1
|
Shibuya M, Yuruka S, Yamamoto Y. Generation of Bis(pentafluorophenyl)boron Enolates from Alkynes and Their Catalyst-Free Alkyne Coupling. Angew Chem Int Ed Engl 2025; 64:e202417910. [PMID: 39487096 DOI: 10.1002/anie.202417910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 10/25/2024] [Accepted: 10/31/2024] [Indexed: 11/04/2024]
Abstract
Carbon-carbon bond forming reactions are powerful synthetic tools for constructing organic molecular frameworks. In this study, strongly Lewis acidic bis(pentafluorophenyl)boron enolates were generated from alkynes through oxygen transfer from 2,6-dibromopyridine N-oxide using tris(pentafluorophenyl)borane [B(C6F5)3]. Boron enolates were highly reactive owing to the strong Lewis acidity of the boron centers, and thus immediately coupled with alkynes. N-Ethynylphthalimide reacted as an alkyne with 2,6-dibromopyridine N-oxide and B(C6F5)3 to form a semi-stable bis(pentafluorophenyl)boron enolate through the coordination of the carbonyl group to the boron center. This enolate underwent coupling with another alkyne.
Collapse
Affiliation(s)
- Masatoshi Shibuya
- Department of Chemical and Biological Sciences, Faculty of Sciences, Japan Women's University, 2-8-1 Mejirodai, Bunkyo-ku, Tokyo 112-8681, Japan
| | - Souta Yuruka
- Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Furo-cho, Chikusa, Nagoya 464-8603, Japan
| | - Yoshihiko Yamamoto
- Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Furo-cho, Chikusa, Nagoya 464-8603, Japan
| |
Collapse
|
2
|
Zhu B, Chen ZC, Du W, Chen YC. Facile construction of benzofulvene frameworks via a palladium-catalysed three-component reaction. Org Biomol Chem 2024; 22:8397-8400. [PMID: 39329403 DOI: 10.1039/d4ob01414f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2024]
Abstract
Here we report a three-component reaction of 2-formylarylboronic acids, N-sulfonyl amines and 1,3-enynes, proceeding through a cascade imine formation/Pd0-catalysed vinylogous addition/intramolecular Suzuki coupling/isomerization process. This protocol exhibited broad substrate scope and good functionality tolerance, and a spectrum of multifunctionalised benzofulvene derivatives were furnished in moderate to good yields and E/Z-selectivity.
Collapse
Affiliation(s)
- Bo Zhu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Ministry of Education and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| | - Zhi-Chao Chen
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Ministry of Education and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| | - Wei Du
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Ministry of Education and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| | - Ying-Chun Chen
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Ministry of Education and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
- College of Pharmacy, Third Military Medical University, Chongqing 400038, China
| |
Collapse
|
3
|
Zhu L, Zhao B, Xie K, Gui WT, Niu SL, Zheng PF, Chen YC, Qi XW, Ouyang Q. Metal π-Lewis base activation in palladium(0)-catalyzed trans-alkylative cyclization of alkynals. Chem Sci 2024; 15:13032-13040. [PMID: 39148807 PMCID: PMC11323327 DOI: 10.1039/d4sc04190a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 07/12/2024] [Indexed: 08/17/2024] Open
Abstract
The Pd(0)-mediated umpolung reaction of an alkyne to achieve trans-difunctionalization is a potential synthetic methodology, but its insightful activation mechanism of Pd(0)-alkyne interaction has yet to be established. Here, a Pd(0)-π-Lewis base activation mode is proposed and investigated by combining theoretical and experimental studies. In this activation mode, the Pd(0) coordinates to the alkyne group and enhances its nucleophilicity through π-back-donation, facilitating the nucleophilic attack on the aldehyde to generate a trans-Pd(ii)-vinyl complex. Ligand-effect studies reveal that the more electron-donating one would accelerate the reaction, and the cyclization of the challenging flexible C- or O-tethered substrates has been realized. The origin of regioselectivities is also explicated by the newly proposed metal π-Lewis base activation mode.
