1
|
Shi L, Song J, Wang Y, Fu H, Patrick-Iwuanyanwu K, Zhang L, Lawrie CH, Zhang J. Applications of Carbon-Based Multivariable Chemical Sensors for Analyte Recognition. NANO-MICRO LETTERS 2025; 17:246. [PMID: 40316837 PMCID: PMC12048389 DOI: 10.1007/s40820-025-01741-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Accepted: 03/19/2025] [Indexed: 05/04/2025]
Abstract
Over recent decades, carbon-based chemical sensor technologies have advanced significantly. Nevertheless, significant opportunities persist for enhancing analyte recognition capabilities, particularly in complex environments. Conventional monovariable sensors exhibit inherent limitations, such as susceptibility to interference from coexisting analytes, which results in response overlap. Although sensor arrays, through modification of multiple sensing materials, offer a potential solution for analyte recognition, their practical applications are constrained by intricate material modification processes. In this context, multivariable chemical sensors have emerged as a promising alternative, enabling the generation of multiple outputs to construct a comprehensive sensing space for analyte recognition, while utilizing a single sensing material. Among various carbon-based materials, carbon nanotubes (CNTs) and graphene have emerged as ideal candidates for constructing high-performance chemical sensors, owing to their well-established batch fabrication processes, superior electrical properties, and outstanding sensing capabilities. This review examines the progress of carbon-based multivariable chemical sensors, focusing on CNTs/graphene as sensing materials and field-effect transistors as transducers for analyte recognition. The discussion encompasses fundamental aspects of these sensors, including sensing materials, sensor architectures, performance metrics, pattern recognition algorithms, and multivariable sensing mechanism. Furthermore, the review highlights innovative multivariable extraction schemes and their practical applications when integrated with advanced pattern recognition algorithms.
Collapse
Affiliation(s)
- Lin Shi
- School of Microelectronics, Shanghai University, Shanghai, 201800, People's Republic of China
- Sino-Swiss Institute of Advanced Technology (SSIAT), Shanghai University, Shanghai, 201899, People's Republic of China
| | - Jian Song
- School of Microelectronics, Shanghai University, Shanghai, 201800, People's Republic of China.
- Sino-Swiss Institute of Advanced Technology (SSIAT), Shanghai University, Shanghai, 201899, People's Republic of China.
| | - Yu Wang
- School of Microelectronics, Shanghai University, Shanghai, 201800, People's Republic of China
- Sino-Swiss Institute of Advanced Technology (SSIAT), Shanghai University, Shanghai, 201899, People's Republic of China
| | - Heng Fu
- School of Microelectronics, Shanghai University, Shanghai, 201800, People's Republic of China
- Sino-Swiss Institute of Advanced Technology (SSIAT), Shanghai University, Shanghai, 201899, People's Republic of China
| | | | - Lei Zhang
- School of Microelectronics, Shanghai University, Shanghai, 201800, People's Republic of China.
- Sino-Swiss Institute of Advanced Technology (SSIAT), Shanghai University, Shanghai, 201899, People's Republic of China.
| | - Charles H Lawrie
- Sino-Swiss Institute of Advanced Technology (SSIAT), Shanghai University, Shanghai, 201899, People's Republic of China.
- Biogipuzkoa Health Research Institute, San Sebastian, 20014, Spain.
- IKERBASQUE, Basque Foundation for Science, Bilbao, 48009, Spain.
- Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DU, UK.
| | - Jianhua Zhang
- School of Microelectronics, Shanghai University, Shanghai, 201800, People's Republic of China.
- Sino-Swiss Institute of Advanced Technology (SSIAT), Shanghai University, Shanghai, 201899, People's Republic of China.
| |
Collapse
|
2
|
Zhang Z, Li H, Zhou N, Zheng Z, Zhai T, Xia F, Lou X. Protein Detection Based on Field-Effect Transistor Biosensors for Diagnosing Diseases. Anal Chem 2025; 97:1951-1959. [PMID: 39848614 DOI: 10.1021/acs.analchem.4c04178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2025]
Abstract
Proteins have been one of the most important biomarkers for diagnosing diseases, and field-effect transistor (FET) biosensors possess high sensitivity; are label-free; and feature real-time detection, rapidity, and easy integration for protein detection. FET biosensors are mainly made up of FET parts, such as channel materials, and bio parts, such as receptors. This Tutorial provides an in-depth exploration of FET biosensors for protein detection from the composition perspective and discusses the commercialization of point-of-care diagnostics of proteins based on FET biosensors.
