1
|
Zhao G, Xue K, Dong H, Lou S, Zhang X, Cao Z, Yi B, Tong R. Bromide as Noninnocent Ligand to Iron Tames Fenton Chemistry for Chemoselective Nondegrading Oxidation. Angew Chem Int Ed Engl 2025:e202505907. [PMID: 40308005 DOI: 10.1002/anie.202505907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2025] [Revised: 04/14/2025] [Accepted: 04/29/2025] [Indexed: 05/02/2025]
Abstract
It has long been the chemistry dogma that the nitrogen-based ligand of iron complexes determines the redox reactivity; tetra- and/or pentadentate nitrogen-based ligand (N-ligand: PDP, porphyrin, N4Py) enables chemo-selective oxidation through high-valent iron species (FeIV/V═O), while bi- and/or tridentate N-ligand leads to the generation of highly reactive oxygen species (ROS) (i.e., hydroxyl radical) via a Fenton chemistry pathway. The effect of inorganic anionic ligands (i.e., halides, pseudohalides, triflate, nitrate, sulfate, etc) of these iron complexes has rarely been examined and overlooked as an "innocent" anion. Herein, we report our discovery that bromide (Br-) is not an innocent ligand to the iron-BPMA complexes [BMPA: bis(2-pyridylmethyl)amine] but a decisive factor for taming the Fenton chemistry (ROS) into a mild [HOBr] oxidant, which allows for chemo- and regioselective oxidation of furans, indoles, and sulfides without noticeable degradation. In contrast to the conventional Fenton chemistry pathway by many tridentate N-ligand iron complexes, our [Fe(BMPA)Br3] mimics haloperoxidases to generate HOBr by oxidation of bromide ion with hydrogen peroxide. The discovery of the bromide effect on iron complexes bridges the gap between Fenton chemistry and haloperoxidase-catalyzed halogenation and might stimulate interest in reinvestigating the "innocent" ligand of iron complexes for discovery of new reactivity and new applications. Additionally, the new catalytic system represents a mild and green oxidation method that might be useful in academia and industry.
Collapse
Affiliation(s)
- Guodong Zhao
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China
- Engineering Research Center for Pharmaceutics of Chinese Materia Medica and New Drug Development, Ministry of Education, Beijing, China
| | - Kang Xue
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Huiling Dong
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Shaoyan Lou
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Xiaohui Zhang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Zhuo Cao
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Bingqing Yi
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Rongbiao Tong
- Department of Chemistry, The Hong Kong University of Science and Technology, Clearwater Bay, Kowloon, Hong Kong, China
| |
Collapse
|
2
|
Periasamy K, Gordeeva S, Bolm C. Syntheses of Sulfilimines by Iron-Catalyzed Iminations of Sulfides with 2,2,2-Trichloroethyl Sulfamate. J Org Chem 2024; 89:9705-9709. [PMID: 38870476 DOI: 10.1021/acs.joc.4c01250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
N-protected sulfilimines are prepared by imination of sulfides with a combination of 2,2,2-trichloroethyl sulfamate (H2NTces), (diacetoxyiodo)benzene (PIDA), and a catalytic amount of iron triflate. The reaction proceeds at room temperature, and after only 3 h a wide range of acyclic and cyclic NTces-sulfilimines with various functional groups and (hetero)aryl substituents can be obtained. By subsequent oxidation followed by deprotection, the products are converted into NH-sulfoximines.
Collapse
Affiliation(s)
- Kiruthika Periasamy
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| | - Sofya Gordeeva
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| | - Carsten Bolm
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| |
Collapse
|
3
|
Wu JH, Yang TH, Sun YJ, Min Y, Hu Y, Chen F, Chen JJ, Yu HQ. Tailoring the selective generation of oxidative organic radicals for toxic-by-product-free water decontamination. Proc Natl Acad Sci U S A 2024; 121:e2403544121. [PMID: 38805289 PMCID: PMC11161747 DOI: 10.1073/pnas.2403544121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 04/24/2024] [Indexed: 05/30/2024] Open
Abstract
Peracetic acid (PAA) is emerging as a versatile agent for generating long-lived and selectively oxidative organic radicals (R-O•). Currently, the conventional transition metal-based activation strategies still suffer from metal ion leaching, undesirable by-products formation, and uncontrolled reactive species production. To address these challenges, we present a method employing BiOI with a unique electron structure as a PAA activator, thereby predominantly generating CH3C(O)O• radicals. The specificity of CH3C(O)O• generation ensured the superior performance of the BiOI/PAA system across a wide pH range (2.0 to 11.0), even in the presence of complex interfering substances such as humic acids, chloride ions, bicarbonate ions, and real-world water matrices. Unlike conventional catalytic oxidative methods, the BiOI/PAA system degrades sulfonamides without producing any toxic by-products. Our findings demonstrate the advantages of CH3C(O)O• in water decontamination and pave the way for the development of eco-friendly water decontaminations based on organic peroxides.
