1
|
Yao F, Gao Y, Wang Y, Zeng L, Lei A, Li W. Electrochemical Deoxyarylation of Aromatic Aldehydes and Ketones. Org Lett 2025; 27:4124-4128. [PMID: 40208904 DOI: 10.1021/acs.orglett.5c00537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2025]
Abstract
Carbonyl-containing compounds serve as essential building blocks in various synthetic processes. However, due to the high bond energy of the C═O double bond, the traditional deoxygenation methods often require harsh conditions or toxic reagents. Direct carbonyl deoxygenative coupling of aldehydes and ketones is still challenging under mild conditions. Herein we report the successful establishment of an electroreductive coupling strategy utilizing aromatic carbonyls and terephthalonitrile. A key component of our approach is the use of closo-boranes, specifically (Et4N)2B10H10, which serve as an in situ deoxidant by single-electron oxidation.
Collapse
Affiliation(s)
- Fengze Yao
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei 430072, China
| | - Yuan Gao
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei 430072, China
| | - Yachun Wang
- The Institute for Advanced Studies, Wuhan University, Wuhan, Hubei 430072, China
| | - Li Zeng
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei 430072, China
| | - Aiwen Lei
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei 430072, China
| | - Wu Li
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei 430072, China
| |
Collapse
|
2
|
Ling X, Zhao Q, Liu X, Wang Y, Su Y, Yang F, Zhang Z, Wang H, Shang Y, Fu L. Deoxygenative Cyclopropanation of Aldehydes with Acyl-Stabilized Sulfur Ylides. Chemistry 2025; 31:e202500471. [PMID: 39989449 DOI: 10.1002/chem.202500471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 02/18/2025] [Accepted: 02/24/2025] [Indexed: 02/25/2025]
Abstract
Herein, we described a novel [1+1+1] deoxygenative cyclopropanation between sulfur ylides and aldehydes, which is distinctive from traditional epoxidation reactions. The method offers a straightforward approach for the synthesis of highly stereoselective, functionalized, and structurally diverse tertiary cyclopropyl thioethers. The reaction demonstrates a broad substrate scope and excellent compatibility with various functional groups, rendering it particularly suitable for the late-stage modifications of pharmaceuticals and natural products, as well as the synthesis of structurally diverse compounds. Additionally, β,β-disubstituted enals can also engage in the deoxygenative cyclopropanation reaction, instead of undergoing classic cyclopropanation through a Michael addition reaction-induced cyclization with sulfur ylides, thus yielding synthetically important vinylcyclopropanes with excellent chemoselectivity and diastereoselectivity.
Collapse
Affiliation(s)
- Xunlan Ling
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, P. R. China
| | - Quansheng Zhao
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, P. R. China
| | - Xinyu Liu
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, P. R. China
| | - Yan Wang
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, P. R. China
| | - Yin Su
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, P. R. China
| | - Feihu Yang
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, P. R. China
| | - Zhihan Zhang
- Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, 430079, P. R. China
| | - Hui Wang
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, P. R. China
| | - Yongjia Shang
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, P. R. China
| | - Liang Fu
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, P. R. China
| |
Collapse
|
3
|
Yu YZ, Su HY, Zhuo CX. Anilines Formation via Molybdenum-Catalyzed Intermolecular Reaction of Ynones with Allylic Amines. Angew Chem Int Ed Engl 2024; 63:e202412299. [PMID: 39255246 DOI: 10.1002/anie.202412299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 09/06/2024] [Accepted: 09/09/2024] [Indexed: 09/12/2024]
Abstract
The multi-substituted anilines are widely found in organic synthesis, medicinal chemistry and material science. The quest for robust and efficient methods to construct a diverse array of these compounds using readily accessible starting materials under simple reaction conditions is of utmost importance. Here, we report an unprecedented and efficient approach for the synthesis of 2,4-di and 2,4,6-trisubstituted anilines. With a simple molybdenum(VI) catalyst, a wide range of 2,4-di and 2,4,6-trisubstituted anilines were efficiently prepared in generally good to excellent yields from readily accessible ynones and allylic amines. The synthetic potential of this methodology was further underscored by its applications in several synthetic transformations, gram-scale reactions, and derivatization of bioactive molecules. Preliminary mechanistic studies suggested that this aniline formation might involve a cascade of aza-Michael addition, [1,6]-proton shift, cyclization, dehydration, 6π-electrocyclization, and aromatization. This novel strategy provided a robust, simple, and modular approach for the syntheses of various valuable di- or trisubstituted anilines, some of which were otherwise challenging to access.