Collapse
Affiliation(s)
- Lei Zhu
- College of Pharmacy, Third Military Medical University Shapingba Chongqing 400038 China
- Breast and Thyroid Surgery, Southwest Hospital, Third Military Medical University Shapingba Chongqing 400038 China
| | - Bo Zhao
- College of Pharmacy, Third Military Medical University Shapingba Chongqing 400038 China
| | - Ke Xie
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Ministry of Education and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University Chengdu 610041 China
| | - Wu-Tao Gui
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Ministry of Education and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University Chengdu 610041 China
| | - Sheng-Li Niu
- College of Pharmacy, Third Military Medical University Shapingba Chongqing 400038 China
| | - Peng-Fei Zheng
- College of Pharmacy, Third Military Medical University Shapingba Chongqing 400038 China
| | - Ying-Chun Chen
- College of Pharmacy, Third Military Medical University Shapingba Chongqing 400038 China
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Ministry of Education and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University Chengdu 610041 China
| | - Xiao-Wei Qi
- Breast and Thyroid Surgery, Southwest Hospital, Third Military Medical University Shapingba Chongqing 400038 China
| | - Qin Ouyang
- College of Pharmacy, Third Military Medical University Shapingba Chongqing 400038 China
| |
Collapse
|
4
|
Xu MM, Xie PP, He JX, Zhang YZ, Zheng C, Cai Q. Enantioselective Cross-[4 + 2]-Cycloaddition/Decarboxylation of 2-Pyrones by Cooperative Catalysis of the Pd(0)/NHC Complex and Chiral Phosphoric Acid. J Am Chem Soc 2024; 146:6936-6946. [PMID: 38414423 DOI: 10.1021/jacs.3c14409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
Here, we describe a cooperative Pd(0)/chiral phosphoric acid catalytic system that allows us to realize the first chemo-, regio-, and enantioselective sequential cross-[4 + 2]-cycloaddition/decarboxylation reaction between 2-pyrones and unactivated acyclic 1,3-dienes. The key to the success of this transformation is the utilization of an achiral N-heterocyclic carbene (NHC) as the ligand and a newly developed chiral phosphoric acid as the cocatalyst. Experimental investigations and computational studies support the idea that the Pd(0)/NHC complex acts as a π-Lewis base to increase the nucleophilicity of 1,3-dienes via η2 coordination, while the chiral phosphoric acid simultaneously increases the electrophilicity of 2-pyrones by hydrogen bonding. By this synergistic catalysis, the sequential cross-[4 + 2]-cycloaddition and decarboxylation reaction proceeds efficiently, enabling the preparation of a wide range of chiral vinyl-substituted 1,3-cyclohexadienes in good yields and enantioselectivities. The synthetic utility of this reaction is demonstrated by synthetic transformations of the product to various valuable chiral six-membered carbocycles.
Collapse
Affiliation(s)
- Meng-Meng Xu
- Department of Chemistry, Research Center for Molecular Recognition and Synthesis, Fudan University, Shanghai 200433, China
| | - Pei-Pei Xie
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| | - Jun-Xiong He
- Department of Chemistry, Research Center for Molecular Recognition and Synthesis, Fudan University, Shanghai 200433, China
| | - Yu-Zhen Zhang
- Department of Chemistry, Research Center for Molecular Recognition and Synthesis, Fudan University, Shanghai 200433, China
| | - Chao Zheng
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| | - Quan Cai
- Department of Chemistry, Research Center for Molecular Recognition and Synthesis, Fudan University, Shanghai 200433, China
| |
Collapse
|
5
|
Eaton M, Zhang Y, Liu SY. Borataalkenes, boraalkenes, and the η 2-B,C coordination mode in coordination chemistry and catalysis. Chem Soc Rev 2024; 53:1915-1935. [PMID: 38190152 PMCID: PMC10922737 DOI: 10.1039/d3cs00730h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Borataalkenes and boraalkenes are the boron-containing isoelectronic analogues of alkenes and vinyl cations respectively. Compared with alkenes, the borataalkene and boraalkene ligand motifs in transition metal coordination chemistry are relatively underexplored. In this review, the synthesis of borataalkene and boraalkene complexes and other transition metal complexes featuring the η2-B,C coordination mode is described. The diversity of coordination modes and geometry in these complexes, and the spectroscopic and structural evidence supporting their assignments is disclosed as well as computational analysis of bonding. The applications of the borataalkene ligand motif in synthetic organic homogeneous catalysis, especially those involving geminal bis(pinacolatoboronates) and 1,4-azaborines, are discussed.
Collapse
Affiliation(s)
- Maxwell Eaton
- Department of Chemistry, Boston College, Chestnut Hill, Massachusetts, 02467-3860, USA.
| | - Yuanzhe Zhang
- Department of Chemistry, Boston College, Chestnut Hill, Massachusetts, 02467-3860, USA.
| | - Shih-Yuan Liu
- Department of Chemistry, Boston College, Chestnut Hill, Massachusetts, 02467-3860, USA.
