1
|
Zhou J, Jiang M, Zhang Q, Jiang Y, Wang H, Sun L. Alleviating hypoxia by integrating MnO 2 with metal-organic frameworks coated upconversion nanocomposites for enhanced photodynamic therapy in vitro. Dalton Trans 2025; 54:550-560. [PMID: 39576001 DOI: 10.1039/d4dt02605e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
Photodynamic therapy (PDT) requires the participation of abundant oxygen while the hypoxic tumor microenvironment limits the efficacy of PDT. Here, upconversion luminescent nanocomposites coated with metal-organic frameworks (MOFs) were synthesized and modified with MnO2 (named UMMnP) to alleviate hypoxia of the tumor microenvironment. Under 980 nm light irradiation, the upconversion nanoparticles (UCNPs) achieve upconversion emission to excite porphyrin MOFs, which then transfer energy to oxygen to produce singlet oxygen for PDT. At the same time, the MnO2 in the UMMnP nanocomposites can catalyze the generation of O2 from H2O2, which could increase singlet oxygen production in a hypoxic environment, thus enhancing the PDT effect. The HeLa cell viability assay shows that the UMMnP nanocomposites possess good biocompatibility, while after irradiation with 980 nm light, the cell viability decreases dramatically, demonstrating efficient PDT. Furthermore, the nanocomposites can be successfully applied for upconversion luminescence imaging in vitro. Thus, this work provides a promising application of bioimaging and enhanced photodynamic therapy by alleviating hypoxia in tumor treatment.
Collapse
Affiliation(s)
- Junxun Zhou
- School of Medicine, Shanghai University, Shanghai 200444, China
| | - Mengyue Jiang
- Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China.
| | - Qiangqiang Zhang
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China.
| | - Yuan Jiang
- Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China.
| | - Haifang Wang
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China.
| | - Lining Sun
- Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China.
| |
Collapse
|
2
|
Liu S, Yang S, Wang J, An Z, Wang J, Liao Y, Zhang Z, Tan J, Ye X, Zhou B. Tunable Tri‐Channel Orthogonal Full‐Color Luminescence in Nanostructure toward Anticounterfeiting and Information Security. LASER & PHOTONICS REVIEWS 2024. [DOI: 10.1002/lpor.202401652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Indexed: 01/05/2025]
Abstract
AbstractTunable orthogonal full‐color luminescence has emerged as a new class of smart luminescence phenomenon with wide applications ranging from photonics to biomedicine. However, the current research is focused on complex multilayer core‐shell nanostructures (e.g., 5–8 shell layers) with a single upconversion mode, greatly limiting their synthesis and practical application. Herein, this work proposes a simple core‐shell structure to integrate upconversion and downshifting dual‐mode luminescence based on Gd3+‐mediated interfacial energy transfer and Ce3+‐assisted cross relaxation. This design is able to suppress cross‐talk of multiple emissions and simplify the sample structure by removing the conventionally required intermediate isolation layer. Importantly, it further enables the arbitrarily controllable multicolor output at a single nanoparticle level by adopting the tri‐channel selective excitation wavelengths (980/808/254 nm), greatly expanding the conventional red‐green‐blue (RGB) color gamut. Moreover, the use of these nanoparticles promotes the information security level and the complexity of anti‐counterfeiting modes by adopting a pre‐set logic Morse information encryption and decryption strategy. These results provide effective guidance for the rational nanostructure design of novel orthogonal trichromatic emissive materials for a variety of frontier applications such as advanced anticounterfeiting and information security.
