1
|
Song S, Xu JT, Zhou H, Manners I, Winnik MA. Focal Point Association of Core-Crystalline Micelles with an Amphiphilic Corona Block. J Am Chem Soc 2025; 147:9919-9930. [PMID: 40052526 DOI: 10.1021/jacs.5c00926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
We report the preparation of star-like supermicelles by the secondary association of triblock comicelles or scarf-like micelles driven by a change in solvency. These building blocks were synthesized by seeded growth in which crystallites of a triblock terpolymer, either PFS27-b-PTDMA81-b-POEGMA45 (to form triblock comicelles) or PFS66-b-PTDMA81-b-POEGMA45 (to form scarf-like micelles), served as seeds for crystallization-driven self-assembly (CDSA). PFS-b-PTDMA unimers were added in the seeded growth step. The corona-forming block PTDMA-POEGMA is amphiphilic and sensitive to polarity changes of the solvents. We sought solvents in which the upper critical solution temperature (UCST, TUCST) of POEGMA was slightly above room temperature (RT). Examples included 1-decanol and 1-decanol/decane mixtures. Seeded growth proceeded normally in solvents above the UCST of POEGMA. When the solution temperature was lowered below TUCST, or when the triblock comicelles or scarf-like micelles were transferred to a solvent (e.g., 1-decanol) below its TUCST, the center blocks associated to form star-like supermicelles. The addition of small amounts of THF to the medium to increase the solvency for POEGMA led to dissociation of the supermicelles. Transfer of the triblock comicelles to 1-pentanol at RT, below the UCST of PTDMA, also led to controlled secondary association to form supermicelles with a different morphology. Seeded growth with PFS25-b-PDMAEMA184 unimers led to supermicelles in which the poly(dimethylaminoethyl methacrylate) corona chains could serve as carriers for gold nanoparticles (AuNPs). These AuNP@supermicelle complexes could serve as recoverable catalysts, for example to catalyze the condensation polymerization of bis(dimethylsilyl)benzene and pentanediol. They were highly active catalysts and showed excellent mechanical robustness for recovery and reuse.
Collapse
Affiliation(s)
- Shaofei Song
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Jun-Ting Xu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Hang Zhou
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Ian Manners
- Department of Chemistry, University of Victoria, Victoria, British Columbia V8W 3V6, Canada
| | - Mitchell A Winnik
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario M5S 3E2, Canada
| |
Collapse
|
2
|
Huang F, Ma J, Nie J, Xu B, Huang X, Lu G, Winnik MA, Feng C. A Versatile Strategy toward Donor-Acceptor Nanofibers with Tunable Length/Composition and Enhanced Photocatalytic Activity. J Am Chem Soc 2024; 146:25137-25150. [PMID: 39207218 DOI: 10.1021/jacs.4c08415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Living crystallization-driven self-assembly (CDSA) has emerged as an efficient strategy to generate nanofibers of π-conjugated polymers (CPNFs) in a controlled fashion. However, reports of donor-acceptor (D-A) heterojunction CPNFs are extremely rare. The preparation of these materials remains a challenge due to the lack of rational design guidelines for the D-A π-conjugated units. Herein, we report a versatile CDSA strategy based upon carefully designed D-A-co-oligomers in which electron-deficient benzothiadiazole (BT) or dibenzo[b,d]thiophene 5,5-dioxide (FSO) units are attached to the two ends of an oligo(p-phenylene ethynylene) heptamer [BT-OPE7-BT, FSO-OPE7-FSO]. This arrangement with the electron-deficient groups at the two ends of the oligomer enhances the stacking interaction of the A-D-A π-conjugated structure. In contrast, D-A-D structures with a single BT in the middle of a string of OPE units disrupt the packing. We employed oligomers with a terminal alkyne to synthesize diblock copolymers BT-OPE7-BT-b-P2VP and BT-OPE7-BT-b-PNIPAM (P2VP = poly(2-vinylpyridine), PNIPAM = poly(N-isopropylacrylamide)) and FSO-OPE7-FSO-b-P2VP and FSO-OPE7-FSO-b-PNIPAM. CDSA experiments with these copolymers in ethanol were able to generate CPNFs of controlled length by both self-seeding and seeded growth as well as block comicelles with precisely tunable length and composition. Furthermore, the D-A CPNFs with a BT-OPE7-BT-based core demonstrate photocatalytic activity for the photooxidation of sulfide to sulfoxide and benzylamine to N-benzylidenebenzylamine. Given the scope of the oligomer compositions examined and the range of structures formed, we believe that the living CDSA strategy with D-A-based co-oligomers opens future opportunities for the creation of D-A CPNFs with programmable architectures as well as diverse functionalities and applications.