Collapse
Affiliation(s)
- Jing-Hang Wu
- Chinese Academy of Sciences Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei230026, China
| | - Tian-Hao Yang
- Chinese Academy of Sciences Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei230026, China
| | - Yi-Jiao Sun
- Key Laboratory of the Three Gorges Reservoir Region’s Eco-Environment, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing400045, China
| | - Yuan Min
- Chinese Academy of Sciences Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei230026, China
| | - Yi Hu
- Chinese Academy of Sciences Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei230026, China
| | - Fei Chen
- Chinese Academy of Sciences Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei230026, China
- Key Laboratory of the Three Gorges Reservoir Region’s Eco-Environment, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing400045, China
| | - Jie-Jie Chen
- Chinese Academy of Sciences Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei230026, China
| | - Han-Qing Yu
- Chinese Academy of Sciences Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei230026, China
| |
Collapse
|
4
|
Alam T, Patel BK. Electrochemical N-Aroylation of Sulfoximines by Using Benzoyl Hydrazines with H 2 Generation. Chemistry 2023:e202303444. [PMID: 37990751 DOI: 10.1002/chem.202303444] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/17/2023] [Accepted: 11/21/2023] [Indexed: 11/23/2023]
Abstract
Developed here is a robust electrochemical cross-coupling reaction between aroyl hydrazine and NH-sulfoximine via concomitant cleavage and formation of C(sp2 )-N bonds with the evolution of H2 and N2 as innocuous by-products. This sustainable protocol avoids the use of toxic reagents and occurs at room temperature. The reaction proceeds via the generation of an aroyl and a sulfoximidoyl radical via anodic oxidation under constant current electrolysis (CCE), affording N-aroylated sulfoximine. The strategy is applied to late-stage sulfoximidation of L-menthol, (-)-borneol, D-glucose, vitamin-E derivatives, and marketed drugs such as probenecid, ibuprofen, flurbiprofen, ciprofibrate, and sulindac. In addition, the present methodology is mild, high functional group tolerance with broad substrate scope and scalable.
Collapse
Affiliation(s)
- Tipu Alam
- Department of Chemistry, Indian Institute of Technology Guwahati, 781039, Guwahati, Assam, India
| | - Bhisma K Patel
- Department of Chemistry, Indian Institute of Technology Guwahati, 781039, Guwahati, Assam, India
| |
Collapse
|
5
|
Klein M, Troglauer DL, Waldvogel SR. Dehydrogenative Imination of Low-Valent Sulfur Compounds-Fast and Scalable Synthesis of Sulfilimines, Sulfinamidines, and Sulfinimidate Esters. JACS AU 2023; 3:575-583. [PMID: 36873686 PMCID: PMC9975850 DOI: 10.1021/jacsau.2c00663] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/18/2023] [Accepted: 01/18/2023] [Indexed: 06/18/2023]
Abstract
Herein, we describe an electrochemical pathway for the synthesis of sulfilimines, sulfoximines, sulfinamidines, and sulfinimidate esters from readily available low-valent sulfur compounds and primary amides or their analogues. The combination of solvents and supporting electrolytes together act both as an electrolyte as well as a mediator, leading to efficient use of reactants. Both can be easily recovered, enabling an atom-efficient and sustainable process. A broad scope of sulfilimines, sulfinamidines, and sulfinimidate esters with N-EWGs is accessed in up to excellent yields with broad functional group tolerance. This fast synthesis can be easily scaled up to multigram quantities with high robustness for fluctuation of current densities of up to 3 orders of magnitude. The sulfilimines are converted into the corresponding sulfoximines in an ex-cell process in high to excellent yields using electro-generated peroxodicarbonate as a green oxidizer. Thereby, preparatively valuable NH sulfoximines are accessible.