Collapse
Affiliation(s)
- Songbin Liu
- College of Rare Earth Jiangxi University of Science and Technology Ganzhou 341000 P. R. China
- Key Laboratory of Ionic Rare Earth Resources and Environment of Ministry of Natural Resources Ganzhou 341000 P. R. China
| | - Shan Yang
- College of Rare Earth Jiangxi University of Science and Technology Ganzhou 341000 P. R. China
| | - Junrong Wang
- College of Rare Earth Jiangxi University of Science and Technology Ganzhou 341000 P. R. China
| | - Zhengce An
- State Key Laboratory of Luminescent Materials and Devices South China University of Technology Guangzhou 510641 P. R. China
| | - Junjie Wang
- College of Rare Earth Jiangxi University of Science and Technology Ganzhou 341000 P. R. China
| | - Yu Liao
- College of Rare Earth Jiangxi University of Science and Technology Ganzhou 341000 P. R. China
| | - Ze Zhang
- College of Rare Earth Jiangxi University of Science and Technology Ganzhou 341000 P. R. China
| | - Junjun Tan
- College of Rare Earth Jiangxi University of Science and Technology Ganzhou 341000 P. R. China
- Section of Biological Chemistry Department of Chemistry University of Copenhagen Universitetsparken 5 København Ø 2100 Denmark
| | - Xinyu Ye
- College of Rare Earth Jiangxi University of Science and Technology Ganzhou 341000 P. R. China
- National Rare Earth Functional Materials Innovation Centre Key Laboratory of Testing and Tracing of Rare Earth Products for State Market Regulation Ganzhou 341000 P. R. China
| | - Bo Zhou
- State Key Laboratory of Luminescent Materials and Devices South China University of Technology Guangzhou 510641 P. R. China
| |
Collapse
|
3
|
Huang H, Chen Z, Zheng H, Ou Y, Zhang J, Xiao K, Huang J, Liu ZQ, Chen Y. Water-Vapor-Triggered Dual-Mode Optical Responses in Rare-Earth-Doped Hollow Nanospheres. NANO LETTERS 2024; 24:15001-15007. [PMID: 39547712 DOI: 10.1021/acs.nanolett.4c03714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
Multimode responsive optical materials are garnering ever-increasing attention due to their diverse applications. This work showcases a film assembled with rare-earth-doped CaF2 hollow nanospheres that exhibit water-vapor-triggered dual-mode optical responses. Upon exposure to flowing water vapor, the film rapidly (less than 1.5 s for a 7.7 μm thickness) transitions to a transparent state and simultaneously undergoes a sharp decrease in the photoluminescence intensity. Both of these changes fully reverse upon water evaporation, demonstrating an impressive reversibility over at least 200 cycles. The water-vapor-induced dual-mode responses are attributed to the altered incident light propagation path stemming from the similar refractive indices between CaF2 and water, coupled with the water-induced energy loss of the rare-earth ions. The fabrication of encryption patterns displaying separate signals in multiple channels, as well as the demonstration of noncontact sensing for water vapor distribution, underscore the promising application potential of this dual-mode responsive system.
Collapse
Affiliation(s)
- Hongji Huang
- School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials/Key Laboratory for Clean Energy and Materials, Guangzhou University, Guangzhou Higher Education Mega Center, No. 230 Wai Huan Xi Road, Guangzhou 510006, P. R. China
| | - Zixian Chen
- School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials/Key Laboratory for Clean Energy and Materials, Guangzhou University, Guangzhou Higher Education Mega Center, No. 230 Wai Huan Xi Road, Guangzhou 510006, P. R. China
| | - Hanqi Zheng
- School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials/Key Laboratory for Clean Energy and Materials, Guangzhou University, Guangzhou Higher Education Mega Center, No. 230 Wai Huan Xi Road, Guangzhou 510006, P. R. China
| | - Yingyi Ou
- School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials/Key Laboratory for Clean Energy and Materials, Guangzhou University, Guangzhou Higher Education Mega Center, No. 230 Wai Huan Xi Road, Guangzhou 510006, P. R. China
| | - Jianing Zhang
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong 999077, P. R. China
| | - Kang Xiao
- School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials/Key Laboratory for Clean Energy and Materials, Guangzhou University, Guangzhou Higher Education Mega Center, No. 230 Wai Huan Xi Road, Guangzhou 510006, P. R. China
| | - Jinqing Huang
