1
|
Erhart T, Nadegger C, Vergeiner S, Kreutz C, Müller T, Kräutler B. Novel Types of Phyllobilins in a Fern - Molecular Reporters of the Evolution of Chlorophyll Breakdown in the Paleozoic Era. Chemistry 2024; 30:e202401288. [PMID: 38634697 DOI: 10.1002/chem.202401288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 04/17/2024] [Indexed: 04/19/2024]
Abstract
Breakdown of chlorophyll (Chl), as studied in angiosperms, follows the pheophorbide a oxygenase/phyllobilin (PaO/PB) pathway, furnishing linear tetrapyrroles, named phyllobilins (PBs). In an investigation with fern leaves we have discovered iso-phyllobilanones (iPBs) with an intriguingly rearranged and oxidized carbon skeleton. We report here a key second group of iPBs from the fern and on their structure analysis. Previously, these additional Chl-catabolites escaped their characterization, since they exist in aqueous media as mixtures of equilibrating isomers. However, their chemical dehydration furnished stable iPB-derivatives that allowed the delineation of the enigmatic structures and chemistry of the original natural catabolites. The structures of all fern-iPBs reflect the early core steps of a PaO/PB-type pathway and the PB-to-iPB carbon skeleton rearrangement. A striking further degradative chemical ring-cleavage was observed, proposed to consume singlet molecular oxygen (1O2). Hence, Chl-catabolites may play a novel active role in detoxifying cellular 1O2. The critical deviations from the PaO/PB pathway, found in the fern, reflect evolutionary developments of Chl-breakdown in the green plants in the Paleozoic era.
Collapse
Affiliation(s)
- Theresia Erhart
- Institute of Organic Chemistry and Center for Molecular Biosciences, University of Innsbruck, 6020, Innsbruck, Austria
| | - Christian Nadegger
- Institute of Organic Chemistry and Center for Molecular Biosciences, University of Innsbruck, 6020, Innsbruck, Austria
| | - Stefan Vergeiner
- Institute of Organic Chemistry and Center for Molecular Biosciences, University of Innsbruck, 6020, Innsbruck, Austria
| | - Christoph Kreutz
- Institute of Organic Chemistry and Center for Molecular Biosciences, University of Innsbruck, 6020, Innsbruck, Austria
| | - Thomas Müller
- Institute of Organic Chemistry and Center for Molecular Biosciences, University of Innsbruck, 6020, Innsbruck, Austria
| | - Bernhard Kräutler
- Institute of Organic Chemistry and Center for Molecular Biosciences, University of Innsbruck, 6020, Innsbruck, Austria
| |
Collapse
|
2
|
Karg CA, Taniguchi M, Lindsey JS, Moser S. Phyllobilins - Bioactive Natural Products Derived from Chlorophyll - Plant Origins, Structures, Absorption Spectra, and Biomedical Properties. PLANTA MEDICA 2023; 89:637-662. [PMID: 36198325 DOI: 10.1055/a-1955-4624] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Phyllobilins are open-chain products of the biological degradation of chlorophyll a in higher plants. Recent studies reveal that phyllobilins exert anti-oxidative and anti-inflammatory properties, as well as activities against cancer cells, that contribute to the human health benefits of numerous plants. In general, phyllobilins have been overlooked in phytochemical analyses, and - more importantly - in the analyses of medicinal plant extracts. Nevertheless, over the past three decades, > 70 phyllobilins have been identified upon examination of more than 30 plant species. Eight distinct chromophoric classes of phyllobilins are known: phyllolumibilins (PluBs), phylloleucobilins (PleBs), phylloxanthobilins (PxBs), and phylloroseobilins (PrBs)-each in type-I or type-II groups. Here, we present a database of absorption and fluorescence spectra that has been compiled of 73 phyllobilins to facilitate identification in phytochemical analyses. The spectra are provided in digital form and can be viewed and downloaded at www.photochemcad.com. The present review describes the plant origin, molecular structure, and absorption and fluorescence features of the 73 phyllobilins, along with an overview of key medicinal properties. The review should provide an enabling tool for the community for the straightforward identification of phyllobilins in plant extracts, and the foundation for deeper understanding of these ubiquitous but underexamined plant-derived micronutrients for human health.
Collapse
Affiliation(s)
- Cornelia A Karg
- Department of Pharmacy, Pharmaceutical Biology, Ludwig-Maximilian University of Munich, Germany
| | | | | | - Simone Moser
- Department of Pharmacy, Pharmaceutical Biology, Ludwig-Maximilian University of Munich, Germany
| |
Collapse
|
3
|
Vollmar AM, Moser S. The advent of phyllobilins as bioactive phytochemicals – natural compounds derived from chlorophyll in medicinal plants and food with immunomodulatory activities. Pteridines 2023. [DOI: 10.1515/pteridines-2022-0047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2023] Open
Abstract
Abstract
The degradation of the green plant pigment chlorophyll has fascinated chemists and biologists alike over the last few decades. Bioactivities of the compounds formed in this biochemical degradation pathway, however, have only come to light recently. These natural compounds that are formed from chlorophyll during plant senescence are now called phyllobilins. In this review, we shortly discuss chlorophyll degradation and outline the so-far known bioactivities of selected phyllobilins (phylloleucobilin, dioxobilin-type phylloleucobilin, and phylloxanthobilin), and we also highlight the recently discovered immunomodulatory effects of a yellow phylloxanthobilin.