- Université de Pau et des Pays de l'Adour, E2S UPPA/CNRS, Institut des Sciences Analytiques et de Physico-Chimie pour l'Environnement et les Matériaux IPREM UMR 5254. Hélioparc, 2 avenue P. Angot, 64053 Pau cedex 09, France
| |
Collapse
|
6
|
Feng YL, Zhang BW, Xu Y, Jin S, Mazzarella D, Cao ZY. The reactivity of alkenyl boron reagents in catalytic reactions: recent advances and perspectives. Org Chem Front 2024; 11:7249-7277. [DOI: 10.1039/d4qo01703j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Recent advances focusing on novel reactivity of alkenyl boron reagents in polar or radical pathways within catalytic reactions by employing transition metal catalysis, organocatalysis have been summarized and discussed.
Collapse
Affiliation(s)
- Ya-Li Feng
- Engineering Research Center for Water Environment and Health of Henan, Zhengzhou University of Industrial Technology, Zhengzhou 451150, China
- Faculty of Biology and Chemistry, Arabaev Kyrgyz State University, Bishkek 720026, Kyrgyzstan
| | - Bo-Wen Zhang
- Engineering Research Center for Water Environment and Health of Henan, Zhengzhou University of Industrial Technology, Zhengzhou 451150, China
- Faculty of Biology and Chemistry, Arabaev Kyrgyz State University, Bishkek 720026, Kyrgyzstan
| | - Youzhi Xu
- College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, P. R. China
| | - Shengnan Jin
- College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, P. R. China
| | - Daniele Mazzarella
- Department of Chemical Sciences, University of Padova, Via Francesco Marzolo 1, 35131, Padova, Italy
| | - Zhong-Yan Cao
- College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, P. R. China
| |
Collapse
|
7
|
Zou S, Zhao Z, Huang H. Palladium-Catalyzed Aminoalkylative Cyclization Enables Modular Synthesis of Exocyclic 1,3-Dienes. Angew Chem Int Ed Engl 2023; 62:e202311603. [PMID: 37815155 DOI: 10.1002/anie.202311603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/07/2023] [Accepted: 10/09/2023] [Indexed: 10/11/2023]
Abstract
A novel and efficient palladium-catalyzed regioselective and stereodivergent ring-closing reaction of aminoenynes with aldehydes and boronic acids or hydrosilane is developed. This three-component reaction allows for the modular synthesis of a series of exocyclic 1,3-dienes bearing 5- to 8-membered saturated N-heterocycles. The reactions utilize a simple Pd-catalyst and work with broad range of aminoenynes, aldehydes and organometallic reagents under mild reaction conditions. The products represent useful intermediates for chemical synthesis due to the versatility of the conjugated diene. Preliminary mechanistic details of the method are also revealed.
Collapse
Affiliation(s)
- Suchen Zou
- Key Laboratory of Precision and Intelligent Chemistry and Department of Chemistry, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Zeyu Zhao
- Key Laboratory of Precision and Intelligent Chemistry and Department of Chemistry, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Hanmin Huang
- Key Laboratory of Precision and Intelligent Chemistry and Department of Chemistry, University of Science and Technology of China, Hefei, 230026, P. R. China
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, Huaibei Normal University, Huaibei, Anhui, 235000, P. R. China
| |
Collapse
|
8
|
Corpas J, Gomez-Mendoza M, Arpa EM, de la Peña
O'Shea VA, Durbeej B, Carretero JC, Mauleón P, Arrayás R. Iterative Dual-Metal and Energy Transfer Catalysis Enables Stereodivergence in Alkyne Difunctionalization: Carboboration as Case Study. ACS Catal 2023; 13:14914-14927. [PMID: 38026817 PMCID: PMC10662505 DOI: 10.1021/acscatal.3c03570] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/04/2023] [Indexed: 12/01/2023]
Abstract
Stereochemically defined tetrasubstituted olefins are widespread structural elements of organic molecules and key intermediates in organic synthesis. However, flexible methods enabling stereodivergent access to E and Z isomers of fully substituted alkenes from a common precursor represent a significant challenge and are actively sought after in catalysis, especially those amenable to complex multifunctional molecules. Herein, we demonstrate that iterative dual-metal and energy transfer catalysis constitutes a unique platform for achieving stereodivergence in the difunctionalization of internal alkynes. The utility of this approach is showcased by the stereodivergent synthesis of both stereoisomers of tetrasubstituted β-boryl acrylates from internal alkynoates with excellent stereocontrol via sequential carboboration and photoisomerization. The reluctance of electron-deficient internal alkynes to undergo catalytic carboboration has been overcome through cooperative Cu/Pd-catalysis, whereas an Ir complex was identified as a versatile sensitizer that is able to photoisomerize the resulting sterically crowded alkenes. Mechanistic studies by means of quantum-chemical calculations, quenching experiments, and transient absorption spectroscopy have been applied to unveil the mechanism of both steps.
