1
|
Tarrío JJ, Hermida B, Rodríguez R, Crassous J, Quiñoá E, Freire F. Consecutive Complex Aggregation Pathway in Covalent Helical Polymer-Metal Complexes: Nanospheres with Controlled P/M Macroscopic Chirality. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2409379. [PMID: 39973346 PMCID: PMC11840455 DOI: 10.1002/smll.202409379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 12/12/2024] [Indexed: 02/21/2025]
Abstract
Kinetically trapped and thermodynamic nanospheres with opposite macroscopic P/M chirality and opposite circularly polarized luminescence (CPL) can be obtained from a single helical polymer-metal complex under the same environmental conditions. To prepare these nanospheres, a chiral poly(diphenylacetylene) (PDPA) [poly-(L)-1] with a large energy barrier between the P and M helical senses is chosen as source of chirality, while Ba2+ metal ions are selected as crosslinking agents. As a result, the poly-(L)-1/Ba2+ complex can generate both kinetically trapped (Agg1, M nanospheres) and thermodynamic (Agg2, P nanospheres) aggregates, which can be dispersed in the same solvent. Due to the high energy barrier of the helix inversion process for poly-(L)-1, the complete evolution from the kinetically trapped aggregate (Agg1, M nanospheres) to the thermodynamic one (Agg2, P nanospheres) takes more than 75 days at room temperature, which can be accelerated at higher temperatures. These nanospheres are stable and remain dispersed in solution for up to 8 months without further aggregation.
Collapse
Affiliation(s)
- Juan José Tarrío
- Centro Singular de investigación en Química Biolóxica e Materiais Moleculares (CiQUS) and Departamento de Química OrgánicaUniversidade de Santiago de CompostelaSantiago de CompostelaE‐15782Spain
| | - Borja Hermida
- Centro Singular de investigación en Química Biolóxica e Materiais Moleculares (CiQUS) and Departamento de Química OrgánicaUniversidade de Santiago de CompostelaSantiago de CompostelaE‐15782Spain
| | - Rafael Rodríguez
- CINBIODepartamento de Química OrgánicaUniversidade de VigoCampus Universitario Lagoas MarcosendeVigo36310Spain
| | - Jeanne Crassous
- Univ RennesCNRSISCR (Institut des Sciences Chimiques de Rennes)CNRSUMR 6226RennesF‐35000France
| | - Emilio Quiñoá
- Centro Singular de investigación en Química Biolóxica e Materiais Moleculares (CiQUS) and Departamento de Química OrgánicaUniversidade de Santiago de CompostelaSantiago de CompostelaE‐15782Spain
| | - Félix Freire
- Centro Singular de investigación en Química Biolóxica e Materiais Moleculares (CiQUS) and Departamento de Química OrgánicaUniversidade de Santiago de CompostelaSantiago de CompostelaE‐15782Spain
- CINBIODepartamento de Química OrgánicaUniversidade de VigoCampus Universitario Lagoas MarcosendeVigo36310Spain
| |
Collapse
|
2
|
Fernández-Míguez M, Núñez-Martínez M, Suárez-Picado E, Quiñoá E, Freire F. Optical and Chiroptical Stimuli-Responsive Chiral AgNPs@H-Leu-Poly(phenylacetylene) Nanocomposites in Water. ACS NANO 2024; 18:28822-28833. [PMID: 39382101 PMCID: PMC11503914 DOI: 10.1021/acsnano.4c08622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 09/26/2024] [Accepted: 10/02/2024] [Indexed: 10/10/2024]
Abstract
Dynamic macroscopically chiral nanocomposites are prepared by combining silver nanoparticles (AgNPs) and dynamic helical poly(phenylacetylene)s (PPAs) bearing pendants functionalized with amino groups. These amino groups provide the nanocomposite with the ability to disperse in water along with high stability due to the interaction between the ammonium group and the AgNP. Moreover, the equilibrium between NH3+/NH2 produces a "blinking" contact between the PPA and the AgNPs, which allows total control of the dynamic helical behavior of the polymer. The use of acidic or neutral pH allows controlling the morphology of the nanocomposite, which consists of a nanosphere that has trapped inside it a single AgNP (pH = 2) or several AgNPs (pH = 7) with ca. 30 nm of diameter. These nanocomposites combine the optical and chiroptical stimuli-responsive properties of both components, AgNPs and PPAs. Thus, the controlled aggregation of the nanocomposite produced variations in the LSPR band of the AgNPs in a reversible manner. In turn, given that the chiral coating is selective to Ba2+, the presence of this metal ion caused a helical inversion of the chiral coating of the nanocomposite detected by electronic circular dichroism. Moreover, it is possible to distinguish between three metal ions in different oxidation states, such as Ce4+, Fe3+, and Hg2+, which produce different responses of the nanocomposite when oxidizing the AgNP to Ag+.