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong 999077, P. R. China
| | - Zhao-Qing Liu
- School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials/Key Laboratory for Clean Energy and Materials, Guangzhou University, Guangzhou Higher Education Mega Center, No. 230 Wai Huan Xi Road, Guangzhou 510006, P. R. China
| | - Yibo Chen
- School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials/Key Laboratory for Clean Energy and Materials, Guangzhou University, Guangzhou Higher Education Mega Center, No. 230 Wai Huan Xi Road, Guangzhou 510006, P. R. China
| |
Collapse
|
4
|
Lu W, Yan W, Guo R, Zheng J, Bian Z, Liu Z. Upconversion Luminescence in a Photostable Ion-Paired Yb-Eu Heteronuclear Complex. Angew Chem Int Ed Engl 2024; 63:e202413069. [PMID: 39045802 DOI: 10.1002/anie.202413069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 07/19/2024] [Accepted: 07/22/2024] [Indexed: 07/25/2024]
Abstract
Lanthanide-based upconversion molecular complexes have potential application in diverse fields and attracted considerable research interest in recent years. However, the similar coordination reactivity of lanthanide ions has constrained the designability of target molecule with well-defined structure, and many attempts obtained statistical mixtures. Herein, an ion-paired Yb-Eu heteronuclear complex [Eu(TpPy)2][Yb(ND)4] (TpPy=tris[3-(2-pyridyl)pyrazolyl]hydroborate, ND=3-cyano-2-methyl-1,5-naphthyridin-4-olate) was designed and synthesized. Thanks to the radius difference between Eu3+ (1.07 Å) and Yb3+ (0.98 Å) ions, the hexadentate TpPy ligand was selected to coordinate with Eu3+ and the Yb3+ with a smaller radius was chelated by bidentate ND ligand. As a result, the sites of Eu3+ and Yb3+ in the complex can be clarified by high-resolution mass spectrometry and single-crystal structure analysis. Upon the excitation of Yb3+ at 980 nm, the upconversion emission of Eu3+ was realized through a cooperative sensitization process. Furthermore, [Eu(TpPy)2][Yb(ND)4] demonstrated excellent photostability during continuous high-power density 980 nm laser irradiation, with a LT95 (the time to 95 % of the initial emission intensity) of 420 minutes. This work provides the first example of a pure ion-paired Yb-Eu heteronuclear complex upconversion system and may bring insights into rational design of lanthanide-based upconversion molecular complexes.
Collapse
Affiliation(s)
- Wen Lu
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Wenchao Yan
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Ruoyao Guo
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Jiayin Zheng
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Zuqiang Bian
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Zhiwei Liu
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| |
Collapse
|
5
|
Li Q, Huang Y, Zhu H, Zhu Y, Yi Y, Li X, Chen H, Li B, Li D, Chang Y. NIR-I Activated Orthogonal NIR-IIb/c Emissions in a Lanthanide-Doped Nanoparticle for Fluorescence Imaging and Information Encryption. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2408097. [PMID: 39348236 PMCID: PMC11600275 DOI: 10.1002/advs.202408097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/28/2024] [Indexed: 10/02/2024]
Abstract
Applying the orthogonal principle for distinguishable second near-infrared (NIR-II) emissions has brought new dimensions for ratio fluorescence imaging (RFI) detection and information encryption, deepening the tissue detection depth and improving signal-to-noise ratio and information security. However, the orthogonal NIR-II emissions underlying these advanced optical applications have been reported only in heterogeneous structures and mixtures, limiting their practicality and potential impact. Herein, NIR-I-activated orthogonal NIR-IIb/c (1530/1825 nm) emissions nanoparticles (ONNPs) are developed by spatially separated doping of Tm3+ and Er3+ emitter upon switching 808 and 980 nm excitations. RFI techniques and orthogonal NIR-II emission ONNPs are used to demonstrate vessel depth detection based on wavelength-dependent optical attenuation properties in tissue. The superiority of the optical coding and encoding process in a 4 × 1 binary matrix is demonstrated for anticounterfeiting and decryption imaging of quick-response (QR) code for information storage. The research progress of this NIR-II orthogonal emissions probe will drive the development of biomedical sensing, imaging safety, and future biophotonics technologies.