Collapse
|
6
|
Dong X, Klein M, Waldvogel SR, Morandi B. Controlling Selectivity in Shuttle Hetero-difunctionalization Reactions: Electrochemical Transfer Halo-thiolation of Alkynes. Angew Chem Int Ed Engl 2023; 62:e202213630. [PMID: 36336662 PMCID: PMC10107926 DOI: 10.1002/anie.202213630] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/28/2022] [Accepted: 10/31/2022] [Indexed: 11/09/2022]
Abstract
Shuttle hetero-difunctionalization reaction, in which two chemically distinct functional groups are transferred between two molecules, has long been an unmet goal due to the daunting challenges in controlling the chemo-, regio-, and stereoselectivity. Herein, we disclose an electrochemistry enabled shuttle reaction (e-shuttle) to selectively transfer one RS- and one X- group between β-halosulfides and unsaturated hydrocarbons via a consecutive paired electrolysis mechanism. The preferential anodic oxidation of one anion over the other, which is controlled by their distinct redox potentials, plays a pivotal role in controlling the high chemoselectivity of the process. This easily scalable methodology enables the construction of a myriad of densely functionalized β-halo alkenyl sulfides in unprecedented chemo-, regio-, and stereoselectivity using benign surrogates, e.g., 2-bromoethyl sulfide, avoiding the handling of corrosive and oxidative RS-Br reagents. In a broader context, these results open up new strategies for selective shuttle difunctionalization reactions.
Collapse
Affiliation(s)
- Xichang Dong
- Laboratorium für Organische Chemie, ETH Zürich, Vladimir-Prelog-Weg 3, HCI, 8093, Zürich, Switzerland
| | - Martin Klein
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128, Mainz, Germany
| | - Siegfried R Waldvogel
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128, Mainz, Germany
| | - Bill Morandi
- Laboratorium für Organische Chemie, ETH Zürich, Vladimir-Prelog-Weg 3, HCI, 8093, Zürich, Switzerland
| |
Collapse
|
7
|
Kang OY, Kim E, Lee WH, Ryu DH, Lim HJ, Park SJ. N-Cyano sulfilimine functional group as a nonclassical amide bond bioisostere in the design of a potent analogue to anthranilic diamide insecticide. RSC Adv 2023; 13:2004-2009. [PMID: 36712628 PMCID: PMC9832345 DOI: 10.1039/d2ra06988a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 12/23/2022] [Indexed: 01/13/2023] Open
Abstract
To explore the potential of the N-cyano sulfilimine group as an amide bond isostere, a derivative of the blockbuster anthranilic diamide, chlorantramiliprole, was synthesized and evaluated with regard to its physicochemical properties, permeability, and biological activity. Given the combination of N-cyano sulfilimine chlorantraniliprole 1 and its strong hydrogen bond acceptor character, high permeability, and excellent insecticidal activity, the N-cyano sulfilimine functional group could be considered as an amide bond isostere.