Collapse
Affiliation(s)
- Manuel Fernández-Míguez
- Centro Singular de Investigación
en Química Biolóxica e Materiais Moleculares (CiQUS)
and Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | | | - Esteban Suárez-Picado
- Centro Singular de Investigación
en Química Biolóxica e Materiais Moleculares (CiQUS)
and Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Emilio Quiñoá
- Centro Singular de Investigación
en Química Biolóxica e Materiais Moleculares (CiQUS)
and Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Félix Freire
- Centro Singular de Investigación
en Química Biolóxica e Materiais Moleculares (CiQUS)
and Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| |
Collapse
|
3
|
Núñez-Martínez M, Fernández-Míguez M, Quiñoá E, Freire F. Size Control of Chiral Nanospheres Obtained via Nanoprecipitation of Helical Poly(phenylacetylene)s in the Absence of Surfactants. Angew Chem Int Ed Engl 2024; 63:e202403313. [PMID: 38742679 DOI: 10.1002/anie.202403313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/30/2024] [Accepted: 05/14/2024] [Indexed: 05/16/2024]
Abstract
Nanostructuration of dynamic helical polymers such as poly(phenylacetylene)s (PPAs) depends on the secondary structure adopted by the polymer and the functional group used to connect the chiral pendant to the PPA backbone. Thus, while PPAs with dynamic and flexible scaffolds (para- and meta-substituted, ω1<165°) generate by nanoprecipitation low polydisperse nanospheres with controllable size at different acetone/water mixtures, those with a quasi-static behavior and the presence of an extended, almost planar structure (ortho-substituted, ω1>165°), aggregate into a mixture of spherical and oval nanostructures whose size is not controlled. Photostability studies show that poly(phenylacetylene) particles are more stable to light irradiation than when dissolved macromolecularly. Moreover, the photostability of the particle depends on the secondary structure of the PPA and its screw sense excess. This fact, in combination with the encapsulation ability of these polymer particles, allows the creation of light stimuli-responsive nanocarriers, whose cargo can be delivered by light irradiation.
Collapse
Affiliation(s)
- Manuel Núñez-Martínez
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares and Departamento de Química Orgánica, Universidade de Santiago de Compostela, E-15782, Santiago de Compostela, Spain
| | - Manuel Fernández-Míguez
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares and Departamento de Química Orgánica, Universidade de Santiago de Compostela, E-15782, Santiago de Compostela, Spain
| | - Emilio Quiñoá
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares and Departamento de Química Orgánica, Universidade de Santiago de Compostela, E-15782, Santiago de Compostela, Spain
| | - Félix Freire
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares and Departamento de Química Orgánica, Universidade de Santiago de Compostela, E-15782, Santiago de Compostela, Spain
| |
Collapse
|
4
|
Ikai T, Morita Y, Majima T, Takeda S, Ishidate R, Oki K, Suzuki N, Ohtani H, Aoi H, Maeda K, Okoshi K, Yashima E. Control of One-Handed Helicity in Polyacetylenes: Impact of an Extremely Small Amount of Chiral Substituents. J Am Chem Soc 2023; 145:24862-24876. [PMID: 37930639 PMCID: PMC10825823 DOI: 10.1021/jacs.3c09308] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/25/2023] [Accepted: 10/26/2023] [Indexed: 11/07/2023]
Abstract
Controlling the one-handed helicity in synthetic polymers is crucial for developing helical polymer-based advanced chiral materials. We now report that an extremely small amount of chiral biphenylylacetylene (BPA) monomers (ca. 0.3-0.5 mol %) allows complete control of the one-handed helicity throughout the polymer chains mostly composed of achiral BPAs. Chiral substituents introduced at the 2-position of the biphenyl units of BPA positioned in the vicinity of the polymer backbones contribute to a significant amplification of the helical bias, as interpreted by theoretical modeling and simulation. The helical structures, such as the helical pitch and absolute helical handedness (right- or left-handed helix) of the one-handed helical copolymers, were unambiguously determined by high-resolution atomic force microscopy combined with X-ray diffraction. The exceptionally strong helix-biasing power of the chiral BPA provides a highly durable and practically useful chiral material for the separation of enantiomers in chromatography by copolymerization of an achiral functional BPA with a small amount of the chiral BPA (0.5 mol %) due to the robust helical scaffold of the one-handed helical copolymer.