Collapse
Affiliation(s)
- Qiqing Li
- Key Laboratory of Luminescence Science and TechnologyChinese Academy of Sciences & State Key Laboratory of Luminescence Science and ApplicationsChangchun Institute of OpticsFine Mechanics and PhysicsChinese Academy of SciencesChangchunJilin130033China
- State Key Laboratory on Integrated OptoelectronicsKey Laboratory of Advanced Gas SensorsCollege of Electronic Science and EngineeringJilin UniversityChangchunJilin130033China
| | - Yuanping Huang
- Department of Respiratory MedicineThe First Hospital of Jilin UniversityChangchunJilin130033China
| | - Haoyu Zhu
- Key Laboratory of Luminescence Science and TechnologyChinese Academy of Sciences & State Key Laboratory of Luminescence Science and ApplicationsChangchun Institute of OpticsFine Mechanics and PhysicsChinese Academy of SciencesChangchunJilin130033China
- Northeast Normal UniversityChangchunJilin130033China
| | - Yaqi Zhu
- Key Laboratory of Luminescence Science and TechnologyChinese Academy of Sciences & State Key Laboratory of Luminescence Science and ApplicationsChangchun Institute of OpticsFine Mechanics and PhysicsChinese Academy of SciencesChangchunJilin130033China
- Northeast Normal UniversityChangchunJilin130033China
| | - Yuexi Yi
- Key Laboratory of Luminescence Science and TechnologyChinese Academy of Sciences & State Key Laboratory of Luminescence Science and ApplicationsChangchun Institute of OpticsFine Mechanics and PhysicsChinese Academy of SciencesChangchunJilin130033China
- Northeast Normal UniversityChangchunJilin130033China
| | - Xiaodan Li
- Department of Respiratory MedicineThe First Hospital of Jilin UniversityChangchunJilin130033China
| | - Haoran Chen
- Key Laboratory of Luminescence Science and TechnologyChinese Academy of Sciences & State Key Laboratory of Luminescence Science and ApplicationsChangchun Institute of OpticsFine Mechanics and PhysicsChinese Academy of SciencesChangchunJilin130033China
| | - Bin Li
- Key Laboratory of Luminescence Science and TechnologyChinese Academy of Sciences & State Key Laboratory of Luminescence Science and ApplicationsChangchun Institute of OpticsFine Mechanics and PhysicsChinese Academy of SciencesChangchunJilin130033China
| | - Dabing Li
- Key Laboratory of Luminescence Science and TechnologyChinese Academy of Sciences & State Key Laboratory of Luminescence Science and ApplicationsChangchun Institute of OpticsFine Mechanics and PhysicsChinese Academy of SciencesChangchunJilin130033China
| | - Yulei Chang
- Key Laboratory of Luminescence Science and TechnologyChinese Academy of Sciences & State Key Laboratory of Luminescence Science and ApplicationsChangchun Institute of OpticsFine Mechanics and PhysicsChinese Academy of SciencesChangchunJilin130033China
| |
Collapse
|
6
|
Zhang C, Yin Q, Ge S, Qi J, Han Q, Gao W, Wang Y, Zhang M, Dong J. Optical anti-counterfeiting and information storage based on rare-earth-doped luminescent materials. MATERIALS RESEARCH BULLETIN 2024; 176:112801. [DOI: 10.1016/j.materresbull.2024.112801] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
7
|
Ye H, Li Y, Chen X, Du W, Song L, Chen Y, Zhan Q, Wei W. Current Developments in Emerging Lanthanide-Doped Persistent Luminescent Scintillators and Their Applications. Chemistry 2024; 30:e202303661. [PMID: 38630080 DOI: 10.1002/chem.202303661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Indexed: 05/25/2024]
Abstract
Lanthanide-doped scintillators have the ability to convert the absorbed X-ray irradiation into ultraviolet (UV), visible (Vis), or near-infrared (NIR) light. Lanthanide-doped scintillators with excellent persistent luminescence (PersL) are emerging as a new class of PersL materials recently. They have attracted great attention due to their unique "self-luminescence" characteristic and potential applications. In this review, we comb through and focus on current developments of lanthanide-doped persistent luminescent scintillators (PersLSs), including their PersL mechanism, synthetic methods, tuning of PersL properties (e. g. emission wavelength, intensity, and duration time), as well as their promising applications (e. g. information storage, encryption, anti-counterfeiting, bio-imaging, and photodynamic therapy). We hope this review will provide valuable guidance for the future development of PersLSs.