Collapse
Affiliation(s)
- Yi-Zhe Yu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, and College of Chemistry and Chemical Engineering, Xiamen University, 361005, Xiamen, P. R. China
| | - Hong-Yi Su
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, and College of Chemistry and Chemical Engineering, Xiamen University, 361005, Xiamen, P. R. China
| | - Chun-Xiang Zhuo
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, and College of Chemistry and Chemical Engineering, Xiamen University, 361005, Xiamen, P. R. China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 200032, Shanghai, P. R. China
| |
Collapse
|
4
|
Yi W, Xu PC, He T, Shi S, Huang S. Organoelectrocatalytic cyclopropanation of alkenyl trifluoroborates with methylene compounds. Nat Commun 2024; 15:9645. [PMID: 39511173 PMCID: PMC11543836 DOI: 10.1038/s41467-024-54082-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 11/01/2024] [Indexed: 11/15/2024] Open
Abstract
Cyclopropanes are not only privileged motifs in many natural products, agrochemicals, and pharmaceuticals, but also highly versatile intermediates in synthetic chemistry. As such, great effort has been devoted to the cyclopropane construction. However, novel catalytic methods for cyclopropanation with two abundant substrates, mild conditions, high functional group tolerance, and broad scope are still highly desirable. Herein, we report an intermolecular electrocatalytic cyclopropanation of alkenyl trifluoroborates with methylene compounds. The reaction uses simple diphenyl sulfide as the electrocatalyst under base-free conditions. And thus, a broad scope of various methylene compounds as well as vinyltrifluoroborates is demonstrated, including styrenyl, 1,3-dienyl, fluorosulfonyl, and base-sensitive substrates. Preliminary mechanistic studies are presented, revealing the critical role of the boryl substituent to facilitate the desired pathway and the role of water as the hydrogen atom source.
Collapse
Affiliation(s)
- Wei Yi
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing, 210037, China
| | - Peng-Cheng Xu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing, 210037, China
| | - Tianyu He
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing, 210037, China
| | - Shuai Shi
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing, 210037, China
| | - Shenlin Huang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing, 210037, China.
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research, Ministry of Education of China, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, China.
| |
Collapse
|
5
|
Luo YX, Huang J, Wu G, Tang XY, Qu JP. Visible-light-mediated deoxygenative transformation of 1,2-dicarbonyl compounds through energy transfer process. Nat Commun 2024; 15:9240. [PMID: 39455565 PMCID: PMC11511947 DOI: 10.1038/s41467-024-53635-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 10/15/2024] [Indexed: 10/28/2024] Open
Abstract
Through the energy transfer process, mild transformations can be achieved that are often difficult to realize under thermodynamic conditions. Herein, a visible-light-driven deoxygenative coupling of 1,2-dicarbonyl compounds for C-O, C-S, and C-N bonds construction is developed via triplet state 1,2-dicarbonyls, affording a wide range of α-functionalized ketones/esters under transition-metal and external photocatalyst free conditions. The usefulness of this method is demonstrated by gram-scale synthesis, late-stage functionalization of various carboxylic acid drugs, and the synthesis of natural products and drug molecules.
Collapse
Affiliation(s)
- Yun-Xuan Luo
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan, People's Republic of China
| | - Jie Huang
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan, People's Republic of China
| | - Guojiao Wu
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan, People's Republic of China
| | - Xiang-Ying Tang
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan, People's Republic of China.
| | - Jin-Ping Qu
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan, People's Republic of China
- Guangdong Provincial Key Laboratory of Technique and Equipment for Macromolecular Advanced Manufacturing, South China University of Technology, Guangzhou, Guangdong, People's Republic of China
| |
Collapse
|
6
|
Tsujihara T, Nishino K, Miura W, Chiba A, Hayashi W, Yoshida C, Takehara T, Suzuki T, Kawano T. Enantioselective One-Pot Synthesis of Cyclopropane-Fused Tetrahydroquinolines via a Ru-Catalyzed Intramolecular Cyclopropanation. Org Lett 2024; 26:6502-6506. [PMID: 39046795 DOI: 10.1021/acs.orglett.4c02416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
A highly enantioselective one-pot synthesis of cyclopropane-fused tetrahydroquinolines bearing carbonyl functionalities, which are difficult to synthesize using conventional methods, is reported. Employing readily accessible alkene-tethered anthranilaldehydes, hydrazone formation and subsequent Ru-catalyzed intramolecular cyclopropanation furnish the desired products in ≤87% yield and ≤95% ee under mild conditions. Various anthranilaldehydes, functionalized alkenes, and N-aryl sulfonyl groups are tolerated, and a series of synthetic transformations were conducted to demonstrate the practical utility.