Collapse
Affiliation(s)
- Tomoyuki Ikai
- Department
of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Chikusa-ku, Nagoya 464-8603, Japan
- Precursory
Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency (JST), Kawaguchi, Saitama 332-0012, Japan
| | - Yuki Morita
- Department
of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Chikusa-ku, Nagoya 464-8603, Japan
| | - Tsuyoshi Majima
- Department
of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Chikusa-ku, Nagoya 464-8603, Japan
| | - Shoki Takeda
- Department
of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Chikusa-ku, Nagoya 464-8603, Japan
| | - Ryoma Ishidate
- Department
of Molecular Design and Engineering, Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan
| | - Kosuke Oki
- Department
of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Chikusa-ku, Nagoya 464-8603, Japan
| | - Nozomu Suzuki
- Department
of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Chikusa-ku, Nagoya 464-8603, Japan
- Department
of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, Kobe 657-8501, Japan
| | - Hajime Ohtani
- Department
of Life Science and Applied Chemistry, Graduate School of Engineering, Nagoya Institute of Technology, Nagoya 466-8555, Japan
| | - Hiromi Aoi
- Department
of Life Science and Applied Chemistry, Graduate School of Engineering, Nagoya Institute of Technology, Nagoya 466-8555, Japan
| | - Katsuhiro Maeda
- Graduate
School of Natural Science and Technology, Kanazawa University, Kanazawa 920-1192, Japan
- Nano
Life Science Institute (WPI-NanoLSI), Kanazawa
University, Kanazawa 920-1192, Japan
| | - Kento Okoshi
- Department
of Applied Chemistry and Bioscience, Chitose
Institute of Science and Technology, Chitose, Hokkaido 066-8655, Japan
| | - Eiji Yashima
- Department
of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Chikusa-ku, Nagoya 464-8603, Japan
- Department
of Molecular Design and Engineering, Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan
| |
Collapse
|
5
|
Ren L, Lu X, Li W, Yan J, Whittaker AK, Zhang A. Thermoresponsive Helical Dendronized Poly(phenylacetylene)s: Remarkable Stabilization of Their Helicity via Photo-Dimerization of the Dendritic Pendants. J Am Chem Soc 2023. [PMID: 37922243 DOI: 10.1021/jacs.3c09333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2023]
Abstract
Dynamic helical polymers can change their helicity according to external stimuli due to the low helix-inversion barriers, while helicity stabilization for polymers is important for applications in chiral recognition or chiral separations. Here, we present a convenient methodology to stabilize dynamic helical conformations of polymers through intramolecular cross-linking. Thermoresponsive dendronized poly(phenylacetylene)s (PPAs) carrying 3-fold dendritic oligoethylene glycol pendants containing cinnamate moieties were synthesized. These polymers exhibit typical features of dynamic helical structures in different solvents, that is, racemic contracted conformations in less polar organic solvents and predominantly one-handed stretched helical conformations in highly polar solvents. This dynamic helicity can be enhanced through selective solvation by increasing the polarity of the organic solvents or simply via their thermally mediated dehydration in water. However, through photocycloaddition of the cinnamate moieties between the neighboring pendants via UV irradiation, these dendronized PPAs adopt stable helical conformations either below or above their phase transition temperatures in water, and their helical conformations can even be retained in less polar organic solvents. Spectroscopic and atomic force microscopy measurements demonstrate that photocycloaddition between the cinnamate moieties occurs on the individual molecular level, and this is found to be helpful in restraining the photodegradation of the PPA backbones. Molecular dynamics simulations reveal that the spatial orientation of the pendants along the rigid polyene backbone is crucial for the photodimerization of cinnamates within one helix pitch.