Collapse
Affiliation(s)
- Fengfeng Huang
- Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, People's Republic of China
| | - Junyu Ma
- Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, People's Republic of China
| | - Jiucheng Nie
- Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, People's Republic of China
| | - Binbin Xu
- Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, People's Republic of China
| | - Xiaoyu Huang
- Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, People's Republic of China
| | - Guolin Lu
- Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, People's Republic of China
| | - Mitchell A Winnik
- Department of Chemistry, University of Toronto, 80 St. George St, Toronto, Ontario M5S 3H6, Canada
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario M5S 3E2, Canada
| | - Chun Feng
- Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, People's Republic of China
- Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, People's Republic of China
| |
Collapse
|
3
|
Li Y, Fan L, Xu X, Sun Y, Wang W, Li B, Veroneau SS, Ji P. Hierarchical organic microspheres from diverse molecular building blocks. Nat Commun 2024; 15:5041. [PMID: 38871694 DOI: 10.1038/s41467-024-49379-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 06/04/2024] [Indexed: 06/15/2024] Open
Abstract
Microspherical structures find broad application in chemistry and materials science, including in separations and purifications, energy storage and conversion, organic and biocatalysis, and as artificial and bioactive scaffolds. Despite this utility, the systematic diversification of their morphology and function remains hindered by the limited range of their molecular building blocks. Drawing upon the design principles of reticular synthesis, where diverse organic molecules generate varied porous frameworks, we show herein how analogous microspherical structures can be generated under mild conditions. The assembly of simple organic molecules into microspherical structures with advanced morphologies represents a grand challenge. Beginning with a partially condensed Schiff base which self-assembles into a hierarchical organic microsphere, we systematically synthesized sixteen microspheres from diverse molecular building blocks. We subsequently explicate the mechanism of hierarchical assembly through which these hierarchical organic microspheres are produced, isolating the initial monomer, intermediate substructures, and eventual microspheres. Furthermore, the open cavities present on the surfaces of these constructs provided distinctive adsorptive properties, which we harnessed for the immobilization of enzymes and bacteriophages. Holistically, these hierarchical organic microspheres provide an approach for designing multi-functional superstructures with advanced morphologies derived from simple organic molecules, revealing an extended length scale for reticular synthesis.
Collapse
Affiliation(s)
- Yintao Li
- Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
| | - Longlong Fan
- Institute of High Energy Physics, the Chinese Academy of Sciences, Beijing, 100049, China
| | - Xinyan Xu
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Yang Sun
- Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
| | - Wei Wang
- Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
| | - Bin Li
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Samuel S Veroneau
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, 02138, USA
| | - Pengfei Ji
- Department of Chemistry, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
4
|
Liu F, Liu X, Abdiryim T, Gu H, Astruc D. Heterometallic macromolecules: Synthesis, properties and multiple nanomaterial applications. Coord Chem Rev 2024; 500:215544. [DOI: 10.1016/j.ccr.2023.215544] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
5
|
Yao Y, Zhang L, Zhang S, Huang X, Feng C, Lin S, Xu B. Morphologically Tunable Rectangular Platelets Self-Assembled from Diblock Molecular Brushes Containing Azopyridine Pendants. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:18880-18888. [PMID: 38084706 DOI: 10.1021/acs.langmuir.3c02727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2023]
Abstract
Two-dimensional (2D) platelet structures are of growing importance as building blocks for the preparation of optical and electrical devices. However, the creation of morphologically tunable rectangular platelets through polymer self-assembly still remains a challenge. Herein, we describe a rational strategy for the fabrication of 2D rectangular platelets by stacking azopyridine-containing diblock molecular brushes in two dimensions in a selective solvent. Amphiphilic PEG-co-(PtBA-g-PAzoPy) DMBs with poly(ethylene glycol) (PEG) block, poly(t-butyl acrylate) (PtBA) backbone, and poly(6-(4-(4-pyridyazo)phenoxy)-hexyl methacrylate) (PAzoPy) brush were synthesized by sequential reversible addition-fragmentation chain transfer polymerization and atom transfer radical polymerization. Various rectangular platelets were obtained via the solution self-assembly of PEG-co-(PtBA-g-PAzoPy) through a heating-cooling-aging process in which the morphology and size of platelets could be controlled by adjusting the composition of DMBs as well as the solvent polarity. In addition, we investigated the metal chelation ability and H-bonding-assisted co-assembly capability of PEG-co-(PtBA-g-PAzoPy). The results displayed that 2D hybrids and flower-like platelets were formed, respectively. Our study presents an efficient method to fabricate rectangular platelets with tunable morphologies.