Collapse
Affiliation(s)
- Tetsuya Tsujihara
- Department of Medicinal and Organic Chemistry, School of Pharmacy, Iwate Medical University, Yahaba, Iwate 028-3694, Japan
| | - Koki Nishino
- Department of Medicinal and Organic Chemistry, School of Pharmacy, Iwate Medical University, Yahaba, Iwate 028-3694, Japan
| | - Wakaba Miura
- Department of Medicinal and Organic Chemistry, School of Pharmacy, Iwate Medical University, Yahaba, Iwate 028-3694, Japan
| | - Ayumi Chiba
- Department of Medicinal and Organic Chemistry, School of Pharmacy, Iwate Medical University, Yahaba, Iwate 028-3694, Japan
| | - Wakana Hayashi
- Department of Medicinal and Organic Chemistry, School of Pharmacy, Iwate Medical University, Yahaba, Iwate 028-3694, Japan
| | - Chika Yoshida
- Department of Medicinal and Organic Chemistry, School of Pharmacy, Iwate Medical University, Yahaba, Iwate 028-3694, Japan
| | - Tsunayoshi Takehara
- SANKEN (The Institute of Scientific and Industrial Research), Osaka University, Mihogaoka, Ibaraki 567-0047, Japan
| | - Takeyuki Suzuki
- SANKEN (The Institute of Scientific and Industrial Research), Osaka University, Mihogaoka, Ibaraki 567-0047, Japan
| | - Tomikazu Kawano
- Department of Medicinal and Organic Chemistry, School of Pharmacy, Iwate Medical University, Yahaba, Iwate 028-3694, Japan
| |
Collapse
|
7
|
Liu M, Uyeda C. Redox Approaches to Carbene Generation in Catalytic Cyclopropanation Reactions. Angew Chem Int Ed Engl 2024; 63:e202406218. [PMID: 38752878 DOI: 10.1002/anie.202406218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Indexed: 06/15/2024]
Abstract
Transition metal-catalyzed carbene transfer reactions have a century-old history in organic chemistry and are a primary method for the synthesis of cyclopropanes. Much of the work in this field has focused on the use of diazo compounds and related precursors, which can transfer a carbene fragment to a catalyst with concomitant loss of a stable byproduct. Despite the utility of this approach, there are persistent limitations in the scope of viable carbenes, most notably those lacking stabilizing substituents. By coupling carbene transfer chemistry with two-electron redox cycles, it is possible to expand the available starting materials that can be used as carbene precursors. In this Minireview, we discuss emerging catalytic reductive cyclopropanation reactions using either gem-dihaloalkanes or carbonyl compounds. This strategy is inspired by classic stoichiometric transformations, such as the Simmons-Smith cyclopropanation and the Clemmensen reduction, but instead entails the formation of a catalytically generated transition metal carbene or carbenoid. We also present recent efforts to generate carbenes directly from methylene (CR2H2) groups via a formal 1,1-dehydrogenation. These reactions are currently restricted to substrates containing electron-withdrawing substituents, which serve to facilitate deprotonation and subsequent oxidation of the anion.
Collapse
Affiliation(s)
- Mingxin Liu
- Department of Chemistry, Purdue University, 560 Oval Dr., West Lafayette, IN 47907, USA
| | - Christopher Uyeda
- Department of Chemistry, Purdue University, 560 Oval Dr., West Lafayette, IN 47907, USA
| |
Collapse
|
8
|
Canote CA, Kilyanek SM. Reactivity of metal dioxo complexes. Dalton Trans 2024; 53:4874-4889. [PMID: 38379444 DOI: 10.1039/d3dt04390h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
Metal dioxo chemistry and its diverse reactivity are presented with an emphasis on the mechanisms of reactivity. Work from approximately the last decade is surveyed and organized by metal. In particular, the chemistry of cis-dioxo metal complexes is discussed at length. Reactions are grouped by generic type, including addition across a metal oxo bond, oxygen atom transfer, and radical atom transfer reactions. Attention is given to advances in deoxygenation chemistry, oxidation chemistry, and reductive transformations.