Collapse
Affiliation(s)
- Huiru Ye
- MOE & Guangdong Provincial Key Laboratory of Laser Life Science, Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou, 510631, China
| | - Yantao Li
- MOE & Guangdong Provincial Key Laboratory of Laser Life Science, Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou, 510631, China
| | - Xukai Chen
- MOE & Guangdong Provincial Key Laboratory of Laser Life Science, Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou, 510631, China
| | - Weidong Du
- MOE & Guangdong Provincial Key Laboratory of Laser Life Science, Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou, 510631, China
| | - Longfei Song
- MOE & Guangdong Provincial Key Laboratory of Laser Life Science, Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou, 510631, China
| | - Yu Chen
- MOE & Guangdong Provincial Key Laboratory of Laser Life Science, Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou, 510631, China
| | - Qiuqiang Zhan
- Centre for Optical and Electromagnetic Research, Guangdong Provincial Key Laboratory of Optical Information Materials and Technology, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, 510006, China
| | - Wei Wei
- MOE & Guangdong Provincial Key Laboratory of Laser Life Science, Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou, 510631, China
| |
Collapse
|
8
|
Zhu B, Ruan K, Tatiana C, Cun Y. Reversible Multi-Mode Optical Modification in Inverse-Opal-Structured WO 3: Yb 3+, Er 3+ Photonic Crystal. MATERIALS (BASEL, SWITZERLAND) 2024; 17:2436. [PMID: 38793504 PMCID: PMC11122803 DOI: 10.3390/ma17102436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 04/27/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024]
Abstract
Reversible optical regulation has potential applications in optical anti-counterfeiting, storage, and catalysis. Compared to common power materials, the reverse opal structure has a larger specific surface area and an increased contact area for optical regulation, which is expected to achieve higher regulation rates. However, it is difficult to achieve reversible and repeatable regulation of the luminescent properties of photonic crystals, especially with the current research on the structural collapse of photonic crystals. In this work, WO3: Yb3+, Er3+ inverse photonic crystals were prepared by the template approach, and reversible multi-mode optical modification was investigated. Upon heat treatment in a reducing atmosphere or air, the color of the photonic crystals can reversibly change from light yellow to dark green, accompanied by changes in absorption and upconversion of luminescence intensity. The stability and fatigue resistance of this reversible optical modification ability were explored through cyclic experiments, providing potential practical applications for photocatalysis, optical information storage, and electrochromism.
Collapse
Affiliation(s)
- Bokun Zhu
- College of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093, China; (B.Z.); (K.R.)
| | - Keliang Ruan
- College of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093, China; (B.Z.); (K.R.)
| | - Cherkasova Tatiana
- School of Chemistry and Oil and Gas Technology, Kuzbas National Technical University, 650026 Kemerovo, Russia;
| | - Yangke Cun
- College of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093, China; (B.Z.); (K.R.)
| |
Collapse
|
9
|
Liu X, Su X, Ren Z, Yang L, Zhang X, Ding M. Er 3+/Tm 3+ co-activated core@shell nanoarchitectures: tunable upconversion luminescence and high-security anti-counterfeiting. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 305:123519. [PMID: 37871526 DOI: 10.1016/j.saa.2023.123519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 10/03/2023] [Accepted: 10/09/2023] [Indexed: 10/25/2023]
Abstract
Currently, developing advanced optoelectronic materials is of great importance to solving serious problem of fake and shoddy products. Lanthanide-doped nanomaterials are particularly suitable for addressing this issue, but limited by the realization of multiple upconverison (UC) emissions upon a single-wavelength laser excitation. Herein, it is proven that the co-dopant of blue/near-infrared (NIR)-emitting activators (Tm3+) and green/red-emitting centers (Er3+) in a particular designed core-shell nanoarchitecture allows the achievement of multiple luminescence over wide spectral region for optical security. In our study, cubic-phased NaYbF4:Tm/Er@CaF2 nanocrystals have been successfully synthesized through a layer-by-layer coprecipitation strategy, which presents visible multicolor UC luminescence and invisible NIR UC emission upon 980 nm laser excitation by just regulating the laser power and temperature. Significantly, the unique luminescent characteristics enables the designed UC nanoparticles a promising candidate for advanced anti-counterfeiting. This works offers a reference to develop advanced optoelectronic materials for practical application in optical security.
Collapse
Affiliation(s)
- Xuan Liu
- College of Science, Nanjing Forestry University, Nanjing 210037, Jiangsu, China
| | - Xiaojia Su
- College of Science, Nanjing Forestry University, Nanjing 210037, Jiangsu, China
| | - Zhuohang Ren
- College of Science, Nanjing Forestry University, Nanjing 210037, Jiangsu, China
| | - Lingqiu Yang
- College of Science, Nanjing Forestry University, Nanjing 210037, Jiangsu, China
| | - Xinyue Zhang
- College of Science, Nanjing Forestry University, Nanjing 210037, Jiangsu, China
| | - Mingye Ding
- College of Science, Nanjing Forestry University, Nanjing 210037, Jiangsu, China.