Collapse
Affiliation(s)
- Javier Corpas
- Department of Organic Chemistry, Faculty of Science;
Institute for Advanced Research in Chemical Sciences (IAdChem); and Centro de
Innovación en Química Avanzada (ORFEO−CINQA),
Universidad Autónoma de Madrid (UAM), Cantoblanco,
28049 Madrid, Spain
| | - Miguel Gomez-Mendoza
- Photoactivated Processes Unit, IMDEA
Energy Institute, Technological Park of Mostoles, Avda. Ramón de la
Sagra 3, 28935 Madrid, Spain
| | - Enrique M. Arpa
- Division of Theoretical Chemistry, IFM,
Linköping University, 581 83 Linköping,
Sweden
| | - Víctor A. de la Peña
O'Shea
- Photoactivated Processes Unit, IMDEA
Energy Institute, Technological Park of Mostoles, Avda. Ramón de la
Sagra 3, 28935 Madrid, Spain
| | - Bo Durbeej
- Division of Theoretical Chemistry, IFM,
Linköping University, 581 83 Linköping,
Sweden
| | - Juan C. Carretero
- Department of Organic Chemistry, Faculty of Science;
Institute for Advanced Research in Chemical Sciences (IAdChem); and Centro de
Innovación en Química Avanzada (ORFEO−CINQA),
Universidad Autónoma de Madrid (UAM), Cantoblanco,
28049 Madrid, Spain
| | - Pablo Mauleón
- Department of Organic Chemistry, Faculty of Science;
Institute for Advanced Research in Chemical Sciences (IAdChem); and Centro de
Innovación en Química Avanzada (ORFEO−CINQA),
Universidad Autónoma de Madrid (UAM), Cantoblanco,
28049 Madrid, Spain
| | - Ramón
Gómez Arrayás
- Department of Organic Chemistry, Faculty of Science;
Institute for Advanced Research in Chemical Sciences (IAdChem); and Centro de
Innovación en Química Avanzada (ORFEO−CINQA),
Universidad Autónoma de Madrid (UAM), Cantoblanco,
28049 Madrid, Spain
| |
Collapse
|
9
|
Jiang B, Gui WT, Wang HT, Xie K, Chen ZC, Zhu L, Ouyang Q, Du W, Chen YC. Asymmetric Friedel-Crafts reaction of unsaturated carbonyl-tethered heteroarenes via vinylogous activation of Pd 0-π-Lewis base catalysis. Chem Sci 2023; 14:10867-10874. [PMID: 37829026 PMCID: PMC10566502 DOI: 10.1039/d3sc03996j] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 09/16/2023] [Indexed: 10/14/2023] Open
Abstract
The alkyne group can undergo facile transformations under palladium catalysis, such as hydropalladation, Wacker reaction, etc. Here we demonstrate that a chiral Pd0 complex can chemoselectively dihapto-coordinate to the alkyne moiety of 2-indolyl propiolates, and raise the Highest Occupied Molecular Orbital (HOMO)-energy ofthe deactivated heteroarenes via π-Lewis base catalysis. As a result, asymmetric C3-selective Friedel-Crafts addition to activated alkenes occurs, finally affording [3 + 2] or [3 + 4] annulation products with high enantioselectivity and exclusive E-selectivity. Moreover, this π-Lewis base vinylogous HOMO-activation strategy can be extended to remote Friedel-Crafts reaction of diverse five-membered heteroarenes tethered to a 2-enone or 2-acrylate motif with imines or 1-azadienes, and excellent enantiocontrol is generally achieved for the multifunctional adducts, which can be effectively converted to diverse frameworks with higher molecular complexity. In addition, NMR and density functional theory calculation studies are conducted to elucidate the catalytic mechanism.