Collapse
Affiliation(s)
- Liangxuan Ren
- International Joint Laboratory of Biomimetic and Smart Polymers, School of Materials Science & Engineering, Shanghai University, 333 Nanchen Road, Shanghai 200444, China
| | - Xueting Lu
- International Joint Laboratory of Biomimetic and Smart Polymers, School of Materials Science & Engineering, Shanghai University, 333 Nanchen Road, Shanghai 200444, China
| | - Wen Li
- International Joint Laboratory of Biomimetic and Smart Polymers, School of Materials Science & Engineering, Shanghai University, 333 Nanchen Road, Shanghai 200444, China
| | - Jiatao Yan
- International Joint Laboratory of Biomimetic and Smart Polymers, School of Materials Science & Engineering, Shanghai University, 333 Nanchen Road, Shanghai 200444, China
| | - Andrew K Whittaker
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, Queensland 4072, Australia
- ARC Centre of Excellence for Green Electrochemical Transformation of Carbon Dioxide, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Afang Zhang
- International Joint Laboratory of Biomimetic and Smart Polymers, School of Materials Science & Engineering, Shanghai University, 333 Nanchen Road, Shanghai 200444, China
| |
Collapse
|
6
|
Rey-Tarrío F, Rodríguez R, Quiñoá E, Freire F. Screw sense excess and reversals of helical polymers in solution. Nat Commun 2023; 14:1742. [PMID: 36990975 DOI: 10.1038/s41467-023-37405-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 03/16/2023] [Indexed: 03/30/2023] Open
Abstract
AbstractThe helix reversal is a structural motif found in helical polymers in the solid state, but whose existence is elusive in solution. Herein, we have shown how the photochemical electrocyclization (PEC) of poly(phenylacetylene)s (PPAs) can be used to determine not only the presence of helix reversals in polymer solution, but also to estimate the screw sense excess. To perform these studies, we used a library of well folded PPAs and different copolymers series made by enantiomeric comonomers that show chiral conflict effect. The results obtained indicate that the PEC of a PPA will depend on the helical scaffold adopted by the PPA backbone and on its folding degree. Then, from these studies it is possible to determine the screw sense excess of a PPA, highly important in applications such as chiral stationary phases in HPLC or asymmetric synthesis.
Collapse
|
7
|
Rey‐Tarrío F, Guisán‐Ceinos S, Cuerva JM, Miguel D, Ribagorda M, Quiñoá E, Freire F. Photostability and Dynamic Helical Behavior in Chiral Poly(phenylacetylene)s with a Preferred Screw‐Sense. Angew Chem Int Ed Engl 2022; 61:e202207623. [PMID: 35731840 PMCID: PMC9543806 DOI: 10.1002/anie.202207623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Indexed: 11/18/2022]
Abstract
Helical polymers such as poly(phenylacetylene)s (PPAs) are interesting materials due to the possibility of tuning their helical scaffold (sense and elongation) once they have been prepared and by the presence of external stimuli. The main limitation in the application of PPAs is their poor photostability. These polymers degrade under visible light exposure through a photochemical electrocyclization process. In this work, it was demonstrated, through a selected example, how the photochemical degradation in PPAs is directly related to their dynamic helical behavior. Thus, while PPAs with dynamic helical structures show poor photostability under UV/Vis light exposure, poly‐(R)‐1, bearing an enantiopure sulfoxide group as pendant group and designed to have a quasi‐static helical behavior, shows a large photostability due to the restricted conformational composition at the polyene backbone, needed to orient the conjugated double bonds prior to the photochemical electrocyclization process and the subsequent degradation of the material.