| |
Collapse
|
10
|
Zhu X, Yang M, Zhang H. Over 10 4 -fold amplified upconversion luminescence of lanthanide nanocrystals through optical oscillator-like system. LUMINESCENCE 2024; 39:e4611. [PMID: 37899383 DOI: 10.1002/bio.4611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/06/2023] [Accepted: 10/08/2023] [Indexed: 10/31/2023]
Abstract
Recently, lanthanide (Ln) luminescent nanocrystals have attracted increasing attention in various fields such as biomedical imaging, lasers, and anticounterfeiting. However, due to the forbidden 4f-4f transition of lanthanide ions, the absorption cross-section and luminescence brightness of lanthanide nanocrystals are limited. To address the challenge, we constructed an optical oscillator-like system to repeatedly simulate lanthanide nanocrystals to enhance the absorption efficiency of lanthanide ions on excitation photons. In this optical system, the upconversion luminescence (UCL) of Tm3+ emission of ~450 nm excited by a 980 nm laser can be amplified by a factor beyond 104 . The corresponding downshifting luminescence of Tm3+ at 1460 nm was enhanced by three orders of magnitude. We also demonstrated that the significant luminescence enhancement in the designed optical oscillator-like system was general for various lanthanide nanocrystals including NaYF4 :Yb3+ /Ln3+ , NaErF4 @NaYF4 and NaYF4 :Yb3+ /Ln3+ @NaYF4 :Yb3+ @NaYF4 (Ln = Er, Tm, Ho) regardless of the wavelengths of excitation sources (808 and 980 nm). The mechanism study revealed that both elevated laser power in the optical system and multiple excitations on lanthanide nanocrystals were the main reason for the luminescence amplification. Our findings may benefit the future development of low-threshold upconversion and downshifting luminescence of lanthanide nanocrystals and expand their applications.
Collapse
Affiliation(s)
- Xinyan Zhu
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers and iChem, Fudan University, Shanghai, China
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Guangdong-Hong Kong-Macau Joint Laboratory of Optoelectronic and Magnetic Functional Materials, Division of Life Science, and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Kowloon, Hong Kong, China
| | - Mingzhu Yang
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers and iChem, Fudan University, Shanghai, China
| | - Hongxin Zhang
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers and iChem, Fudan University, Shanghai, China
| |
Collapse
|
11
|
Huang J, Yan L, An Z, Wei H, Wang C, Zhang Q, Zhou B. Cross Relaxation Enables Spatiotemporal Color-Switchable Upconversion in a Single Sandwich Nanoparticle for Information Security. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2310524. [PMID: 38150659 DOI: 10.1002/adma.202310524] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/09/2023] [Indexed: 12/29/2023]
Abstract
Smart control of ionic interaction dynamics offers new possibilities for tuning and editing luminescence properties of lanthanide-based materials. However, it remains a daunting challenge to achieve the dynamic control of cross relaxation mediated photon upconversion, and in particular the involved intrinsic photophysics is still unclear. Herein, this work reports a conceptual model to realize the color-switchable upconversion of Tm3+ through spatiotemporal control of cross relaxation in the design of NaYF4 :Gd@NaYbF4 :Tm@NaYF4 sandwich nanostructure. It shows that cross relaxation plays a key role in modulating upconversion dynamics and tuning emission colors of Tm3+ . Interestingly, it is found that there is a short temporal delay for the occurrence of cross relaxation in contrast to the spontaneous emission as a result of the slight energy mismatch between relevant energy levels. This further enables a fine emission color tuning upon non-steady state excitation. Moreover, a characteristic quenching time is proposed to describe the temporal evolution of cross relaxation quantitatively. These findings present a deep insight into the physics of ionic interactions in heavy doping systems, and also show great promise in frontier applications including information security, anti-counterfeiting and nanophotonics.