Collapse
Affiliation(s)
- Bo Jiang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University Chengdu 610041 China +86 28 85502609
| | - Wu-Tao Gui
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University Chengdu 610041 China +86 28 85502609
| | - Hao-Tian Wang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University Chengdu 610041 China +86 28 85502609
| | - Ke Xie
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University Chengdu 610041 China +86 28 85502609
| | - Zhi-Chao Chen
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University Chengdu 610041 China +86 28 85502609
| | - Lei Zhu
- College of Pharmacy, Third Military Medical University Shapingba Chongqing 400038 China
| | - Qin Ouyang
- College of Pharmacy, Third Military Medical University Shapingba Chongqing 400038 China
| | - Wei Du
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University Chengdu 610041 China +86 28 85502609
| | - Ying-Chun Chen
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University Chengdu 610041 China +86 28 85502609
- College of Pharmacy, Third Military Medical University Shapingba Chongqing 400038 China
| |
Collapse
|
10
|
Eaton M, Dai Y, Wang Z, Li B, Lamine W, Miqueu K, Liu SY. Synthesis of Allenes by Hydroalkylation of 1,3-Enynes with Ketones Enabled by Cooperative Catalysis. J Am Chem Soc 2023; 145:21638-21645. [PMID: 37738372 PMCID: PMC10783955 DOI: 10.1021/jacs.3c08151] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/24/2023]
Abstract
A method for the synthesis of allenes by the addition of ketones to 1,3-enynes by cooperative Pd(0)Senphos/B(C6F5)3/NR3 catalysis is described. A wide range of aryl- and aliphatic ketones undergo addition to various 1,3-enynes in high yields at room temperature. Mechanistic investigations revealed a rate-determining outer-sphere proton transfer mechanism, which was corroborated by DFT calculations.
Collapse
Affiliation(s)
- Maxwell Eaton
- Department of Chemistry, Boston College, Chestnut Hill, Massachusetts 02467-3860, United States
| | - Yuping Dai
- E2S UPPA/CNRS, Institut des Sciences Analytiques et de Physico-Chimie pour l'Environnement et les Matériaux IPREM UMR 5254, Université de Pau et des Pays de l'Adour, Hélioparc, 2 avenue P. Angot, 64053 Pau Cedex 09, France
| | - Ziyong Wang
- Department of Chemistry, Boston College, Chestnut Hill, Massachusetts 02467-3860, United States
| | - Bo Li
- Department of Chemistry, Boston College, Chestnut Hill, Massachusetts 02467-3860, United States
| | - Walid Lamine
- E2S UPPA/CNRS, Institut des Sciences Analytiques et de Physico-Chimie pour l'Environnement et les Matériaux IPREM UMR 5254, Université de Pau et des Pays de l'Adour, Hélioparc, 2 avenue P. Angot, 64053 Pau Cedex 09, France
| | - Karinne Miqueu
- E2S UPPA/CNRS, Institut des Sciences Analytiques et de Physico-Chimie pour l'Environnement et les Matériaux IPREM UMR 5254, Université de Pau et des Pays de l'Adour, Hélioparc, 2 avenue P. Angot, 64053 Pau Cedex 09, France
| | - Shih-Yuan Liu
- Department of Chemistry, Boston College, Chestnut Hill, Massachusetts 02467-3860, United States
- E2S UPPA/CNRS, Institut des Sciences Analytiques et de Physico-Chimie pour l'Environnement et les Matériaux IPREM UMR 5254, Université de Pau et des Pays de l'Adour, Hélioparc, 2 avenue P. Angot, 64053 Pau Cedex 09, France
| |
Collapse
|
11
|
Wang Z, Zhang C, Wu J, Li B, Chrostowska A, Karamanis P, Liu SY. trans-Hydroalkynylation of Internal 1,3-Enynes Enabled by Cooperative Catalysis. J Am Chem Soc 2023; 145:5624-5630. [PMID: 36862947 PMCID: PMC10162690 DOI: 10.1021/jacs.3c00514] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
Abstract
A cooperative catalyst system involving a Pd(0)/Senphos complex, tris(pentafluorophenyl)borane, copper bromide, and an amine base, is demonstrated to catalyze trans-hydroalkynylation of internal 1,3-enynes. For the first time, a Lewis acid catalyst is shown to promote the reaction involving the emerging outer-sphere oxidative reaction step. The resulting cross-conjugated dieneynes are versatile synthons for organic synthesis, and their characterization reveals distinct photophysical properties depending on the positioning of the donor/acceptor substituents along the conjugation path.