Collapse
Affiliation(s)
- Francisco Rey‐Tarrío
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS) and Departamento de Química Orgánica Universidade de Santiago de Compostela 15782 Santiago de Compostela Spain
| | - Santiago Guisán‐Ceinos
- Departamento de Química Orgánica Facultad de Ciencias Universidad Autónoma de Madrid 28049 Madrid Spain
| | - Juan M. Cuerva
- Departamento de Química Orgánica. Facultad de Ciencias Universidad de Granada (UGR) Unidad de Excelencia de Química Aplicada a la Biomedicina y Medioambiente (UEQ) 18071 Granada Spain
| | - Delia Miguel
- Departamento de Fisicoquímica. Facultad de Farmacia Universidad de Granada (UGR, UEQ) 18071 Granada Spain
| | - Maria Ribagorda
- Departamento de Química Orgánica Facultad de Ciencias Universidad Autónoma de Madrid 28049 Madrid Spain
- Institute for Advanced Research in Chemical Sciences (IAdChem) Universidad Autónoma de Madrid 28049 Madrid Spain
| | - Emilio Quiñoá
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS) and Departamento de Química Orgánica Universidade de Santiago de Compostela 15782 Santiago de Compostela Spain
| | - Félix Freire
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS) and Departamento de Química Orgánica Universidade de Santiago de Compostela 15782 Santiago de Compostela Spain
| |
Collapse
|
8
|
Rey-Tarrío F, Guisán-Ceinos S, Cuerva JM, Miguel D, Ribagorda M, Quiñoá E, Freire F. Photostability and Dynamic Helical Behavior in Chiral Poly(phenylacetylene)s with a Preferred Screw‐Sense. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202207623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Francisco Rey-Tarrío
- Universidade de Santiago de Compostela - Campus de Santiago: Universidade de Santiago de Compostela CiQUS SPAIN
| | - Santiago Guisán-Ceinos
- Universidad Autonoma de Madrid - Campus de Cantoblanco: Universidad Autonoma de Madrid Química Orgánica SPAIN
| | | | - Delia Miguel
- University of Granada: Universidad de Granada Physical Chemistry Department SPAIN
| | - Maria Ribagorda
- Universidad Autonoma de Madrid - Campus de Cantoblanco: Universidad Autonoma de Madrid Química Orgánica SPAIN
| | - Emilio Quiñoá
- Universidade de Santiago de Compostela - Campus de Santiago: Universidade de Santiago de Compostela CiQUS SPAIN
| | - Felix Freire
- Universidade de Santiago de Compostela Jenaro de la Fuente street s/n 15782 Santiago de Compostela SPAIN
| |
Collapse
|
9
|
Wang S, Xie S, Zeng H, Du H, Zhang J, Wan X. Self-Reporting Activated Ester-Amine Reaction for Enantioselective Multi-Channel Visual Detection of Chiral Amines. Angew Chem Int Ed Engl 2022; 61:e202202268. [PMID: 35285991 DOI: 10.1002/anie.202202268] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Indexed: 01/04/2023]
Abstract
Chiral recognition is of importance not only in living systems but also in estimating the optical purity of enantiomeric drugs and fabricating advanced materials. Herein we report a novel self-reporting activated ester-amine reaction that can provide multi-channel visual detection of organic amines. It relies on the reaction extent dependent cis-transoid to cis-cisoid helical transition of the polyphenylacetylene backbone and the thus triggered fluorescence. Owing to the high selectivity, this visual process can recognize structurally diverse achiral amines and quantitatively check the impurity content. It also shows an outstanding enantioselectivity towards various chiral amines and can be applied to determine enantiomeric composition. The multiple responses in absorption, circular dichroism, photoluminescence, and circularly polarized luminescence make the helical transition of the polymer backbone a potential detection mode for high-throughput screening of chiral chemicals.
Collapse
Affiliation(s)
- Sheng Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Siyu Xie
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Hua Zeng
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Hongxu Du
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Jie Zhang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Xinhua Wan
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| |
Collapse
|
10
|
Wang S, Xie S, Zeng H, Du H, Zhang J, Wan X. Self‐Reporting Activated Ester‐Amine Reaction for Enantioselective Multi‐Channel Visual Detection of Chiral Amines. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202202268] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Sheng Wang
- Beijing National Laboratory for Molecular Sciences Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering Peking University Beijing 100871 China
| | - Siyu Xie
- Beijing National Laboratory for Molecular Sciences Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering Peking University Beijing 100871 China
| | - Hua Zeng
- Beijing National Laboratory for Molecular Sciences Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering Peking University Beijing 100871 China
| | - Hongxu Du
- Beijing National Laboratory for Molecular Sciences Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering Peking University Beijing 100871 China
| | - Jie Zhang
- Beijing National Laboratory for Molecular Sciences Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering Peking University Beijing 100871 China