Collapse
Affiliation(s)
- Cody A Canote
- Department of Chemistry and Biochemistry, 1 University of Arkansas, Fayetteville, AR 72701, USA.
| | - Stefan M Kilyanek
- Department of Chemistry and Biochemistry, 1 University of Arkansas, Fayetteville, AR 72701, USA.
| |
Collapse
|
9
|
Wang JL, Wu GY, Luo JN, Liu JL, Zhuo CX. Catalytic Intermolecular Deoxygenative Coupling of Carbonyl Compounds with Alkynes by a Cp*Mo(II)-Catalyst. J Am Chem Soc 2024; 146:5605-5613. [PMID: 38351743 DOI: 10.1021/jacs.3c14195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
Carbonyl is highly accessible and acts as an essential functional group in chemical synthesis. However, the direct catalytic deoxygenative functionalization of carbonyl compounds via a putative metal carbene intermediate is a formidable challenge due to the requirement of a high activation energy for the cleavage of strong C═O double bonds. Here, we report a class of bench stable and readily available Cp*Mo(II)-complexes as efficient deoxygenation catalysts that could catalyze the direct intermolecular deoxygenative coupling of carbonyl compounds with alkynes. Enabled by this powerful Cp*Mo(II)-catalyst, various valuable heteroarenes (10 different classes) were obtained in generally good yields and remarkable chemo- and regioselectivities. Mechanistic studies suggested that this reaction might proceed via a sequence of C═O double bonds cleavage, carbene-alkyne metathesis, cyclization, and aromatization processes. This strategy not only provided a general catalytic platform for the rapid preparation of heteroarenes but also opened a new window for the applications of Cp*Mo(II)-catalysts in organic synthesis.
Collapse
Affiliation(s)
- Jia-Le Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Guan-Yu Wu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Jian-Nan Luo
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Jun-Long Liu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Chun-Xiang Zhuo
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, P. R. China
| |
Collapse
|
10
|
Liu Q, Chu H, Mai J, Yang H, Shen MH, Xu HD. Molybdenum-catalyzed deoxygenative heterocyclization of 2-nitroazobenzenes: a novel strategy for catalytic synthesis of 2-aryl-2 H-benzo[ d][1,2,3]triazoles. Org Biomol Chem 2024; 22:954-958. [PMID: 38205622 DOI: 10.1039/d3ob01969a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
A novel strategy for the catalytic synthesis of 2-aryl-2H-benzo[d][1,2,3]triazoles bearing a wide range of functional groups in good to excellent yields by non-noble molybdenum-catalyzed deoxygenative heterocyclization of 2-nitroazobenzenes is described. The salient features of the transformation include the use of readily available substrates, valuable products and ease of scale-up. The mechanistic study indicates that the reaction occurred via double deoxygenation by the Mo(VI)/Mo(IV) catalytic cycle from 2-nitroazobenzene, through the formation of 2-aryl-2H-benzo[d][1,2,3]triazole-N1-oxide or nitrene intermediates.
Collapse
Affiliation(s)
- Quanyun Liu
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu Province 213164, China.
| | - Haoke Chu
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu Province 213164, China.
| | - Junju Mai
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu Province 213164, China.
| | - Haobing Yang
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu Province 213164, China.
| | - Mei-Hua Shen
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu Province 213164, China.
| | - Hua-Dong Xu
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu Province 213164, China.
| |
Collapse
|
11
|
Yang H, Li Y, Zhang W, Song J, Hu J, Wang M, Yao H, Xu X, Li N, Yang Y, Yu R, Xie S, Ye C, Wei G. Regioselective Hydrodeoxygenation of α-Diketones with Phosphites under Visible-Light Catalysis. Org Lett 2023; 25:7422-7427. [PMID: 37781988 DOI: 10.1021/acs.orglett.3c02936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
Novel regioselective hydrodeoxygenation of α-diketones with phosphites as the deoxygenation reagent was realized via visible-light photoredox catalysis. Broad substrate scope and high functional group compatibility were obtained. Unsymmetric α-diketones were selectively reduced at the carbonyls of higher electrophilicity. This unique regioselectivity compared with available methods makes it a practical complementary approach for the monohydrodeoxygenation of α-diketones.