Collapse
Affiliation(s)
- Zhicheng Zhang
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of the Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, P. R. China
| | - Haiyang Li
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of the Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, P. R. China
| | - Ning Zhou
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of the Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, P. R. China
| | - Zhi Zheng
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of the Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, P. R. China
| | - Tianyou Zhai
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, P. R. China
| | - Fan Xia
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of the Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, P. R. China
| | - Xiaoding Lou
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of the Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, P. R. China
| |
Collapse
|
3
|
Fu GE, Yang H, Zhao W, Samorì P, Zhang T. 2D Conjugated Polymer Thin Films for Organic Electronics: Opportunities and Challenges. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2311541. [PMID: 38551322 DOI: 10.1002/adma.202311541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 03/07/2024] [Indexed: 04/06/2024]
Abstract
2D conjugated polymers (2DCPs) possess extended in-plane π-conjugated lattice and out-of-plane π-π stacking, which results in enhanced electronic performance and potentially unique band structures. These properties, along with predesignability, well-defined channels, easy postmodification, and order structure attract extensive attention from material science to organic electronics. In this review, the recent advance in the interfacial synthesis and conductivity tuning strategies of 2DCP thin films, as well as their application in organic electronics is summarized. Furthermore, it is shown that, by combining topology structure design and targeted conductivity adjustment, researchers have fabricated 2DCP thin films with predesigned active groups, highly ordered structures, and enhanced conductivity. These films exhibit great potential for various thin-film organic electronics, such as organic transistors, memristors, electrochromism, chemiresistors, and photodetectors. Finally, the future research directions and perspectives of 2DCPs are discussed in terms of the interfacial synthetic design and structure engineering for the fabrication of fully conjugated 2DCP thin films, as well as the functional manipulation of conductivity to advance their applications in future organic electronics.
Collapse
Affiliation(s)
- Guang-En Fu
- Key Laboratory of Marine Materials and Related Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| | - Haoyong Yang
- Key Laboratory of Marine Materials and Related Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| | - Wenkai Zhao
- Key Laboratory of Marine Materials and Related Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| | - Paolo Samorì
- University of Strasbourg, CNRS, ISIS UMR 7006, 8 Allée Gaspard Monge, Strasbourg, 67000, France
| | - Tao Zhang
- Key Laboratory of Marine Materials and Related Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| |
Collapse
|
4
|
Ju H, Cheng L, Li M, Mei K, He S, Jia C, Guo X. Single-Molecule Electrical Profiling of Peptides and Proteins. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401877. [PMID: 38639403 PMCID: PMC11267281 DOI: 10.1002/advs.202401877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/03/2024] [Indexed: 04/20/2024]
Abstract
In recent decades, there has been a significant increase in the application of single-molecule electrical analysis platforms in studying proteins and peptides. These advanced analysis methods have the potential for deep investigation of enzymatic working mechanisms and accurate monitoring of dynamic changes in protein configurations, which are often challenging to achieve in ensemble measurements. In this work, the prominent research progress in peptide and protein-related studies are surveyed using electronic devices with single-molecule/single-event sensitivity, including single-molecule junctions, single-molecule field-effect transistors, and nanopores. In particular, the successful commercial application of nanopores in DNA sequencing has made it one of the most promising techniques in protein sequencing at the single-molecule level. From single peptides to protein complexes, the correlation between their electrical characteristics, structures, and biological functions is gradually being established. This enables to distinguish different molecular configurations of these biomacromolecules through real-time electrical monitoring of their life activities, significantly improving the understanding of the mechanisms underlying various life processes.