Collapse
Affiliation(s)
- Ziyong Wang
- Department of Chemistry, Boston College, Chestnut Hill, Massachusetts 02467-3860, United States
| | - Chen Zhang
- Université de Pau et des Pays de l'Adour, E2S UPPA/CNRS, Institut des Sciences Analytiques et de Physico-Chimie pour l'Environnement et les Matériaux IPREM UMR 5254. Hélioparc, 2 Avenue P. Angot, 64053 Pau Cedex 09, France
| | - Jason Wu
- Department of Chemistry, Boston College, Chestnut Hill, Massachusetts 02467-3860, United States
| | - Bo Li
- Department of Chemistry, Boston College, Chestnut Hill, Massachusetts 02467-3860, United States
| | - Anna Chrostowska
- Université de Pau et des Pays de l'Adour, E2S UPPA/CNRS, Institut des Sciences Analytiques et de Physico-Chimie pour l'Environnement et les Matériaux IPREM UMR 5254. Hélioparc, 2 Avenue P. Angot, 64053 Pau Cedex 09, France
| | - Panaghiotis Karamanis
- Université de Pau et des Pays de l'Adour, E2S UPPA/CNRS, Institut des Sciences Analytiques et de Physico-Chimie pour l'Environnement et les Matériaux IPREM UMR 5254. Hélioparc, 2 Avenue P. Angot, 64053 Pau Cedex 09, France
| | - Shih-Yuan Liu
- Department of Chemistry, Boston College, Chestnut Hill, Massachusetts 02467-3860, United States
- Université de Pau et des Pays de l'Adour, E2S UPPA/CNRS, Institut des Sciences Analytiques et de Physico-Chimie pour l'Environnement et les Matériaux IPREM UMR 5254. Hélioparc, 2 Avenue P. Angot, 64053 Pau Cedex 09, France
| |
Collapse
|
12
|
Wang Z, Lamine W, Miqueu K, Liu SY. A syn outer-sphere oxidative addition: the reaction mechanism in Pd/Senphos-catalyzed carboboration of 1,3-enynes. Chem Sci 2023; 14:2082-2090. [PMID: 36845936 PMCID: PMC9945512 DOI: 10.1039/d2sc05828f] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 01/04/2023] [Indexed: 01/19/2023] Open
Abstract
We report a combined experimental and computational study of Pd/Senphos-catalyzed carboboration of 1,3-enynes utilizing DFT calculations, 31P NMR study, kinetic study, Hammett analysis and Arrhenius/Eyring analysis. Our mechanistic study provides evidence against the conventional inner-sphere β-migratory insertion mechanism. Instead, a syn outer-sphere oxidative addition mechanism featuring a Pd-π-allyl intermediate followed by coordination-assisted rearrangements is consistent with all the experimental observations.
Collapse
Affiliation(s)
- Ziyong Wang
- Department of Chemistry, Boston College Chestnut Hill Massachusetts 02467-3860 USA
| | - Walid Lamine
- Université de Pau et des Pays de l'Adour, E2S UPPA/CNRS, Institut des Sciences Analytiques et de Physico-Chimie pour l'Environnement et les Matériaux IPREM UMR 5254 Hélioparc, 2 Avenue P. Angot 64053 Pau Cedex 09 France
| | - Karinne Miqueu
- Université de Pau et des Pays de l'Adour, E2S UPPA/CNRS, Institut des Sciences Analytiques et de Physico-Chimie pour l'Environnement et les Matériaux IPREM UMR 5254 Hélioparc, 2 Avenue P. Angot 64053 Pau Cedex 09 France
| | - Shih-Yuan Liu
- Department of Chemistry, Boston College Chestnut Hill Massachusetts 02467-3860 USA
- Université de Pau et des Pays de l'Adour, E2S UPPA/CNRS, Institut des Sciences Analytiques et de Physico-Chimie pour l'Environnement et les Matériaux IPREM UMR 5254 Hélioparc, 2 Avenue P. Angot 64053 Pau Cedex 09 France
| |
Collapse
|
13
|
Zhang Y, Wang Z, Lamine W, Xu S, Li B, Chrostowska A, Miqueu K, Liu SY. Mechanism of Pd/Senphos-Catalyzed trans-Hydroboration of 1,3-Enynes: Experimental and Computational Evidence in Support of the Unusual Outer-Sphere Oxidative Addition Pathway. J Org Chem 2023; 88:2415-2424. [PMID: 36752741 PMCID: PMC10162691 DOI: 10.1021/acs.joc.2c02841] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
The reaction mechanism of the Pd/Senphos-catalyzed trans-hydroboration reaction of 1,3-enynes was investigated using various experimental techniques, including deuterium and double crossover labeling experiments, X-ray crystallographic characterization of model reaction intermediates, and reaction progress kinetic analysis. Our experimental data are in support of an unusual outer-sphere oxidative addition mechanism where the catecholborane serves as a suitable electrophile to activate the Pd0-bound 1,3-enyne substrate to form a Pd-η3-π-allyl species, which has been determined to be the likely resting state of the catalytic cycle. Double crossover labeling of the catecholborane points toward a second role played by the borane as a hydride delivery shuttle. Density functional theory calculations reveal that the rate-limiting transition state of the reaction is the hydride abstraction by the catecholborane shuttle, which is consistent with the experimentally determined rate law: rate = k[enyne]0[borane]1[catalyst]1. The computed activation free energy ΔG‡ = 17.7 kcal/mol and KIE (kH/kD = 1.3) are also in line with experimental observations. Overall, this work experimentally establishes Lewis acids such as catecholborane as viable electrophilic activators to engage in an outer-sphere oxidative addition reaction and points toward this underutilized mechanism as a general approach to activate unsaturated substrates.