Collapse
Affiliation(s)
- Yuan Yao
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, People's Republic of China
| | - Lu Zhang
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, People's Republic of China
| | - Sen Zhang
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, People's Republic of China
| | - Xiaoyu Huang
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, People's Republic of China
| | - Chun Feng
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, People's Republic of China
| | - Shaoliang Lin
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, People's Republic of China
| | - Binbin Xu
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, People's Republic of China
| |
Collapse
|
6
|
Song Q, Li Y, Jin Z, Liu H, Creyer MN, Yim W, Huang Y, Hu X, He T, Li Y, Kelley SO, Shi L, Zhou J, Jokerst JV. Self-Assembled Homopolymeric Spherulites from Small Molecules in Solution. J Am Chem Soc 2023; 145:25664-25672. [PMID: 37921495 DOI: 10.1021/jacs.3c08356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2023]
Abstract
Polymeric spherulites are typically formed by melt crystallization: spherulitic growth in solution is rare and requires complex polymers and dilute solutions. Here, we report the mild and unique formation of luminescent spherulites at room temperature via the simple molecule benzene-1,4-dithiol (BDT). Specifically, BDT polymerized into oligomers (PBDT) via disulfide bonds and assembled into uniform supramolecular nanoparticles in aqueous buffer; these nanoparticles were then dissolved back into PBDT in a good solvent (i.e., dimethylformamide) and underwent chain elongation to form spherulites (rPBDT) in 10 min. The spherulite geometry was modulated by changing the PBDT concentration and reaction time. Due to the step-growth polymerization and reorganization of PBDT, these spherulites not only exhibited robust structure but also showed broad clusterization-triggered emission. The biocompatibility and efficient cellular uptake of the spherulites further underscore their value as traceable drug carriers. This system provides a new pathway for designing versatile superstructures with value for hierarchical assembly of small molecules into a complicated biological system.
Collapse
Affiliation(s)
- Qiantao Song
- College of Biomass Science and Engineering, Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu 610065, China
| | - Yi Li
- Department of Nano Engineering, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
- Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Zhicheng Jin
- Department of Nano Engineering, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Hai Liu
- College of Biomass Science and Engineering, Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu 610065, China
| | - Matthew N Creyer
- Department of Nano Engineering, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Wonjun Yim
- Materials Science and Engineering Program, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Yanping Huang
- Center of Engineering Experimental Teaching, School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Xiaobing Hu
- The NUANCE Center, Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Tengyu He
- Materials Science and Engineering Program, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Yajuan Li
- Shu Chien─Gene Lay Department of Bioengineering, University of California San Diego, 9500 Gilman Dr, La Jolla, California 92093, United States
| | - Shana O Kelley
- Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Lingyan Shi
- Shu Chien─Gene Lay Department of Bioengineering, University of California San Diego, 9500 Gilman Dr, La Jolla, California 92093, United States
| | - Jiajing Zhou
- Department of Nano Engineering, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Jesse V Jokerst
- Department of Nano Engineering, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
- Materials Science and Engineering Program, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
- Department of Radiology, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| |
Collapse
|
7
|
Hierarchical metal-peptide assemblies with chirality-encoded spiral architecture and catalytic activity. Sci China Chem 2022. [DOI: 10.1007/s11426-022-1351-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
8
|
Direct observation of heterogeneous formation of amyloid spherulites in real-time by super-resolution microscopy. Commun Biol 2022; 5:850. [PMID: 35987792 PMCID: PMC9392779 DOI: 10.1038/s42003-022-03810-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 08/05/2022] [Indexed: 12/14/2022] Open
Abstract
Protein misfolding in the form of fibrils or spherulites is involved in a spectrum of pathological abnormalities. Our current understanding of protein aggregation mechanisms has primarily relied on the use of spectrometric methods to determine the average growth rates and diffraction-limited microscopes with low temporal resolution to observe the large-scale morphologies of intermediates. We developed a REal-time kinetics via binding and Photobleaching LOcalization Microscopy (REPLOM) super-resolution method to directly observe and quantify the existence and abundance of diverse aggregate morphologies of human insulin, below the diffraction limit and extract their heterogeneous growth kinetics. Our results revealed that even the growth of microscopically identical aggregates, e.g., amyloid spherulites, may follow distinct pathways. Specifically, spherulites do not exclusively grow isotropically but, surprisingly, may also grow anisotropically, following similar pathways as reported for minerals and polymers. Combining our technique with machine learning approaches, we associated growth rates to specific morphological transitions and provided energy barriers and the energy landscape at the level of single aggregate morphology. Our unifying framework for the detection and analysis of spherulite growth can be extended to other self-assembled systems characterized by a high degree of heterogeneity, disentangling the broad spectrum of diverse morphologies at the single-molecule level. Real-time super-resolution microscopy analysis reveals the growth kinetics, morphology, and abundance of human insulin amyloid spherulites with different growth pathways.