Collapse
Affiliation(s)
- Hongyu Ju
- School of Pharmaceutical Science and TechnologyTianjin UniversityTianjin300072P. R. China
- Center of Single‐Molecule SciencesInstitute of Modern OpticsFrontiers Science Center for New Organic MatterTianjin Key Laboratory of Microscale Optical Information Science and TechnologyCollege of Electronic Information and Optical EngineeringNankai UniversityTianjin300350P. R. China
| | - Li Cheng
- Center of Single‐Molecule SciencesInstitute of Modern OpticsFrontiers Science Center for New Organic MatterTianjin Key Laboratory of Microscale Optical Information Science and TechnologyCollege of Electronic Information and Optical EngineeringNankai UniversityTianjin300350P. R. China
| | - Mengmeng Li
- Center of Single‐Molecule SciencesInstitute of Modern OpticsFrontiers Science Center for New Organic MatterTianjin Key Laboratory of Microscale Optical Information Science and TechnologyCollege of Electronic Information and Optical EngineeringNankai UniversityTianjin300350P. R. China
| | - Kunrong Mei
- School of Pharmaceutical Science and TechnologyTianjin UniversityTianjin300072P. R. China
| | - Suhang He
- Center of Single‐Molecule SciencesInstitute of Modern OpticsFrontiers Science Center for New Organic MatterTianjin Key Laboratory of Microscale Optical Information Science and TechnologyCollege of Electronic Information and Optical EngineeringNankai UniversityTianjin300350P. R. China
| | - Chuancheng Jia
- Center of Single‐Molecule SciencesInstitute of Modern OpticsFrontiers Science Center for New Organic MatterTianjin Key Laboratory of Microscale Optical Information Science and TechnologyCollege of Electronic Information and Optical EngineeringNankai UniversityTianjin300350P. R. China
| | - Xuefeng Guo
- Center of Single‐Molecule SciencesInstitute of Modern OpticsFrontiers Science Center for New Organic MatterTianjin Key Laboratory of Microscale Optical Information Science and TechnologyCollege of Electronic Information and Optical EngineeringNankai UniversityTianjin300350P. R. China
- Beijing National Laboratory for Molecular SciencesNational Biomedical Imaging CenterCollege of Chemistry and Molecular EngineeringPeking UniversityBeijing100871P. R. China
| |
Collapse
|
5
|
Cho H, Oh DE, Côté S, Lee CS, Kim TH. Orientation-Guided Immobilization of Probe DNA on swCNT-FET for Enhancing Sensitivity of EcoRV Detection. NANO LETTERS 2024; 24:1901-1908. [PMID: 38147528 DOI: 10.1021/acs.nanolett.3c03877] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
We present a novel approach that integrates electrical measurements with molecular dynamics (MD) simulations to assess the activity of type-II restriction endonucleases, specifically EcoRV. Our approach employs a single-walled carbon nanotube field-effect transistor (swCNT-FET) functionalized with the EcoRV substrate DNA, enabling the detection of enzymatic cleavage events. Notably, we leveraged the methylene blue (MB) tag as an "orientation guide" to immobilize the EcoRV substrate DNA in a specific direction, thereby enhancing the proximity of the DNA cleavage reaction to the swCNT surface and consequently improving the sensitivity in EcoRV detection. We conducted computational modeling to compare the conformations and electrostatic potential (ESP) of MB-tagged DNA with its MB-free counterpart, providing strong support for our electrical measurements. Both conformational and ESP simulations exhibited robust agreement with our experimental data. The inhibitory efficacy of the EcoRV inhibitor aurintricarboxylic acid (ATA) was also evaluated, and the selectivity of the sensing device was examined.
Collapse
Affiliation(s)
- Hyunju Cho
- Department of Chemistry, Soonchunhyang University, Asan 31538, Republic of Korea
| | - Da Eun Oh
- Department of Chemistry, Soonchunhyang University, Asan 31538, Republic of Korea
| | - Sébastien Côté
- Département de Physique, Faculté des Arts et des Sciences, Université de Montréal, Montréal H2 V 0B3, Canada
- Département de Physique, Cégep de Saint-Jérôme, Saint-Jérôme J7Z 4 V2, Canada
| | - Chang-Seuk Lee
- Department of Chemistry, Seoul Women's University, Seoul 01797, Republic of Korea
| | - Tae Hyun Kim
- Department of Chemistry, Soonchunhyang University, Asan 31538, Republic of Korea
| |
Collapse
|
6
|
Wang X, Hu J, Wei H, Li Z, Liu J, Zhang J, Yang S. Ultra-fast solvent-free protocol remodels the large-scale synthesis of carbon dots for nucleolus-targeting and white light-emitting diodes. J Colloid Interface Sci 2023; 649:785-794. [PMID: 37385043 DOI: 10.1016/j.jcis.2023.06.171] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 06/05/2023] [Accepted: 06/25/2023] [Indexed: 07/01/2023]
Abstract
Carbon dots (CDs) provides unprecedented opportunities for optical applications due its unique properties, but the energy-extensive consumption, high-risk factor and time-consuming synthesis procedure greatly hinders its industrialization process. Herein, we proposed an ultra-low energy consumption solvent-free synthetic strategy for fast preparing green/red fluorescence carbon dots (G-/R-CDs) using m-/o-phenylenediamine and primary amine hydrochloride. The involvement of primary amine hydrochloride can improve the formation rate of G-CDs/R-CDs through effectively absorbing microwave energy and providing acid react environment. The developed CDs exhibit good fluorescence efficiency, optical stability and membrane permeability for dexterous bioimaging in vivo. Based on inherently high nitrogen content, the G-CDs/R-CDs possess excellent nuclear/nucleolus targeting ability, and were successfully applied for screening cancer and normal cells. Furthermore, the G-CDs/R-CDs were further applied for fabricating high-safety and high-color rendering index white light-emitting diodes, providing a perfect candidate for indoor lighting. This study opens up new horizons for advancing practical applications of CDs in related fields of biology and optics.