Collapse
Affiliation(s)
- Hui Yang
- Key Laboratory of Natural Medicine and Immune Engineering, School of Pharmacy, Henan University, Kaifeng 475004, People's Republic of China
| | - Yan Li
- Key Laboratory of Natural Medicine and Immune Engineering, School of Pharmacy, Henan University, Kaifeng 475004, People's Republic of China
| | - Wenhui Zhang
- Key Laboratory of Natural Medicine and Immune Engineering, School of Pharmacy, Henan University, Kaifeng 475004, People's Republic of China
| | - Jiayan Song
- Key Laboratory of Natural Medicine and Immune Engineering, School of Pharmacy, Henan University, Kaifeng 475004, People's Republic of China
| | - Jingyu Hu
- Key Laboratory of Natural Medicine and Immune Engineering, School of Pharmacy, Henan University, Kaifeng 475004, People's Republic of China
| | - Mengya Wang
- Key Laboratory of Natural Medicine and Immune Engineering, School of Pharmacy, Henan University, Kaifeng 475004, People's Republic of China
| | - Han Yao
- Key Laboratory of Natural Medicine and Immune Engineering, School of Pharmacy, Henan University, Kaifeng 475004, People's Republic of China
| | - Xia Xu
- Key Laboratory of Natural Medicine and Immune Engineering, School of Pharmacy, Henan University, Kaifeng 475004, People's Republic of China
| | - Na Li
- Key Laboratory of Natural Medicine and Immune Engineering, School of Pharmacy, Henan University, Kaifeng 475004, People's Republic of China
| | - Yanbo Yang
- Key Laboratory of Natural Medicine and Immune Engineering, School of Pharmacy, Henan University, Kaifeng 475004, People's Republic of China
| | - Rongrong Yu
- Key Laboratory of Natural Medicine and Immune Engineering, School of Pharmacy, Henan University, Kaifeng 475004, People's Republic of China
| | - Shuxia Xie
- Key Laboratory of Natural Medicine and Immune Engineering, School of Pharmacy, Henan University, Kaifeng 475004, People's Republic of China
| | - Cuiying Ye
- Key Laboratory of Natural Medicine and Immune Engineering, School of Pharmacy, Henan University, Kaifeng 475004, People's Republic of China
| | - Guo Wei
- Key Laboratory of Natural Medicine and Immune Engineering, School of Pharmacy, Henan University, Kaifeng 475004, People's Republic of China
| |
Collapse
|
12
|
Yu YZ, Bai J, Peng JM, Yao JS, Zhuo CX. Modular Access to meta-Substituted Benzenes via Mo-Catalyzed Intermolecular Deoxygenative Benzene Formation. J Am Chem Soc 2023; 145:8781-8787. [PMID: 36929879 DOI: 10.1021/jacs.3c01330] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
The substituted benzene derivatives are essential to organic synthesis, medicinal chemistry, and material science. However, the 1,3-di- and 1,3,5-trisubstituted benzenes are far less prevalent in small-molecule drugs than other substitution patterns, likely due to the lack of robust, efficient, and convenient synthetic methods. Here, we report a Mo-catalyzed intermolecular deoxygenative benzene-forming reaction of readily available ynones and allylic amines. A wide range of unsymmetric and unfunctionalized 1,3-di- and 1,3,5-trisubstituted benzenes were obtained in up to 88% yield by using a commercially available molybdenum catalyst. The synthetic potential of the method was further illustrated by synthetic transformations, a scale-up synthesis, and derivatization of bioactive molecules. Preliminary mechanistic studies suggested that this benzene-forming process might proceed through a Mo-catalyzed aza-Michael addition/[1,5]-hydride shift/cyclization/aromatization cascade. This strategy not only provided a facile, robust, and modular approach to various meta-substituted benzene derivatives but also demonstrated the potential of molybdenum catalysis in the challenging intermolecular deoxygenative cross-coupling reactions.
Collapse
Affiliation(s)
- Yi-Zhe Yu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People's Republic of China
| | - Jin Bai
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People's Republic of China
| | - Jia-Min Peng
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People's Republic of China
| | - Jia-Sheng Yao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People's Republic of China
| | - Chun-Xiang Zhuo
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People's Republic of China.,Shenzhen Research Institute of Xiamen University, Shenzhen 518057, People's Republic of China
| |
Collapse
|
13
|
Cao LY, Wang JL, Wang K, Wu JB, Wang DK, Peng JM, Bai J, Zhuo CX. Catalytic Asymmetric Deoxygenative Cyclopropanation Reactions by a Chiral Salen-Mo Catalyst. J Am Chem Soc 2023; 145:2765-2772. [PMID: 36626166 DOI: 10.1021/jacs.2c12225] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The catalytic asymmetric cyclopropanation reaction of alkenes with diazo compounds is a direct and powerful method to construct chiral cyclopropanes that are essential to drug discovery. However, diazo compounds are potentially explosive and often require hazardous reagents for their preparation. Here, we report on the use of 1,2-dicarbonyl compounds as safe and readily available surrogates for diazo compounds in the direct catalytic asymmetric deoxygenative cyclopropanation reaction. Enabled by a class of simple and readily accessible chiral salen-Mo catalysts, the reaction proceeded with generally good enantioselectivities and yields toward a wide range of substrates (80 examples). Preliminary mechanistic studies suggested that the proposed μ-oxo bridged dinuclear Mo(III)-species was the catalytically active species. This strategy not only provides a promising route for the synthesis of chiral cyclopropanes but also opens a new window for the potential applications of chiral salen-Mo complexes in asymmetric catalysis.