| | - Xinhua Wan
- Beijing National Laboratory for Molecular Sciences Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering Peking University Beijing 100871 China
| |
Collapse
|
11
|
Corpas J, Mauleón P, Gómez Arrayás R, Carretero JC. E/Z
Photoisomerization of Olefins as an Emergent Strategy for the Control of Stereodivergence in Catalysis. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200199] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Javier Corpas
- Department of Organic Chemistry Institute for Advanced Research in Chemical Sciences (IAdChem) Center for Innovation in Advanced Chemistry (ORFEO-CINQA). Universidad Autónoma de Madrid Cantoblanco 28049 Madrid Spain
| | - Pablo Mauleón
- Department of Organic Chemistry Institute for Advanced Research in Chemical Sciences (IAdChem) Center for Innovation in Advanced Chemistry (ORFEO-CINQA). Universidad Autónoma de Madrid Cantoblanco 28049 Madrid Spain
| | - Ramón Gómez Arrayás
- Department of Organic Chemistry Institute for Advanced Research in Chemical Sciences (IAdChem) Center for Innovation in Advanced Chemistry (ORFEO-CINQA). Universidad Autónoma de Madrid Cantoblanco 28049 Madrid Spain
| | - Juan C. Carretero
- Department of Organic Chemistry Institute for Advanced Research in Chemical Sciences (IAdChem) Center for Innovation in Advanced Chemistry (ORFEO-CINQA). Universidad Autónoma de Madrid Cantoblanco 28049 Madrid Spain
| |
Collapse
|
12
|
Tarrío JJ, Rodríguez R, Fernández B, Quiñoá E, Freire F. Dissymmetric Chiral Poly(diphenylacetylene)s: Secondary Structure Elucidation and Dynamic Luminescence. Angew Chem Int Ed Engl 2022; 61:e202115070. [DOI: 10.1002/anie.202115070] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Indexed: 12/17/2022]
Affiliation(s)
- Juan José Tarrío
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS) and Departamento de Química Orgánica Universidade de Santiago de Compostela 15782 Santiago de Compostela Spain
| | - Rafael Rodríguez
- WPI Nano Life Science Institute (WPI-NanoLSI) Kanazawa University Kakuma-machi Kanazawa 920-1192 Japan
| | - Berta Fernández
- Departamento de Química Física Universidade de Santiago de Compostela 15782 Santiago de Compostela Spain
| | - Emilio Quiñoá
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS) and Departamento de Química Orgánica Universidade de Santiago de Compostela 15782 Santiago de Compostela Spain
| | - Félix Freire
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS) and Departamento de Química Orgánica Universidade de Santiago de Compostela 15782 Santiago de Compostela Spain
| |
Collapse
|
13
|
Freire F, Tarrío JJ, Rodríguez R, Fernández B, Quiñoá E. Dissymmetric Chiral Poly(diphenylacetylene)s: Secondary Structure Elucidation and Dynamic Luminescence. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202115070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Felix Freire
- Universidade de Santiago de Compostela Centre for Research in Biological Chemistry and Molecular Materials Jenaro de la Fuente street s/n 15782 Santiago de Compostela SPAIN
| | - Juan José Tarrío
- Universidade de Santiago de Compostela - Campus de Santiago: Universidade de Santiago de Compostela CiQUS SPAIN
| | - Rafael Rodríguez
- Kanazawa University - Kakuma Campus: Kanazawa Daigaku Organic Chemsitry JAPAN
| | - Berta Fernández
- Universidade de Santiago de Compostela - Campus de Santiago: Universidade de Santiago de Compostela Physical Chemistry RWANDA
| | - Emilio Quiñoá
- Universidade de Santiago de Compostela - Campus de Santiago: Universidade de Santiago de Compostela CiQUS SPAIN
| |
Collapse
|
14
|
Núñez-Martínez M, Arias S, Bergueiro J, Quiñoá E, Riguera R, Freire F. The Role of Polymer-AuNP Interaction in the Stimuli-Response Properties of PPA-AuNP Nanocomposites. Macromol Rapid Commun 2021; 43:e2100616. [PMID: 34761481 DOI: 10.1002/marc.202100616] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/26/2021] [Indexed: 11/10/2022]
Abstract
The helical sense control of dynamic helical polymers such as poly(phenylacetylene)s (PPAs) is greatly affected when they are conjugated to AuNPs through a strong thiol-Au connection, which restricts conformational changes at the polymer. Thus, the classical thiol-MNP bonds must be replaced by weaker ones, such as supramolecular amide-Au interactions. A straightforward preparation of the PPA-Au nanocomposite by reduction of a preformed PPA-Au3+ complex cannot be used due to a redox reaction between the two components of the complex which degrades the polymer. To avoid the interaction between the PPA and the Au3+ ions before the reduction takes place, the metal ions are added to the polymer solution capped as a TOAB complex, which keeps the PPA stable due to the lack of PPA-Au3+ interactions. Ulterior reduction of the Au3+ ions by NaBH4 affords the desired nanocomposite, where the AuNPs are stabilized by supramolecular anilide-AuNPs interactions. By using this approach, 3.7 nm gold nanoparticles are generated and aligned along the polymer chain with a regular distance between particles of 6 nm that corresponds to two helical pitches. These nanocomposites show stimuli-responsive properties and are also able to form macroscopically chiral nanospheres with tunable size.