Collapse
Affiliation(s)
- Xin Wang
- School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, PR China
| | - Jinshuang Hu
- School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, PR China
| | - Hua Wei
- School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, PR China
| | - Zihan Li
- School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, PR China
| | - Jian Liu
- Institute of Advanced Materials, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China
| | - Jie Zhang
- School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, PR China
| | - Shenghong Yang
- School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, PR China.
| |
Collapse
|
7
|
Paradisi A, Berto M, Di Giosia M, Mazzali S, Borsari M, Marforio TD, Zerbetto F, Calvaresi M, Orieshyna A, Amdursky N, Bortolotti CA, Biscarini F. Robust Biosensor Based on Carbon Nanotubes/Protein Hybrid Electrolyte Gated Transistors. Chemistry 2023; 29:e202301704. [PMID: 37432093 DOI: 10.1002/chem.202301704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/06/2023] [Accepted: 07/11/2023] [Indexed: 07/12/2023]
Abstract
Semiconducting single walled carbon nanotubes (SWCNTs) are promising materials for biosensing applications with electrolyte-gated transistors (EGT). However, to be employed in EGT devices, SWCNTs often require lengthy solution-processing fabrication techniques. Here, we introduce a simple solution-based method that allows fabricating EGT devices from stable dispersions of SWCNTs/bovine serum albumin (BSA) hybrids in water. The dispersion is then deposited on a substrate allowing the formation of a SWCNTs random network as the semiconducting channel. We demonstrate that this methodology allows the fabrication of EGT devices with electric performances that allow their use in biosensing applications. We demonstrate their application for the detection of cortisol in solution, upon gate electrode functionalization with anti-cortisol antibodies. This is a robust and cost-effective methodology that sets the ground for a SWCNT/BSA-based biosensing platform that allows overcoming many limitations of standard SWCNTs biosensor fabrications.
Collapse
Affiliation(s)
- Alessandro Paradisi
- Department of Life Sciences, University of Modena and Reggio Emilia, via Campi 103, 41125, Modena, Italy
| | - Marcello Berto
- Department of Life Sciences, University of Modena and Reggio Emilia, via Campi 103, 41125, Modena, Italy
| | - Matteo Di Giosia
- Chemistry Department "Giacomo Ciamician", Alma Mater Studiorum University of Bologna, Via Francesco Selmi 2, 40126, Bologna, Italy
| | - Sara Mazzali
- Department of Life Sciences, University of Modena and Reggio Emilia, via Campi 103, 41125, Modena, Italy
| | - Marco Borsari
- Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia, Via Campi 103, 41125, Modena, Italy
| | - Tainah Dorina Marforio
- Chemistry Department "Giacomo Ciamician", Alma Mater Studiorum University of Bologna, Via Francesco Selmi 2, 40126, Bologna, Italy
| | - Francesco Zerbetto
- Chemistry Department "Giacomo Ciamician", Alma Mater Studiorum University of Bologna, Via Francesco Selmi 2, 40126, Bologna, Italy
| | - Matteo Calvaresi
- Chemistry Department "Giacomo Ciamician", Alma Mater Studiorum University of Bologna, Via Francesco Selmi 2, 40126, Bologna, Italy
| | - Anna Orieshyna
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, 3200003, Haifa, Israel
| | - Nadav Amdursky
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, 3200003, Haifa, Israel
| | - Carlo Augusto Bortolotti
- Department of Life Sciences, University of Modena and Reggio Emilia, via Campi 103, 41125, Modena, Italy
| | - Fabio Biscarini
- Department of Life Sciences, University of Modena and Reggio Emilia, via Campi 103, 41125, Modena, Italy
- Center for Translational Neurophysiology, Istituto Italiano di Tecnologia, Via Fossato di Mortara 17-19, 44121, Ferrara, Italy
| |
Collapse
|
8
|
Metternich JT, Wartmann JAC, Sistemich L, Nißler R, Herbertz S, Kruss S. Near-Infrared Fluorescent Biosensors Based on Covalent DNA Anchors. J Am Chem Soc 2023. [PMID: 37367958 DOI: 10.1021/jacs.3c03336] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
Semiconducting single-walled carbon nanotubes (SWCNTs) are versatile near-infrared (NIR) fluorophores. They are noncovalently modified to create sensors that change their fluorescence when interacting with biomolecules. However, noncovalent chemistry has several limitations and prevents a consistent way to molecular recognition and reliable signal transduction. Here, we introduce a widely applicable covalent approach to create molecular sensors without impairing the fluorescence in the NIR (>1000 nm). For this purpose, we attach single-stranded DNA (ssDNA) via guanine quantum defects as anchors to the SWCNT surface. A connected sequence without guanines acts as flexible capture probe allowing hybridization with complementary nucleic acids. Hybridization modulates the SWCNT fluorescence and the magnitude increases with the length of the capture sequence (20 > 10 ≫ 6 bases). The incorporation of additional recognition units via this sequence enables a generic route to NIR fluorescent biosensors with improved stability. To demonstrate the potential, we design sensors for bacterial siderophores and the SARS CoV-2 spike protein. In summary, we introduce covalent guanine quantum defect chemistry as rational design concept for biosensors.