Collapse
Affiliation(s)
- Li-Ya Cao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Jia-Le Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Kai Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Jiang-Bin Wu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - De-Ku Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Jia-Min Peng
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Jin Bai
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Chun-Xiang Zhuo
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| |
Collapse
|
14
|
Fan W. Synthesis of 1,2-Dicarbonyls from Five-Membered Cyclic Enamines and Arylglyoxal Hydrates under Metal-Free Conditions. HETEROCYCLES 2023. [DOI: 10.3987/com-23-14827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
15
|
Tadiello L, Drexler HJ, Beweries T. Low-Field Flow 31P NMR Spectroscopy for Organometallic Chemistry: On-Line Analysis of Highly Air-Sensitive Rhodium Diphosphine Complexes. Organometallics 2022. [DOI: 10.1021/acs.organomet.2c00301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Laura Tadiello
- Leibniz Institut für Katalyse e.V., Albert-Einstein-Strasse 29a, 18059 Rostock, Germany
| | - Hans-Joachim Drexler
- Leibniz Institut für Katalyse e.V., Albert-Einstein-Strasse 29a, 18059 Rostock, Germany
| | - Torsten Beweries
- Leibniz Institut für Katalyse e.V., Albert-Einstein-Strasse 29a, 18059 Rostock, Germany
| |
Collapse
|
16
|
Banerjee S, Kobayashi T, Takai K, Asako S, Ilies L. Molybdenum-Quinone-Catalyzed Deoxygenative Coupling of Aromatic Carbonyl Compounds. Org Lett 2022; 24:7242-7246. [PMID: 36166349 DOI: 10.1021/acs.orglett.2c03143] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In the presence of triphenylphosphine as a mild reductant, the use of catalytic amounts of Mo(CO)6 and an ortho-quinone ligand enables the intermolecular reductive coupling of aromatic aldehydes and the intramolecular coupling of aromatic ketones to produce functionalized alkenes. Diaryl- and diheteroaryl alkenes are synthesized with high (E)-selectivity and a tolerance toward bromide, iodide, and steric hindrance. Intramolecular coupling of dicarbonyl compounds under similar conditions affords mono- and disubstituted phenanthrenes.
Collapse
Affiliation(s)
- Somsuvra Banerjee
- RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Takafumi Kobayashi
- RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.,Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushimanaka, Kita-ku, Okayama, Okayama 700-8530, Japan
| | - Kazuhiko Takai
- Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushimanaka, Kita-ku, Okayama, Okayama 700-8530, Japan
| | - Sobi Asako
- RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.,Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushimanaka, Kita-ku, Okayama, Okayama 700-8530, Japan
| | - Laurean Ilies
- RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| |
Collapse
|
17
|
Dong YQ, Wang K, Zhuo CX. Molybdenum-Catalyzed Intermolecular Deoxygenative Cross-Coupling Reactions of 1,2-Diketones with α-Ketoamides. ACS Catal 2022. [DOI: 10.1021/acscatal.2c03731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Yuan-Qing Dong
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Kai Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Chun-Xiang Zhuo
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
- Shenzhen Research Institute of Xiamen University, Shenzhen 518057, P. R. China
| |
Collapse
|
18
|
Zhao Q, Yao QY, Zhang YJ, Xu T, Zhang J, Chen X. Selective Cyclopropanation/Aziridination of Olefins Catalyzed by Bis(pyrazolyl)borate Cu(I) Complexes. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Qianyi Zhao
- Henan Normal University School of Chemistry and Chemical Engineering Henan Key Laboratory of Boron Chemistry and Advanced Energy Materials Jianshe Road 453007 Xinxiang CHINA
| | - Qiu-Yue Yao
- Henan Normal University School of Chemistry and Chemical Engineering Henan Key Laboratory of Boron Chemistry and Advanced Energy Materials CHINA
| | - Yan-Jiao Zhang
- Henan Normal University School of Chemistry and Chemical Engineering Henan Key Laboratory of Boron Chemistry and Advanced Energy Materials CHINA
| | - Ting Xu
- Henan Normal University School of Chemistry and Chemical Engineering Henan Key Laboratory of Boron Chemistry and Advanced Energy Materials CHINA
| | - Jie Zhang
- Henan Normal University School of Chemistry and Chemical Engineering Henan Key Laboratory of Boron Chemistry and Advanced Energy Materials CHINA
| | - Xuenian Chen
- Henan Normal University School of Chemistry and Chemical Engineering Henan Key Laboratory of Boron Chemistry and Advanced Energy Materials CHINA
| |
Collapse
|
19
|
Zhang L, DeMuynck BM, Paneque AN, Rutherford JE, Nagib DA. Carbene reactivity from alkyl and aryl aldehydes. Science 2022; 377:649-654. [PMID: 35926031 PMCID: PMC9439075 DOI: 10.1126/science.abo6443] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Carbenes are highly enabling reactive intermediates that facilitate a diverse range of otherwise inaccessible chemistry, including small-ring formation and insertion into strong σ bonds. To access such valuable reactivity, reagents with high entropic or enthalpic driving forces are often used, including explosive (diazo) or unstable (gem-dihalo) compounds. Here, we report that common aldehydes are readily converted (via stable α-acyloxy halide intermediates) to electronically diverse (donor or neutral) carbenes to facilitate >10 reaction classes. This strategy enables safe reactivity of nonstabilized carbenes from alkyl, aryl, and formyl aldehydes via zinc carbenoids. Earth-abundant metal salts [iron(II) chloride (FeCl2), cobalt(II) chloride (CoCl2), copper(I) chloride (CuCl)] are effective catalysts for these chemoselective carbene additions to σ and π bonds.