Collapse
Affiliation(s)
- On-Yu Kang
- Data Convergence Drug Research Center, Korea Research Institute of Chemical Technology Daejeon 34114 Republic of Korea +82-42-860-7160 +82-42-860-7175
- Department of Chemistry, Sungkyunkwan University 2066 Seobu-ro Suwon 16419 Republic of Korea
| | - Eunsil Kim
- Data Convergence Drug Research Center, Korea Research Institute of Chemical Technology Daejeon 34114 Republic of Korea +82-42-860-7160 +82-42-860-7175
- Department of Chemistry, Sogang University 35 Baekbeom-ro Seoul 04107 Republic of Korea
| | - Won Hyung Lee
- Central Research Institute, Kyung Nong Co. Ltd 34-14 Summeori-gil Kyongju 38175 Kyongsangbuk-do Republic of Korea
| | - Do Hyun Ryu
- Department of Chemistry, Sungkyunkwan University 2066 Seobu-ro Suwon 16419 Republic of Korea
| | - Hwan Jung Lim
- Data Convergence Drug Research Center, Korea Research Institute of Chemical Technology Daejeon 34114 Republic of Korea +82-42-860-7160 +82-42-860-7175
- Department of Medicinal Chemistry and Pharmacology, University of Science & Technology 217 Gajeong-ro Daejeon 34113 Republic of Korea
| | - Seong Jun Park
- Data Convergence Drug Research Center, Korea Research Institute of Chemical Technology Daejeon 34114 Republic of Korea +82-42-860-7160 +82-42-860-7175
- Department of Medicinal Chemistry and Pharmacology, University of Science & Technology 217 Gajeong-ro Daejeon 34113 Republic of Korea
| |
Collapse
|
8
|
Klein M, Waldvogel SR. Counter Electrode Reactions-Important Stumbling Blocks on the Way to a Working Electro-organic Synthesis. Angew Chem Int Ed Engl 2022; 61:e202204140. [PMID: 35668714 PMCID: PMC9828107 DOI: 10.1002/anie.202204140] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Indexed: 01/12/2023]
Abstract
Over the past two decades, electro-organic synthesis has gained significant interest, both in technical and academic research as well as in terms of applications. The omission of stoichiometric oxidizers or reducing agents enables a more sustainable route for redox reactions in organic chemistry. Even if it is well-known that every electrochemical oxidation is only viable with an associated reduction reaction and vice versa, the relevance of the counter reaction is often less addressed. In this Review, the importance of the corresponding counter reaction in electro-organic synthesis is highlighted and how it can affect the performance and selectivity of the electrolytic conversion. A selection of common strategies and unique concepts to tackle this issue are surveyed to provide a guide to select appropriate counter reactions for electro-organic synthesis.
Collapse
Affiliation(s)
- Martin Klein
- Department of ChemistryJohannes Gutenberg University MainzDuesbergweg 10–1455128MainzGermany
| | - Siegfried R. Waldvogel
- Department of ChemistryJohannes Gutenberg University MainzDuesbergweg 10–1455128MainzGermany
| |
Collapse
|
9
|
Alam T, Rakshit A, Dhara HN, Palai A, Patel BK. Electrochemical Amidation: Benzoyl Hydrazine/Carbazate and Amine as Coupling Partners. Org Lett 2022; 24:6619-6624. [PMID: 36069423 DOI: 10.1021/acs.orglett.2c02626] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
An electrochemical amidation of benzoyl hydrazine/carbazate and primary/secondary amine as coupling partners via concomitant cleavage and formation of C(sp2)-N bonds has been achieved. This methodology proceeds under metal-free and exogenous oxidant-free conditions producing N2 and H2 as byproducts. Mechanistic studies reveal the in situ generations of both acyl and N-centered radicals from benzoyl hydrazines and amines. The utility of this protocol is demonstrated through a large-scale, and synthesis of bezafibrate, a hyperlipidemic drug.
Collapse
Affiliation(s)
- Tipu Alam
- Department of Chemistry, Indian Institute of Technology Guwahati, North Guwahati 781039, India
| | - Amitava Rakshit
- Department of Chemistry, Indian Institute of Technology Guwahati, North Guwahati 781039, India
| | - Hirendra Nath Dhara
- Department of Chemistry, Indian Institute of Technology Guwahati, North Guwahati 781039, India
| | - Angshuman Palai
- Department of Chemistry, Indian Institute of Technology Guwahati, North Guwahati 781039, India
| | - Bhisma K Patel
- Department of Chemistry, Indian Institute of Technology Guwahati, North Guwahati 781039, India
| |
Collapse
|
10
|
Arndt S, Kohlpaintner PJ, Donsbach K, Waldvogel SR. Synthesis and Applications of Periodate for Fine Chemicals and Important Pharmaceuticals. Org Process Res Dev 2022. [DOI: 10.1021/acs.oprd.2c00161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Sebastian Arndt
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Philipp J. Kohlpaintner