Collapse
Affiliation(s)
- Justus T Metternich
- Department of Chemistry, Ruhr-University Bochum, 44801 Bochum, Germany
- Biomedical Nanosensors, Fraunhofer Institute for Microelectronic Circuits and Systems, 47057 Duisburg, Germany
| | | | - Linda Sistemich
- Department of Chemistry, Ruhr-University Bochum, 44801 Bochum, Germany
| | - Robert Nißler
- Nanoparticle Systems Engineering Laboratory, ETH Zürich, 8092 Zürich, Switzerland
- Laboratory for Particles-Biology Interactions, Empa, 9014 St. Gallen, Switzerland
| | - Svenja Herbertz
- Biomedical Nanosensors, Fraunhofer Institute for Microelectronic Circuits and Systems, 47057 Duisburg, Germany
| | - Sebastian Kruss
- Department of Chemistry, Ruhr-University Bochum, 44801 Bochum, Germany
- Biomedical Nanosensors, Fraunhofer Institute for Microelectronic Circuits and Systems, 47057 Duisburg, Germany
- Center for Nanointegration Duisburg-Essen (CENIDE), 47057 Duisburg, Germany
| |
Collapse
|
9
|
Wang Q, Ai Z, Guo Q, Wang X, Dai C, Wang H, Sun J, Tang Y, Jiang D, Pei X, Chen R, Gou J, Yu L, Ding J, Wee ATS, Liu Y, Wei D. Photo-Enhanced Chemo-Transistor Platform for Ultrasensitive Assay of Small Molecules. J Am Chem Soc 2023; 145:10035-10044. [PMID: 37097713 DOI: 10.1021/jacs.2c13655] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2023]
Abstract
Compared with traditional assay techniques, field-effect transistors (FETs) have advantages such as fast response, high sensitivity, being label-free, and point-of-care detection, while lacking generality to detect a wide range of small molecules since most of them are electrically neutral with a weak doping effect. Here, we demonstrate a photo-enhanced chemo-transistor platform based on a synergistic photo-chemical gating effect in order to overcome the aforementioned limitation. Under light irradiation, accumulated photoelectrons generated from covalent organic frameworks offer a photo-gating modulation, amplifying the response to small molecule adsorption including methylglyoxal, p-nitroaniline, nitrobenzene, aniline, and glyoxal when measuring the photocurrent. We perform testing in buffer, artificial urine, sweat, saliva, and diabetic mouse serum. The limit of detection is down to 10-19 M methylglyoxal, about 5 orders of magnitude lower than existing assay technologies. This work develops a photo-enhanced FET platform to detect small molecules or other neutral species with enhanced sensitivity for applications in fields such as biochemical research, health monitoring, and disease diagnosis.