Collapse
Affiliation(s)
- Angelika M. Vollmar
- Department of Pharmacy, Ludwig-Maximilian University of Munich , Munich , Germany
| | - Simone Moser
- Department of Pharmacy, Ludwig-Maximilian University of Munich , Munich , Germany
| |
Collapse
|
4
|
Karg CA, Parráková L, Fuchs D, Schennach H, Kräutler B, Moser S, Gostner JM. A Chlorophyll-Derived Phylloxanthobilin Is a Potent Antioxidant That Modulates Immunometabolism in Human PBMC. Antioxidants (Basel) 2022; 11:antiox11102056. [PMID: 36290779 PMCID: PMC9599000 DOI: 10.3390/antiox11102056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 09/30/2022] [Accepted: 10/07/2022] [Indexed: 11/16/2022] Open
Abstract
Phyllobilins are natural products derived from the degradation of chlorophyll, which proceeds via a common and strictly controlled pathway in higher plants. The resulting tetrapyrrolic catabolites—the phyllobilins—are ubiquitous in nature; despite their high abundance, there is still a lack of knowledge about their physiological properties. Phyllobilins are part of human nutrition and were shown to be potent antioxidants accounting with interesting physiological properties. Three different naturally occurring types of phyllobilins—a phylloleucobilin, a dioxobilin-type phylloleucobilin and a phylloxanthobilin (PxB)—were compared regarding potential antioxidative properties in a cell-free and in a cell-based antioxidant activity test system, demonstrating the strongest effect for the PxB. Moreover, the PxB was investigated for its capacity to interfere with immunoregulatory metabolic pathways of tryptophan breakdown in human blood peripheral mononuclear cells. A dose-dependent inhibition of tryptophan catabolism to kynurenine was observed, suggesting a suppressive effect on pathways of cellular immune activation. Although the exact mechanisms of immunomodulatory effects are yet unknown, these prominent bioactivities point towards health-relevant effects, which warrant further mechanistic investigations and the assessment of the in vivo extrapolatability of results. Thus, phyllobilins are a still surprisingly unexplored family of natural products that merit further investigation.
Collapse
Affiliation(s)
- Cornelia A. Karg
- Department of Pharmaceutical Biology, Ludwig-Maximilian University of Munich, Butenandtstr. 5–13, 81977 Munich, Germany
| | - Lucia Parráková
- Institute of Medical Biochemistry, Medical University of Innsbruck, Innrain 80, 6020 Innsbruck, Austria
| | - Dietmar Fuchs
- Institute of Biological Chemistry, Medical University of Innsbruck, Innrain 80, 6020 Innsbruck, Austria
| | - Harald Schennach
- Central Institute of Blood Transfusion and Immunology, University Hospital, Anichstr. 35, 6020 Innsbruck, Austria
| | - Bernhard Kräutler
- Institute of Organic Chemistry, Center for Molecular Biosciences, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Simone Moser
- Department of Pharmaceutical Biology, Ludwig-Maximilian University of Munich, Butenandtstr. 5–13, 81977 Munich, Germany
- Correspondence: (S.M.); (J.M.G.); Tel.: +49-89-2180-77175 (S.M.); +43-512-9003-70120 (J.M.G.)
| | - Johanna M. Gostner
- Institute of Medical Biochemistry, Medical University of Innsbruck, Innrain 80, 6020 Innsbruck, Austria
- Correspondence: (S.M.); (J.M.G.); Tel.: +49-89-2180-77175 (S.M.); +43-512-9003-70120 (J.M.G.)
| |
Collapse
|
5
|
Facile retro-Dieckmann cleavage of a pink phyllobilin: new type of potential downstream steps of natural chlorophyll breakdown. MONATSHEFTE FUR CHEMIE 2022. [DOI: 10.1007/s00706-022-02894-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
AbstractIn senescent leaves of higher plants, colourless chlorophyll (Chl) catabolites typically accumulate temporarily, and undergo natural oxidation, in part, to yellow- and pink-coloured phyllobilins (PBs). The latter, also classified as phylloroseobilins (PrBs), represent the final currently established products of Chl-breakdown, possibly playing important roles in metabolism. However, PrBs, themselves, do not accumulate in the leaves. Indeed, the original PrB identified, then classified as a pink Chl-catabolite (PiCC), is remarkably instable in methanolic solution. As reported here, PiCC readily converts at room temperature into yellow tetrapyrroles. The deduced main process, a retro-Dieckmann reaction, cleaves open its ring E moiety, the α-methoxycarbonyl-cyclopentanone unit characteristic of the Chls and of the natural Chl-derived PBs. This readily occurring reaction of the PiCC represents an unprecedented skeletal transformation of a PB, furnishing a cross-conjugated biladiene with a basic structure more similar to the heme-derived bilins.
Graphical abstract
Collapse
|