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Kai Donsbach
- Virginia Commonwealth University, College of Engineering, Medicines for All Institute, 601 West Main Street, Richmond, Virginia 23284-3068, United States
| | - Siegfried R. Waldvogel
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| |
Collapse
|
11
|
Kisukuri CM, Bednarz RJ, Kampf C, Arndt S, Waldvogel SR. Robust and Self-Cleaning Electrochemical Production of Periodate. CHEMSUSCHEM 2022; 15:e202200874. [PMID: 35670517 PMCID: PMC9546426 DOI: 10.1002/cssc.202200874] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/05/2022] [Indexed: 05/19/2023]
Abstract
Periodate, a platform oxidizer, can be electrochemically recycled in a self-cleaning process. Electrosynthesis of periodate is well established at boron-doped diamond (BDD) anodes. However, recovered iodate and other iodo species for recycling can contain traces of organic impurities from previous applications. For the first time, it was shown that the organic impurities do not hamper the electrochemical re-oxidation of used periodate. In a hydroxyl-mediated environment, the organic compounds form CO2 and H2 O during the degradation process. This process is often referred to as "cold combustion" and provides orthogonal conditions to periodate synthesis. To demonstrate the strategy, different dyes, pharmaceutically active ingredients, and iodine compounds were added as model contaminations into the process of electrochemical periodate production. UV/Vis spectroscopy, NMR spectroscopy, and mass spectrometry (MS) were used to monitor the degradation of organic molecules, and liquid chromatography-MS was used to control the purity of periodate. As a representative example, dimethyl 5-iodoisophthalate (2 mm), was degraded in 90, 95, and 99 % while generating 0.042, 0.054, and 0.082 kilo equiv. of periodate, respectively. In addition, various organic iodo compounds could be fed into the periodate generation for upcycling such iodo-containing waste, for example, contrast media.
Collapse
Affiliation(s)
- Camila M. Kisukuri
- Department of ChemistryJohannes Gutenberg University MainzDuesbergweg 10–1455128MainzGermany
| | | | - Christopher Kampf
- Department of ChemistryJohannes Gutenberg University MainzDuesbergweg 10–1455128MainzGermany
| | - Sebastian Arndt
- Department of ChemistryJohannes Gutenberg University MainzDuesbergweg 10–1455128MainzGermany
| | - Siegfried R. Waldvogel
- Department of ChemistryJohannes Gutenberg University MainzDuesbergweg 10–1455128MainzGermany
| |
Collapse
|
12
|
Arndt S, Rücker R, Stenglein A, Waldvogel SR. Reactor Design for the Direct Electrosynthesis of Periodate. Org Process Res Dev 2022. [DOI: 10.1021/acs.oprd.2c00116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Sebastian Arndt
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10−14, 55128 Mainz, Germany
| | - Richard Rücker
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10−14, 55128 Mainz, Germany
| | - Andreas Stenglein
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10−14, 55128 Mainz, Germany
| | - Siegfried R. Waldvogel
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10−14, 55128 Mainz, Germany
| |
Collapse
|
13
|
Han M, Tang Z, Li GX, Wang QW. Electrochemical oxidation chemoselective sulfimidation of thioether with sulfonamide via catalytic iodobenzene. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2022.153925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
14
|
Klein M, Waldvogel SR. Anodic Dehydrogenative Cyanamidation of Thioethers: Simple and Sustainable Synthesis of N-Cyanosulfilimines. Angew Chem Int Ed Engl 2021; 60:23197-23201. [PMID: 34409715 PMCID: PMC8597142 DOI: 10.1002/anie.202109033] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/08/2021] [Indexed: 12/21/2022]
Abstract
A novel and very simple to perform electrochemical approach for the synthesis of several N-cyanosulfilimines in good to excellent yields was established. This method provides access to biologically relevant sulfoximines by consecutive oxidation using electro-generated periodate. This route can be easily scaled-up to gram quantities. The S,N coupling is carried out at an inexpensive carbon anode by direct oxidation of sulfide. Therefore, the designed process is atom economic and represents a new "green route" for the synthesis of sulfilimines and sulfoximines.
Collapse
Affiliation(s)
- Martin Klein
- Johannes Gutenberg University MainzDepartment of ChemistryDuesbergweg 10–1455128MainzGermany
| | - Siegfried R. Waldvogel
- Johannes Gutenberg University MainzDepartment of ChemistryDuesbergweg 10–1455128MainzGermany
| |
Collapse
|