Collapse
Affiliation(s)
- Qiankun Wang
- State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, China
- Department of Macromolecular Science, Fudan University, Shanghai 200433, China
- Laboratory of Molecular Materials and Devices, Fudan University, Shanghai 200433, China
| | - Zhaolin Ai
- State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, China
- Department of Macromolecular Science, Fudan University, Shanghai 200433, China
- Laboratory of Molecular Materials and Devices, Fudan University, Shanghai 200433, China
| | - Qianying Guo
- State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, China
- Department of Macromolecular Science, Fudan University, Shanghai 200433, China
- Laboratory of Molecular Materials and Devices, Fudan University, Shanghai 200433, China
| | - Xuejun Wang
- State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, China
- Department of Macromolecular Science, Fudan University, Shanghai 200433, China
- Laboratory of Molecular Materials and Devices, Fudan University, Shanghai 200433, China
| | - Changhao Dai
- State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, China
- Department of Macromolecular Science, Fudan University, Shanghai 200433, China
- Laboratory of Molecular Materials and Devices, Fudan University, Shanghai 200433, China
| | - Hancheng Wang
- State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, China
- Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Jiang Sun
- State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, China
- Department of Macromolecular Science, Fudan University, Shanghai 200433, China
- Laboratory of Molecular Materials and Devices, Fudan University, Shanghai 200433, China
| | - Yanan Tang
- State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, China
- Department of Macromolecular Science, Fudan University, Shanghai 200433, China
- Laboratory of Molecular Materials and Devices, Fudan University, Shanghai 200433, China
| | - Dingding Jiang
- State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, China
- Department of Macromolecular Science, Fudan University, Shanghai 200433, China
- Laboratory of Molecular Materials and Devices, Fudan University, Shanghai 200433, China
| | - Xinjie Pei
- State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, China
- Department of Macromolecular Science, Fudan University, Shanghai 200433, China
- Laboratory of Molecular Materials and Devices, Fudan University, Shanghai 200433, China
| | - Renzhong Chen
- State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, China
- Department of Macromolecular Science, Fudan University, Shanghai 200433, China
- Laboratory of Molecular Materials and Devices, Fudan University, Shanghai 200433, China
| | - Jian Gou
- Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore 117542, Singapore
| | - Lin Yu
- State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, China
- Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Jiandong Ding
- State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, China
- Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Andrew T S Wee
- Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore 117542, Singapore
| | - Yunqi Liu
- Laboratory of Molecular Materials and Devices, Fudan University, Shanghai 200433, China
- Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Dacheng Wei
- State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, China
- Department of Macromolecular Science, Fudan University, Shanghai 200433, China
- Laboratory of Molecular Materials and Devices, Fudan University, Shanghai 200433, China
- Research Institute of Intelligent Complex Systems, Fudan University, Shanghai 200433, China
| |
Collapse
|
10
|
Galonska P, Mohr JM, Schrage CA, Schnitzler L, Kruss S. Guanine Quantum Defects in Carbon Nanotubes for Biosensing. J Phys Chem Lett 2023; 14:3483-3490. [PMID: 37011259 DOI: 10.1021/acs.jpclett.3c00358] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Fluorescent single-wall carbon nanotubes (SWCNTs) are used as nanoscale biosensors in diverse applications. Selectivity is built in by noncovalent functionalization with polymers such as DNA. Recently, covalent functionalization was demonstrated by conjugating guanine bases of adsorbed DNA to the SWCNT surface as guanine quantum defects (g-defects). Here, we create g-defects in (GT)10-coated SWCNTs (Gd-SWCNTs) and explore how this affects molecular sensing. We vary the defect densities, which shifts the E11 fluorescence emission by 55 nm to a λmax of 1049 nm. Furthermore, the Stokes shift between absorption and emission maximum linearly increases with defect density by up to 27 nm. Gd-SWCNTs represent sensitive sensors and increase their fluorescence by >70% in response to the important neurotransmitter dopamine and decrease it by 93% in response to riboflavin. Additionally, the extent of cellular uptake of Gd-SWCNTs decreases. These results show how physiochemical properties change with g-defects and that Gd-SWCNTs constitute a versatile optical biosensor platform.
Collapse
Affiliation(s)
- Phillip Galonska
- Department of Chemistry, Ruhr University Bochum, 44801 Bochum, Germany
| | - Jennifer M Mohr
- Department of Chemistry, Ruhr University Bochum, 44801 Bochum, Germany
| | | | - Lena Schnitzler
- Department of Chemistry, Ruhr University Bochum, 44801 Bochum, Germany
| | - Sebastian Kruss
- Department of Chemistry, Ruhr University Bochum, 44801 Bochum, Germany
- Fraunhofer Institute for Microelectronic Circuits and Systems, 47057 Duisburg, Germany
| |
Collapse
|
11
|
Click-Functionalization of Silanized Carbon Nanotubes: From Inorganic Heterostructures to Biosensing Nanohybrids. Molecules 2023; 28:molecules28052161. [PMID: 36903408 PMCID: PMC10004328 DOI: 10.3390/molecules28052161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/22/2023] [Accepted: 02/23/2023] [Indexed: 03/03/2023] Open
Abstract
Here we present an approach to functionalize silanized single-walled carbon nanotubes (SWNTs) through copper-free click chemistry for the assembly of inorganic and biological nanohybrids. The nanotube functionalization route involves silanization and strain-promoted azide-alkyne cycloaddition reactions (SPACC). This was characterized by X-ray photoelectron spectroscopy, scanning electron microscopy, transmission electron microscopy, Raman spectroscopy and Fourier transform infra-red spectroscopy. Silane-azide-functionalized SWNTs were immobilized from solution onto patterned substrates through dielectrophoresis (DEP). We demonstrate the general applicability of our strategy for the functionalization of SWNTs with metal nanoparticles (gold nanoparticles), fluorescent dyes (Alexa Fluor 647) and biomolecules (aptamers). In this regard, dopamine-binding aptamers were conjugated to the functionalized SWNTs to perform real-time detection of dopamine at different concentrations. Additionally, the chemical route is shown to selectively functionalize individual nanotubes grown on the surface of silicon substrates, contributing towards future nano electronic device applications.