Collapse
Affiliation(s)
- Lumin Zhang
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, USA
| | - Bethany M DeMuynck
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, USA
| | - Alyson N Paneque
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, USA
| | - Joy E Rutherford
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, USA
| | - David A Nagib
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
20
|
Zhou P, Li Y, XU T. Molybdenum-Catalyzed Cross-Coupling of Benzyl Alcohols: Direct C–OH Bond Transformation via [2 + 2]-Type Addition and Elimination. Org Lett 2022; 24:4218-4223. [DOI: 10.1021/acs.orglett.2c01537] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Pan Zhou
- Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, P. R. of China
| | - Yuqiang Li
- College of Chemistry and Chemical Engineering, Central South University, 932 South Lushan Road, Changsha 410083, P. R. China
| | - Tao XU
- Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, P. R. of China
| |
Collapse
|
21
|
Jie LH, Guo B, Song J, Xu HC. Organoelectrocatalysis Enables Direct Cyclopropanation of Methylene Compounds. J Am Chem Soc 2022; 144:2343-2350. [PMID: 35102740 DOI: 10.1021/jacs.1c12762] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Cyclopropane is a prevalent structural unit in natural products and bioactive compounds. While the transition metal-catalyzed alkene cyclopropanation of functionalized compounds such as α-diazocarbonyl derivatives has been well established and provides straightforward access to cyclopropanes, cyclopropanation directly from the more stable and simpler methylene compounds has remained an unsolved challenge despite the highly desirable benefits of minimal prefunctionalization and increased operational safety. Herein we report an electrocatalytic strategy for the cyclopropanation of active methylene compounds, employing an organic catalyst. The method shows a broad substrate scope and excellent scalability, requires no metal catalyst or external chemical oxidant, and provides convenient access to several types of cyclopropane-fused heterocyclic and carbocyclic compounds. Mechanistic investigations suggest that the reactions proceed through a radical-polar crossover process to form the two new carbon-carbon bonds in the nascent cyclopropane ring.
Collapse
Affiliation(s)
- Liang-Hua Jie
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen361005, P. R. China
| | - Bin Guo
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen361005, P. R. China
| | - Jinshuai Song
- Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou, Henan450001, P. R. China
| | - Hai-Chao Xu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen361005, P. R. China
| |
Collapse
|
22
|
Li J, Huang C, Li C. Deoxygenative Functionalizations of Aldehydes, Ketones and Carboxylic Acids. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202112770] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Jianbin Li
- Department of Chemistry FRQNT Centre for Green Chemistry and Catalysis McGill University 801 Sherbrooke St. W. Montreal Quebec H3A 0B8 Canada
| | - Chia‐Yu Huang
- Department of Chemistry FRQNT Centre for Green Chemistry and Catalysis McGill University 801 Sherbrooke St. W. Montreal Quebec H3A 0B8 Canada
| | - Chao‐Jun Li
- Department of Chemistry FRQNT Centre for Green Chemistry and Catalysis McGill University 801 Sherbrooke St. W. Montreal Quebec H3A 0B8 Canada
| |
Collapse
|
23
|
Zhang Y, Yang Y, Xue Y. Elucidating mechanism and reactivity of reaction between donor-acceptor-acceptor 1,3-bisdiazo compound and cinnamyl alcohol catalyzed by Rh2(OAc)4: a DFT study. NEW J CHEM 2022. [DOI: 10.1039/d1nj05542a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
It is important for diazo compound to take part in organic synthesis. More theoretical and experimental studies focus on mono-diazo compound but fewer on bi-diazo compounds. Here, the mechanism and...