Collapse
Affiliation(s)
- Yuanzhe Zhang
- Department of Chemistry, Boston College, Chestnut Hill, Massachusetts 02467-3860, United States
| | - Ziyong Wang
- Department of Chemistry, Boston College, Chestnut Hill, Massachusetts 02467-3860, United States
| | - Walid Lamine
- E2S UPPA/CNRS, Université de Pau et des Pays de l'Adour, Institut des Sciences Analytiques et de Physico-Chimie pour l'Environnement et les Matériaux IPREM UMR 5254. Hélioparc, 2 avenue P. Angot, 64053 Pau Cedex 09, France
| | - Senmiao Xu
- Department of Chemistry, Boston College, Chestnut Hill, Massachusetts 02467-3860, United States
| | - Bo Li
- Department of Chemistry, Boston College, Chestnut Hill, Massachusetts 02467-3860, United States
| | - Anna Chrostowska
- E2S UPPA/CNRS, Université de Pau et des Pays de l'Adour, Institut des Sciences Analytiques et de Physico-Chimie pour l'Environnement et les Matériaux IPREM UMR 5254. Hélioparc, 2 avenue P. Angot, 64053 Pau Cedex 09, France
| | - Karinne Miqueu
- E2S UPPA/CNRS, Université de Pau et des Pays de l'Adour, Institut des Sciences Analytiques et de Physico-Chimie pour l'Environnement et les Matériaux IPREM UMR 5254. Hélioparc, 2 avenue P. Angot, 64053 Pau Cedex 09, France
| | - Shih-Yuan Liu
- Department of Chemistry, Boston College, Chestnut Hill, Massachusetts 02467-3860, United States
- E2S UPPA/CNRS, Université de Pau et des Pays de l'Adour, Institut des Sciences Analytiques et de Physico-Chimie pour l'Environnement et les Matériaux IPREM UMR 5254. Hélioparc, 2 avenue P. Angot, 64053 Pau Cedex 09, France
| |
Collapse
|
14
|
He ZL, Zhang Y, Chen ZC, Du W, Chen YC. Cascade Multicomponent Assemblies Involving 1,3-Enynes via Auto-Tandem Palladium Catalysis. Org Lett 2022; 24:6326-6330. [PMID: 35997593 DOI: 10.1021/acs.orglett.2c02544] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Here we report a three-component auto-tandem reaction of 1,3-enyne-tethered carbonyls, organoboronic reagents, and suitable nucleophiles catalyzed by palladium, proceeding through consecutive intramolecular vinylogous addition, Suzuki coupling, and allylic alkylation. This process exhibited high chemo- and regioselectivity with 1,3,4-trifunctionalization of the 1,3-enyne motif, and a wide range of 2H-chromenes, 1,2-dihydroquinolines, benzo[b]oxepines, 1,7-annulated indoles, and other frameworks were efficiently constructed in fair to good yields and E/Z selectivity.