Collapse
|
12
|
Wang H, Boghossian AA. Covalent conjugation of proteins onto fluorescent single-walled carbon nanotubes for biological and medical applications. MATERIALS ADVANCES 2023; 4:823-834. [PMID: 36761250 PMCID: PMC9900427 DOI: 10.1039/d2ma00714b] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 11/02/2022] [Indexed: 05/20/2023]
Abstract
Single-walled carbon nanotubes (SWCNTs) have optical properties that are conducive for biological applications such as sensing, delivery, and imaging. These applications necessitate the immobilization of macromolecules that can serve as therapeutic drugs, molecular templates, or modulators of surface interactions. Although previous studies have focused on non-covalent immobilization strategies, recent advances have introduced covalent functional handles that can preserve or even enhance the SWCNT optical properties. This review presents an overview of covalent sidewall modifications of SWCNTs, with a focus on the latest generation of "sp3 defect" modifications. We summarize and compare the reaction conditions and the reported products of these sp3 chemistries. We further review the underlying photophysics governing SWCNT fluorescence and apply these principles to the fluorescence emitted from these covalently modified SWCNTs. Finally, we provide an outlook on additional chemistries that could be applied to covalently conjugate proteins to these chemically modified, fluorescent SWCNTs. We review the advantages of these approaches, emerging opportunities for further improvement, as well as their implications for enabling new technologies.
Collapse
Affiliation(s)
- Hanxuan Wang
- Ecole Polytechnique Fédérale de Lausanne (EPFL), Institute of Chemical Sciences and Engineering CH-1015 Lausanne Switzerland
| | - Ardemis A Boghossian
- Ecole Polytechnique Fédérale de Lausanne (EPFL), Institute of Chemical Sciences and Engineering CH-1015 Lausanne Switzerland
| |
Collapse
|
13
|
Barnes B, Wang P, Wang Y. Parallel Field-Effect Nanosensors Detect Trace Biomarkers Rapidly at Physiological High-Ionic-Strength Conditions. ACS Sens 2022; 7:2537-2544. [PMID: 35700322 PMCID: PMC9509463 DOI: 10.1021/acssensors.2c00229] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Sensitivity and speed of detection are contradicting demands that profoundly impact the electrical sensing of molecular biomarkers. Although single-molecule sensitivity can now be achieved with single-nanotube field-effect transistors, these tiny sensors, with a diameter less than 1 nm, may take hours to days to capture the molecular target at trace concentrations. Here, we show that this sensitivity-speed challenge can be addressed using covalently functionalized double-wall CNTs that form many individualized, parallel pathways between two electrodes. Each carrier that travels across the electrodes is forced to take one of these pathways that are fully gated chemically by the target-probe binding events. This sensor design allows us to electrically detect Lyme disease oligonucleotide biomarkers directly at the physiological high-salt concentrations, simultaneously achieving both ultrahigh sensitivity (as low as 1 fM) and detection speed (<15 s). This unexpectedly simple strategy may open opportunities for sensor designs to broadly achieve instant detection of trace biomarkers and real-time probing of biomolecular functions directly at their physiological states.
Collapse
|
14
|
Zubkovs V, Wang H, Schuergers N, Weninger A, Glieder A, Cattaneo S, Boghossian AA. Bioengineering a glucose oxidase nanosensor for near-infrared continuous glucose monitoring. NANOSCALE ADVANCES 2022; 4:2420-2427. [PMID: 35746900 PMCID: PMC9154020 DOI: 10.1039/d2na00092j] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 04/30/2022] [Indexed: 05/14/2023]
Abstract
Single-walled carbon nanotubes (SWCNTs) emit photostable near-infrared (NIR) fluorescence that is conducive for optical glucose monitoring. Such SWCNT-based optical sensors often require the immobilization of proteins that can confer glucose selectivity and reactivity. In this work, we immobilize a glucose-reactive enzyme, glucose oxidase (GOx), onto SWCNTs using a N-(1-pyrenyl)maleimide (PM) crosslinker via thiol bioconjugation of engineered cysteine residues. We compare the conjugation of several glucose oxidase variants containing rationally-engineered cysteines and identify a D70C variant that shows effective bioconjugation. The bioconjugation was characterized through both absorption and fluorescence spectroscopy. Furthermore, we demonstrate an application for continuous glucose monitoring in the NIR-II optical region using the bioconjugated reaction solution, which shows a reversible response to physiological concentrations of glucose. Finally, we develop a miniaturized NIR-II reader to be used for cell cultures that require continuous glucose monitoring.