Collapse
Affiliation(s)
- Jinshu Huang
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Fiber Laser Materials and Applied Techniques, Guangdong Engineering Technology Research Center of Special Optical Fiber Materials and Devices, South China University of Technology, Guangzhou, 510641, China
- School of Physics and Optoelectronics, South China University of Technology, Guangzhou, 510641, China
| | - Long Yan
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Fiber Laser Materials and Applied Techniques, Guangdong Engineering Technology Research Center of Special Optical Fiber Materials and Devices, South China University of Technology, Guangzhou, 510641, China
| | - Zhengce An
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Fiber Laser Materials and Applied Techniques, Guangdong Engineering Technology Research Center of Special Optical Fiber Materials and Devices, South China University of Technology, Guangzhou, 510641, China
| | - Haopeng Wei
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Fiber Laser Materials and Applied Techniques, Guangdong Engineering Technology Research Center of Special Optical Fiber Materials and Devices, South China University of Technology, Guangzhou, 510641, China
| | - Chao Wang
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Fiber Laser Materials and Applied Techniques, Guangdong Engineering Technology Research Center of Special Optical Fiber Materials and Devices, South China University of Technology, Guangzhou, 510641, China
| | - Qinyuan Zhang
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Fiber Laser Materials and Applied Techniques, Guangdong Engineering Technology Research Center of Special Optical Fiber Materials and Devices, South China University of Technology, Guangzhou, 510641, China
| | - Bo Zhou
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Fiber Laser Materials and Applied Techniques, Guangdong Engineering Technology Research Center of Special Optical Fiber Materials and Devices, South China University of Technology, Guangzhou, 510641, China
| |
Collapse
|
12
|
Zhu Y, Wu P, Liu S, Yang J, Wu F, Cao W, Yang Y, Zheng B, Xiong H. Electron-Withdrawing Substituents Allow Boosted NIR-II Fluorescence in J-Type Aggregates for Bioimaging and Information Encryption. Angew Chem Int Ed Engl 2023; 62:e202313166. [PMID: 37817512 DOI: 10.1002/anie.202313166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 09/24/2023] [Accepted: 10/10/2023] [Indexed: 10/12/2023]
Abstract
Developing molecular fluorophores with enhanced fluorescence in aggregate state for the second near-infrared (NIR-II) imaging is highly desirable but remains a tremendous challenge due to the lack of reliable design guidelines. Herein, we report an aromatic substituent strategy to construct highly bright NIR-II J-aggregates. Introduction of electron-withdrawing substituents at 3,5-aryl and meso positions of classic boron dipyrromethene (BODIPY) skeleton can promote slip-stacked J-type arrangement and further boost NIR-II fluorescence of J-aggregates via increased electrostatic repulsion and intermolecular hydrogen bond interaction. Notably, NOBDP-NO2 with three nitro groups (-NO2 ) shows intense NIR-II fluorescence at 1065 nm and high absolute quantum yield of 3.21 % in solid state, which can be successfully applied in bioimaging, high-level encoding encryption, and information storage. Moreover, guided by this electron-withdrawing substituent strategy, other skeletons (thieno-fused BODIPY, aza-BODIPY, and heptamethine cyanine) modified with -NO2 are converted into J-type aggregates with enhanced NIR-II fluorescence, showing great potential to convert aggregation caused emission quenching (ACQ) dyes into brilliant J-aggregates. This study provides a universal method for construction of strong NIR-II emissive J-aggregates by rationally manipulating molecular packing and establishing relationships among molecular structures, intermolecular interactions, and fluorescence properties.
Collapse
Affiliation(s)
- Yu Zhu
- Research Center for Analytical Sciences, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 300071, Tianjin, China
| | - Peng Wu
- Research Center for Analytical Sciences, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 300071, Tianjin, China
| | - Senyao Liu
- Research Center for Analytical Sciences, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 300071, Tianjin, China
| | - Jieyu Yang
- Research Center for Analytical Sciences, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 300071, Tianjin, China
| | - Fapu Wu
- Research Center for Analytical Sciences, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 300071, Tianjin, China
| | - Wenwen Cao
- Research Center for Analytical Sciences, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 300071, Tianjin, China
| | - Yuexia Yang
- Research Center for Analytical Sciences, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 300071, Tianjin, China
| | - Bingbing Zheng
- Research Center for Analytical Sciences, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 300071, Tianjin, China
| | - Hu Xiong
- Research Center for Analytical Sciences, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 300071, Tianjin, China
| |
Collapse
|
13
|
Sun G, Xie Y, Wang Y, Zhang H, Sun L. Upconversion Luminescence in Mononuclear Yb/Sm Co-crystal Assemblies at Room Temperature. Angew Chem Int Ed Engl 2023; 62:e202312308. [PMID: 37698110 DOI: 10.1002/anie.202312308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/07/2023] [Accepted: 09/12/2023] [Indexed: 09/13/2023]
Abstract
Metal-based upconversion luminescence transforming high-energy photons into low-energy photons is an attractive anti-Stokes shift process for fundamental research and promising applications. In this work, we developed the upconversion luminescence in co-crystal assemblies consisting of discrete mononuclear Yb and Sm complexes. The characteristic visible emissions of Sm3+ were observed under the excitation of absorption band of Yb3+ at 980 nm. A series of co-crystal assemblies were investigated based on mononuclear Yb and Sm complexes, and the strongest luminescence was obtained when the molar concentration between Yb3+ and Sm3+ is equivalent. The crystal structure was fully characterized by the single crystal X-ray diffraction and upconverting energy transfer mechanisms were verified as cooperative sensitization upconversion and energy transfer upconversion. This is the first example of Sm3+ -based upconverting luminescence in discrete lanthanide complexes which present as co-crystal assemblies at room temperature.