Collapse
Affiliation(s)
- Manuel Núñez-Martínez
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS) and Departamento de Química Orgánica, Universidade de Santiago de Compostela, E-15782 Santiago de Compostela, Spain
| | - Sandra Arias
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS) and Departamento de Química Orgánica, Universidade de Santiago de Compostela, E-15782 Santiago de Compostela, Spain
| | - Julián Bergueiro
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS) and Departamento de Química Orgánica, Universidade de Santiago de Compostela, E-15782 Santiago de Compostela, Spain
| | - Emilio Quiñoá
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS) and Departamento de Química Orgánica, Universidade de Santiago de Compostela, E-15782 Santiago de Compostela, Spain
| | - Ricardo Riguera
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS) and Departamento de Química Orgánica, Universidade de Santiago de Compostela, E-15782 Santiago de Compostela, Spain
| | - Félix Freire
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS) and Departamento de Química Orgánica, Universidade de Santiago de Compostela, E-15782 Santiago de Compostela, Spain
| |
Collapse
|
15
|
Gu Y, Liu L, Wang Y, Zhang C, Dong H, Aoki T. Thermotropic, Reversible, and Highly Selective One-Handed Helical Structure of Hydroxyl Group-Containing Poly(phenylacetylene)s and Its Static Memory. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c01563] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yuanyuan Gu
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China
| | - Lijia Liu
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China
| | - Yudan Wang
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China
| | - Chunhong Zhang
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China
| | - Hongxing Dong
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China
| | - Toshiki Aoki
- Graduate School of Science and Technology, Niigata University, Nishi-ku, Niigata 950-2181, Japan
| |
Collapse
|
16
|
Wang S, Hu D, Guan X, Cai S, Shi G, Shuai Z, Zhang J, Peng Q, Wan X. Brightening up Circularly Polarized Luminescence of Monosubstituted Polyacetylene by Conformation Control: Mechanism, Switching, and Sensing. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202108010] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Sheng Wang
- Beijing National Laboratory for Molecular Sciences Key Laboratory of Polymer Chemistry and Physics of Ministry of Education College of Chemistry and Molecular Engineering Peking University Beijing 100871 China
| | - Deping Hu
- Key Laboratory of Organic OptoElectronics and Molecular, Engineering of Ministry of Education Department of Chemistry Tsinghua University Beijing 100084 China
| | - Xiaoyan Guan
- Beijing National Laboratory for Molecular Sciences Key Laboratory of Polymer Chemistry and Physics of Ministry of Education College of Chemistry and Molecular Engineering Peking University Beijing 100871 China
| | - Siliang Cai
- Beijing National Laboratory for Molecular Sciences Key Laboratory of Polymer Chemistry and Physics of Ministry of Education College of Chemistry and Molecular Engineering Peking University Beijing 100871 China
| | - Ge Shi
- Beijing National Laboratory for Molecular Sciences Key Laboratory of Polymer Chemistry and Physics of Ministry of Education College of Chemistry and Molecular Engineering Peking University Beijing 100871 China
| | - Zhigang Shuai
- Key Laboratory of Organic OptoElectronics and Molecular, Engineering of Ministry of Education Department of Chemistry Tsinghua University Beijing 100084 China
| | - Jie Zhang
- Beijing National Laboratory for Molecular Sciences Key Laboratory of Polymer Chemistry and Physics of Ministry of Education College of Chemistry and Molecular Engineering Peking University Beijing 100871 China
| | - Qian Peng
- School of Chemical Sciences University of Chinese Academy of Sciences Beijing 100049 China
| | - Xinhua Wan
- Beijing National Laboratory for Molecular Sciences Key Laboratory of Polymer Chemistry and Physics of Ministry of Education College of Chemistry and Molecular Engineering Peking University Beijing 100871 China
| |
Collapse
|
17
|
Wang S, Hu D, Guan X, Cai S, Shi G, Shuai Z, Zhang J, Peng Q, Wan X. Brightening up Circularly Polarized Luminescence of Monosubstituted Polyacetylene by Conformation Control: Mechanism, Switching, and Sensing. Angew Chem Int Ed Engl 2021; 60:21918-21926. [PMID: 34309164 DOI: 10.1002/anie.202108010] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/15/2021] [Indexed: 11/09/2022]