Collapse
Affiliation(s)
- Vitalijs Zubkovs
- Ecole Polytechnique Fédérale de Lausanne (EPFL), Institute of Chemical Sciences and Engineering CH-1015 Lausanne Switzerland
- Swiss Center for Electronics and Microtechnology (CSEM) Landquart Switzerland
| | - Hanxuan Wang
- Ecole Polytechnique Fédérale de Lausanne (EPFL), Institute of Chemical Sciences and Engineering CH-1015 Lausanne Switzerland
| | - Nils Schuergers
- Ecole Polytechnique Fédérale de Lausanne (EPFL), Institute of Chemical Sciences and Engineering CH-1015 Lausanne Switzerland
- Institute of Biology III, University of Freiburg Freiburg Germany
| | - Astrid Weninger
- Institute of Molecular Biotechnology, Graz University of Technology Graz Austria
| | - Anton Glieder
- Institute of Molecular Biotechnology, Graz University of Technology Graz Austria
- bisy GmbH Hofstaetten Austria
| | - Stefano Cattaneo
- Swiss Center for Electronics and Microtechnology (CSEM) Landquart Switzerland
| | - Ardemis A Boghossian
- Ecole Polytechnique Fédérale de Lausanne (EPFL), Institute of Chemical Sciences and Engineering CH-1015 Lausanne Switzerland
| |
Collapse
|
15
|
Côté S, Bouilly D, Mousseau N. The molecular origin of the electrostatic gating of single-molecule field-effect biosensors investigated by molecular dynamics simulations. Phys Chem Chem Phys 2022; 24:4174-4186. [PMID: 35113103 DOI: 10.1039/d1cp04626h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Field-effect biosensors (bioFETs) offer a novel way to measure the kinetics of biomolecular events such as protein function and DNA hybridization at the single-molecule level on a wide range of time scales. These devices generate an electrical current whose fluctuations are correlated to the kinetics of the biomolecule under study. BioFETs are indeed highly sensitive to changes in the electrostatic potential (ESP) generated by the biomolecule. Here, using all-atom solvent explicit molecular dynamics simulations, we further investigate the molecular origin of the variation of this ESP for two prototypical cases of proteins or nucleic acids attached to a carbon nanotube bioFET: the function of the lysozyme protein and the hybridization of a 10-nt DNA sequence, as previously done experimentally. Our results show that the ESP changes significantly on the surface of the carbon nanotube as the state of these two biomolecules changes. More precisely, the ESP distributions calculated for these molecular states explain well the magnitude of the conductance fluctuations measured experimentally. The dependence of the ESP with salt concentration is found to agree with the reduced conductance fluctuations observed experimentally for the lysozyme, but to differ for the case of DNA, suggesting that other mechanisms might be at play in this case. Furthermore, we show that the carbon nanotube does not impact significantly the structural stability of the lysozyme, corroborating that the kinetic rates measured using bioFETs are similar to those measured by other techniques. For DNA, we find that the structural ensemble of the single-stranded DNA is significantly impacted by the presence of the nanotube, which, combined with the ESP analysis, suggests a stronger DNA-device interplay. Overall, our simulations strengthen the comprehension of the inner working of field-effect biosensors used for single-molecule kinetics measurements on proteins and nucleic acids.
Collapse
Affiliation(s)
- Sébastien Côté
- Département de Physique, Faculté des Arts et des Sciences, Université de Montréal, Montréal, Canada. .,Département de Physique, Cégep de Saint-Jérôme, Saint-Jérôme, Canada
| | - Delphine Bouilly
- Département de Physique, Faculté des Arts et des Sciences, Université de Montréal, Montréal, Canada. .,Institut de recherche en immunologie et cancérologie (IRIC), Université de Montréal, Montréal, Canada.
| | - Normand Mousseau
- Département de Physique, Faculté des Arts et des Sciences, Université de Montréal, Montréal, Canada.
| |
Collapse
|