Monika Chwastek
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Piotr Cmoch
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Agnieszka Szumna
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| |
Collapse
|
14
|
Janiak A, Gajewy J, Szymkowiak J, Gierczyk B, Kwit M. Specific Noncovalent Association of Truncated exo-Functionalized Triangular Homochiral Isotrianglimines through Head-to-Head, Tail-to-Tail, and Honeycomb Supramolecular Motifs. J Org Chem 2022; 87:2356-2366. [PMID: 35029991 PMCID: PMC8902749 DOI: 10.1021/acs.joc.1c02238] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Chiral isotrianglimines were synthesized by the [3 + 3] cyclocondensation of (R,R)-1,2-diaminocyclohexane with C5-substituted isophthalaldehyde derivatives. The substituent's steric and electronic demands and the guest molecules' nature have affected the conformation of individual macrocycles and their propensity to form supramolecular architectures. In the crystal, the formation of a honeycomb-like packing arrangement of the simplest isotrianglimine was promoted by the presence of toluene or para-xylene molecules. A less symmetrical solvent molecule might force this arrangement to change. Polar substituents present in the macrocycle skeleton have enforced the self-association of isotrianglimines in the form of tail-to-tail dimers. These dimers could be further arranged in higher-order structures of the head-to-head type, which were held together by the solvent molecules. Non-associating isotrianglimine formed a container that accommodated acetonitrile molecules in its cavity. The calculated dimerization energies have indicated a strong preference for the formation of tail-to-tail dimers over those of the capsule type.
Collapse
Affiliation(s)
- Agnieszka Janiak
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61- 614 Poznań, Poland
| | - Jadwiga Gajewy
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61- 614 Poznań, Poland
| | - Joanna Szymkowiak
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61- 614 Poznań, Poland
| | - Błażej Gierczyk
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61- 614 Poznań, Poland
| | - Marcin Kwit
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61- 614 Poznań, Poland
| |
Collapse
|
15
|
Smith JN, Ennis C, Lucas NT. Rigid, biconical hydrogen-bonded dimers that strongly encapsulate cationic guests in solution and the solid state. Chem Sci 2021; 12:11858-11863. [PMID: 34659726 PMCID: PMC8442710 DOI: 10.1039/d1sc01802g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 08/04/2021] [Indexed: 11/24/2022] Open
Abstract
The octol of a new rigid, tetraarylene-bridged cavitand was investigated for self-assembly behaviour in solution. 1H and DOSY NMR spectroscopic experiments show that the cavitand readily dimerizes through an unusual seam of interdigitated hydrogen-bonds that is resistant to disruption by polar co-solvents. The well-defined cavity encapsulates small cationic guests, but not their neutral counterparts, restricting the conformation of sequestered tetraethylammonium in solution and the solid state. A robust, dimeric capsule forms quantitatively in low-polarity solvents via a seam of 8 hydrogen bonds. The resulting electron-rich cavity selectively binds small organic cations over neutral counterparts.![]()
Collapse
Affiliation(s)
- Jordan N Smith
- Department of Chemistry, University of Otago Union Place Dunedin New Zealand .,MacDiarmid Institute for Advanced Materials and Nanotechnology New Zealand
| | - Courtney Ennis
- Department of Chemistry, University of Otago Union Place Dunedin New Zealand
| | - Nigel T Lucas
- Department of Chemistry, University of Otago Union Place Dunedin New Zealand .,MacDiarmid Institute for Advanced Materials and Nanotechnology New Zealand
| |
Collapse
|