Collapse
|
9
|
Yang C, Li Z, Xu J. Single crystals and two‐dimensional crystalline assemblies of block copolymers. JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1002/pol.20210866] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Chen Yang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering Zhejiang University Hangzhou China
| | - Zi‐Xian Li
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering Zhejiang University Hangzhou China
| | - Jun‐Ting Xu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering Zhejiang University Hangzhou China
| |
Collapse
|
10
|
Song S, Jiang J, Nikbin E, Howe JY, Manners I, Winnik MA. The role of cooling rate in crystallization-driven block copolymer self-assembly. Chem Sci 2022; 13:396-409. [PMID: 35126972 PMCID: PMC8729813 DOI: 10.1039/d1sc05937h] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 11/29/2021] [Indexed: 12/26/2022] Open
Abstract
Self-assembly of crystalline-coil block copolymers (BCPs) in selective solvents is often carried out by heating the mixture until the sample appears to dissolve and then allowing the solution to cool back to room temperature. In self-seeding experiments, some crystallites persist during sample annealing and nucleate the growth of core-crystalline micelles upon cooling. There is evidence in the literature that the nature of the self-assembled structures formed is independent of the annealing time at a particular temperature. There are, however, no systematic studies of how the rate of cooling affects self-assembly. We examine three systems based upon poly(ferrocenyldimethylsilane) BCPs that generated uniform micelles under typical conditions where cooling took pace on the 1–2 h time scale. For example, several of the systems generated elongated 1D micelles of uniform length under these slow cooling conditions. When subjected to rapid cooling (on the time scale of a few minutes or faster), branched structures were obtained. Variation of the cooling rate led to a variation in the size and degree of branching of some of the structures examined. These changes can be explained in terms of the high degree of supersaturation that occurs when unimer solutions at high temperature are suddenly cooled. Enhanced nucleation, seed aggregation, and selective growth of the species of lowest solubility contribute to branching. Cooling rate becomes another tool for manipulating crystallization-driven self-assembly and controlling micelle morphologies. In the self-assembly of crystalline-coil block copolymers in solution, heating followed by different cooling rates can lead to different structures.![]()
Collapse
Affiliation(s)
- Shaofei Song
- Department of Chemistry, University of Toronto Toronto Ontario M5S 3H6 Canada +1-416-978-6495
| | - Jingjie Jiang
- Department of Chemistry, University of Toronto Toronto Ontario M5S 3H6 Canada +1-416-978-6495
| | - Ehsan Nikbin
- Department of Materials Science and Engineering, University of Toronto, 184 College Street Toronto Ontario M5S 3E4 Canada
| | - Jane Y Howe
- Department of Chemistry, University of Toronto Toronto Ontario M5S 3H6 Canada +1-416-978-6495.,Department of Materials Science and Engineering, University of Toronto, 184 College Street Toronto Ontario M5S 3E4 Canada.,Department of Chemical Engineering and Applied Chemistry, University of Toronto Toronto Ontario M5S 3E2 Canada
| | - Ian Manners
- Department of Chemistry, University of Victoria Victoria British Columbia V8P 5C2 Canada
| | - Mitchell A Winnik
- Department of Chemistry, University of Toronto Toronto Ontario M5S 3H6 Canada +1-416-978-6495.,Department of Chemical Engineering and Applied Chemistry, University of Toronto Toronto Ontario M5S 3E2 Canada
| |
Collapse
|
11
|
Song S, Zhou H, Hicks G, Jiang J, Zhang Y, Manners I, Winnik MA. An Amphiphilic Corona-Forming Block Promotes Formation of a Variety of 2D Platelets via Crystallization-Driven Block Copolymer Self-Assembly. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c01715] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Shaofei Song
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Hang Zhou
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Garion Hicks
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Jingjie Jiang
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Yefeng Zhang
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Ian Manners
- Department of Chemistry, University of Victoria, Victoria, British Columbia V8W 3V6, Canada
| | - Mitchell A. Winnik
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario M5S 3E2, Canada
| |
Collapse
|