Abstract
The first example of luminescent monosubstituted polyacetylenes (mono-PAs) is presented, based on a contracted cis-cisoid polyene backbone. It has an excellent circularly polarized luminescence (CPL) performance with a high dissymmetric factor (up to the order of 10-1 ). The luminescence stems from the helical cis-cisoid PA backbone, which is tightly fixed by the strong intramolecular hydrogen bonds, thereby reversing the energy order of excited states and enabling an emissive energy dissipation. CPL switches are facilely achieved by the solvent and temperature through reversible conformational transition. By taking advantages of fast response and high sensitivity, the thin film of mono-PAs could be used as a CPL-based probe for quantitative detection of trifluoroacetic acid with a wider linear dynamic range than those of photoluminescence and circular dichroism. This work opens a new avenue to develop novel smart CPL materials through modulating conformational transition.
Collapse
Affiliation(s)
- Sheng Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Deping Hu
- Key Laboratory of Organic OptoElectronics and Molecular, Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Xiaoyan Guan
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Siliang Cai
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Ge Shi
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Zhigang Shuai
- Key Laboratory of Organic OptoElectronics and Molecular, Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Jie Zhang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Qian Peng
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xinhua Wan
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| |
Collapse
|
18
|
Cao Y, Ren L, Zhang Y, Lu X, Zhang X, Yan J, Li W, Masuda T, Zhang A. Remarkable Effects of Anions on the Chirality of Thermoresponsive Helical Dendronized Poly(phenylacetylene)s. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c00917] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yuexin Cao
- International Joint Laboratory of Biomimetic and Smart Polymers, School of Materials Science and Engineering, Shanghai University, Materials Building Room 447, Nanchen Street 333, Shanghai 200444, China
| | - Liangxuan Ren
- International Joint Laboratory of Biomimetic and Smart Polymers, School of Materials Science and Engineering, Shanghai University, Materials Building Room 447, Nanchen Street 333, Shanghai 200444, China
| | - Yangwen Zhang
- International Joint Laboratory of Biomimetic and Smart Polymers, School of Materials Science and Engineering, Shanghai University, Materials Building Room 447, Nanchen Street 333, Shanghai 200444, China
| | - Xueting Lu
- International Joint Laboratory of Biomimetic and Smart Polymers, School of Materials Science and Engineering, Shanghai University, Materials Building Room 447, Nanchen Street 333, Shanghai 200444, China
| | - Xiacong Zhang
- International Joint Laboratory of Biomimetic and Smart Polymers, School of Materials Science and Engineering, Shanghai University, Materials Building Room 447, Nanchen Street 333, Shanghai 200444, China
| | - Jiatao Yan
- International Joint Laboratory of Biomimetic and Smart Polymers, School of Materials Science and Engineering, Shanghai University, Materials Building Room 447, Nanchen Street 333, Shanghai 200444, China
| | - Wen Li
- International Joint Laboratory of Biomimetic and Smart Polymers, School of Materials Science and Engineering, Shanghai University, Materials Building Room 447, Nanchen Street 333, Shanghai 200444, China
| | - Toshio Masuda
- International Joint Laboratory of Biomimetic and Smart Polymers, School of Materials Science and Engineering, Shanghai University, Materials Building Room 447, Nanchen Street 333, Shanghai 200444, China
| | - Afang Zhang
- International Joint Laboratory of Biomimetic and Smart Polymers, School of Materials Science and Engineering, Shanghai University, Materials Building Room 447, Nanchen Street 333, Shanghai 200444, China
| |
Collapse
|
19
|
Percec V, Xiao Q. Helical Self-Organizations and Emerging Functions in Architectures, Biological and Synthetic Macromolecules. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2021. [DOI: 10.1246/bcsj.20210015] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Virgil Percec
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, USA
| | - Qi Xiao
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, USA
| |
Collapse
|