Collapse
Affiliation(s)
- Ze-Liang He
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Yi Zhang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Zhi-Chao Chen
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Wei Du
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Ying-Chun Chen
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.,College of Pharmacy, Third Military Medical University, Shapingba, Chongqing 400038, China
| |
Collapse
|
15
|
Altarejos J, Valero A, Manzano R, Carreras J. Synthesis of Tri‐ and Tetrasubstituted Alkenyl Boronates from Alkynes. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Julia Altarejos
- Universidad de Alcalá Facultad de Ciencias: Universidad de Alcala Facultad de Ciencias Química Orgánica y Química Inorgánica SPAIN
| | - Antonio Valero
- Universidad de Alcalá Facultad de Ciencias: Universidad de Alcala Facultad de Ciencias Química Orgánica y Química Inorgánica SPAIN
| | - Rubén Manzano
- Universidad de Alcalá Facultad de Ciencias: Universidad de Alcala Facultad de Ciencias Química Orgánica y Química Inorgánica SPAIN
| | - Javier Carreras
- Universidad de Alcalá Facultad de Ciencias: Universidad de Alcala Facultad de Ciencias Química Orgánica y Química Inorgánica Carretera Madrid-Barcelona km 33,6, Campus Universitario.Facultad de Farmacia 28805 Alcalá de Henares SPAIN
| |
Collapse
|
16
|
Li E, Jin M, Jiang R, Zhang L, Zhang Y, Liu M, Wu X, Liu X. Synthesis, Characterization, and Properties of BN-Fluoranthenes. Org Lett 2022; 24:5503-5508. [PMID: 35730794 DOI: 10.1021/acs.orglett.2c01342] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Boron/nitrogen-doped fluoranthenes, a new class of BN-doped cyclopenta-fused polycyclic aromatic hydrocarbons, were synthesized via pyrrolic-type nitrogen directed C-H borylation. Regioselective bromination of BN-fluoranthene (3a) gave mono- and dibrominated BN-fluoranthenes. The halogenated BN-fluoranthene (3b) can undergo various of further cross-coupling reactions to deliver a series of BN-fluoranthenes. Moreover, incorporating BN unit in to fluoranthene resulted in a wider HOMO-LUMO energy gaps. The aromaticities of the BN-fluoranthene (3a) were quantified by experimental and computational studies.
Collapse
Affiliation(s)
- Erlong Li
- School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384, People's Republic of China
| | - Mengjia Jin
- School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, People's Republic of China
| | - Ruijun Jiang
- School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384, People's Republic of China
| | - Lei Zhang
- School of Science, Tianjin Chengjian University, Tianjin 300384, People's Republic of China
| | - Yanli Zhang
- School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384, People's Republic of China
| | - Meiyan Liu
- School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384, People's Republic of China
| | - Xiaoming Wu
- School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, People's Republic of China
| | - Xuguang Liu
- School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384, People's Republic of China.,State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, People's Republic of China
| |
Collapse
|
17
|
He Q, Zhu L, Yang ZH, Zhu B, Ouyang Q, Du W, Chen YC. Palladium-Catalyzed Modular and Enantioselective cis-Difunctionalization of 1,3-Enynes with Imines and Boronic Reagents. J Am Chem Soc 2021; 143:17989-17994. [PMID: 34669411 DOI: 10.1021/jacs.1c09877] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Here we report that a palladium(0) complex can mediate the unprecedented intermolecular coupling reaction of 1,3-enynes and N-sulfonylimines regio- and stereoselectively, and the resultant palladium(II) species undergo a cascade Suzuki reaction with organoboronic reagents. The substrate scope is substantial for the asymmetric three-component process, and the enantioenriched all-carbon tetra-substituted alkene derivatives are efficiently constructed in a modular and cis-difunctionalized manner. Control experiments and density functional theory (DFT) calculations support the idea that the palladium(0) acts as a π-Lewis base catalyst by chemoselectively forming η2-complexes with the alkene moiety of 1,3-enynes, thus increasing the nucleophilicity of the alkyne group based on the principle of vinylogy, to attack imines enantioselectively. The preferable formation of aza-palladacyclopentene intermediates, via a 90° single bond rotation from the resultant π-allyl complex, guarantees the formal cis-carbopalladation of alkyne group. In addition, a palladium(0)-catalyzed enantioselective reductive coupling of 1,3-enyne and imine is realized by using formic acid as hydrogen transfer reagent.
Collapse
Affiliation(s)
- Qing He
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Ministry of Education and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Lei Zhu
- College of Pharmacy, Third Military Medical University, Shapingba, Chongqing 400038, China
| | - Zhen-Hong Yang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Ministry of Education and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Bo Zhu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Ministry of Education and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Qin Ouyang
- College of Pharmacy, Third Military Medical University, Shapingba, Chongqing 400038, China
| | - Wei Du
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Ministry of Education and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Ying-Chun Chen
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Ministry of Education and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.,College of Pharmacy, Third Military Medical University, Shapingba, Chongqing 400038, China
| |
Collapse
|