Collapse
|
24
|
Tan YF, Chen Y, Li RX, Guan Z, He YH. Electrochemical oxidation-induced benzyl C H carbonylation for the synthesis of aromatic α-diketones. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2021.153593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
25
|
Xu H, Fang XJ, Huang WS, Xu Z, Li L, Ye F, Cao J, Xu LW. Catalytic regio- and stereoselective silicon–carbon bond formations on unsymmetric gem-difluorocyclopropenes by capture of silyl metal species. Org Chem Front 2022. [DOI: 10.1039/d2qo00943a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A highly regioselective silylation of unsymmetric gem-difluorocyclopropenes was achieved by the capture of in-situ formed silyl metal intermediates, which gave structurally diverse silyldifluorocyclopropanes with good yields and stereoselectivity.
Collapse
Affiliation(s)
- Hao Xu
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, and Key Laboratory of Organosilicon Material Technology of Zhejiang Province, College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, No. 2318, Yuhangtang Road, Hangzhou 311121, P. R. China
| | - Xiao-Jun Fang
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, and Key Laboratory of Organosilicon Material Technology of Zhejiang Province, College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, No. 2318, Yuhangtang Road, Hangzhou 311121, P. R. China
| | - Wei-Sheng Huang
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, and Key Laboratory of Organosilicon Material Technology of Zhejiang Province, College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, No. 2318, Yuhangtang Road, Hangzhou 311121, P. R. China
| | - Zheng Xu
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, and Key Laboratory of Organosilicon Material Technology of Zhejiang Province, College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, No. 2318, Yuhangtang Road, Hangzhou 311121, P. R. China
| | - Li Li
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, and Key Laboratory of Organosilicon Material Technology of Zhejiang Province, College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, No. 2318, Yuhangtang Road, Hangzhou 311121, P. R. China
| | - Fei Ye
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, and Key Laboratory of Organosilicon Material Technology of Zhejiang Province, College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, No. 2318, Yuhangtang Road, Hangzhou 311121, P. R. China
| | - Jian Cao
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, and Key Laboratory of Organosilicon Material Technology of Zhejiang Province, College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, No. 2318, Yuhangtang Road, Hangzhou 311121, P. R. China
| | - Li-Wen Xu
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, and Key Laboratory of Organosilicon Material Technology of Zhejiang Province, College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, No. 2318, Yuhangtang Road, Hangzhou 311121, P. R. China
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Suzhou Research Institute and Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, P. R. China
| |
Collapse
|
26
|
Li J, Li CJ, Huang CY. Deoxygenative Functionalizations of Aldehydes, Ketones and Carboxylic Acids. Angew Chem Int Ed Engl 2021; 61:e202112770. [PMID: 34780098 DOI: 10.1002/anie.202112770] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Indexed: 11/12/2022]
Abstract
Conversion of carbonyl compounds, including aldehydes, ketones and carboxylic acids, into functionalized alkanes via deoxygenation would be highly desirable from a sustainability perspective and very enabling in chemical synthesis. This review covers the recent methodology development in carbonyl and carboxyl deoxygenative functionalizations, highlighting some typical and significant contributions in this field. These advances will be categorized based on types of bond formation, and in each part, selected examples will be discussed from their generalized mechanistic perspectives. Four summarized reactivity modes of aldehydes and ketones during the deoxygenation, namely, bis-electrophile, carbenoid, bis-nucleophile and alkyl radical, are presented, while the carboxylic acids are deoxygenated mainly via activated carbonyl or acetal intermediates.
Collapse
Affiliation(s)
| | - Chao-Jun Li
- McGill University, Chemistry, 801 Sherbrooke St. West, H3A0B8, Montreal, CANADA
| | | |
Collapse
|
27
|
Zhuo CX, Wang JL. Catalytic Deoxygenative Cyclopropanation of 1,2-Dicarbonyl or Monocarbonyl Compounds via Molybdenum Catalysis. Synlett 2021. [DOI: 10.1055/a-1696-4553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
AbstractThe cyclopropanation of alkenes through the transition-metal-catalyzed decomposition of diazo compounds is a powerful and straightforward strategy to produce cyclopropanes. Nevertheless, the appeal of further application of this strategy is tempered by the potentially explosive nature of the diazo substrates. Therefore, it is highly desirable to develop sustainable and operationally safe surrogates for diazo compounds. In this Synpacts article, we discuss recent advances on the cyclopropane syntheses through the catalytic cyclopropanation of alkenes and metal carbenes generated in situ from nondiazo precursors as well as highlight our recent progress on the unprecedented molybdenum-catalyzed deoxygenative cyclopropanation reaction of 1,2-dicarbonyl or monocarbonyl compounds.
Collapse
|