Collapse
Affiliation(s)
- Guotao Sun
- School of Materials Science and Engineering, Shanghai University, Shanghai, 200444, China
- Department of Chemistry, College of Sciences, Shanghai University, Shanghai, 200444, China
| | - Yao Xie
- Department of Chemistry, College of Sciences, Shanghai University, Shanghai, 200444, China
| | - Yuxin Wang
- Department of Chemistry, College of Sciences, Shanghai University, Shanghai, 200444, China
| | - Hongjie Zhang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Lining Sun
- School of Materials Science and Engineering, Shanghai University, Shanghai, 200444, China
- Department of Chemistry, College of Sciences, Shanghai University, Shanghai, 200444, China
| |
Collapse
|
14
|
Gao Y, Liu L, Murai S, Shinozaki K, Tanaka K. Enhancing Up-Conversion Luminescence Using Dielectric Metasurfaces: Role of the Quality Factor of Resonance at a Pumping Wavelength. ACS APPLIED MATERIALS & INTERFACES 2023; 15:45960-45969. [PMID: 37725681 DOI: 10.1021/acsami.3c06877] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/21/2023]
Abstract
Photonic applications of up-conversion luminescence (UCL) suffer from poor external quantum yield owing to a low absorption cross-section of UCL nanoparticles (UCNPs) doped with lanthanide ions. In this regard, plasmonic nanostructures have been proposed for enhancing UCL intensity through strong electromagnetic local-field enhancement; however, their intrinsic ohmic loss opens additional nonradiative decay channels. Herein, we demonstrate that dielectric metasurfaces can overcome this disadvantage. A periodic array of amorphous-silicon nanodisks serves as a metasurface on which a layer of UCNPs is self-assembled. Sharp resonances supported by the metasurface overlap the absorption wavelength (λ = 980 nm) of UCNPs to excite them, resulting in the enhancement of UCL intensity. We further sharpen the resonances through rapid thermal annealing (RTA) of the metasurface, crystallizing silicon to reduce intrinsic optical losses. By optimizing the RTA condition (at 1000 °C for 20 min in N2/H2 (3 vol %) atmosphere), the resonance quality factor improves from 17.2 to 32.9, accompanied by an increase in the enhancement factor of the UCL intensity from 86- to over 600-fold. Moreover, a reduction in the intrinsic optical losses mitigates the UCL thermal quenching under a high excitation density. These findings provide a strategy for increasing light-matter interactions in nanophotonic composite systems and promote UCNP applications.
Collapse
Affiliation(s)
- Yuan Gao
- Faculty of Material Science and Engineering, Kunming University of Science and Technology, Kunming 650093, China
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Libei Liu
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Shunsuke Murai
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Kenji Shinozaki
- National Institute of Advanced Industrial Science and Technology, Ikeda, Osaka 563-8577, Japan
| | - Katsuhisa Tanaka
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| |
Collapse
|
15
|
Liang J, Fan T, Lü JT, Guan T, Deng TT, Xiong B. Dual-mode luminescence anti-counterfeiting and white light emission of NaGdF 4:Ce,Eu,Tb/carbon dot hydrophilic nanocomposite ink. RSC Adv 2023; 13:25681-25690. [PMID: 37649662 PMCID: PMC10463238 DOI: 10.1039/d3ra04368a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 08/05/2023] [Indexed: 09/01/2023] Open
Abstract
NaGdF4:Ce,Eu,Tb nanocrystals were successfully prepared by a one-step hydrothermal method with Ce3+ ions as sensitizers, Eu3+ and Tb3+ ions as activators, and polyethylenimine (PEI) as surfactants. Color-adjustable fluorescence emission was achieved by the energy transfer effect between rare earth ions. Blue fluorescent carbon quantum dots (CDs) with a double UV response under 254 nm and 365 nm excitation were synthesized by a one-step hydrothermal method. A hydrophilic NaGdF4:Ce,Eu,Tb/CD composite ink was prepared by an easy physical mixing method. Because of the electrostatic self-assembly effect, the color adjustable luminescence was achieved in a few seconds, and the white light emission with color coordinates of (0.32, 0.32) was obtained. A dual-mode luminescence anti-counterfeiting pattern was designed and achieved by excitation with ultraviolet light at 254 nm and 365 nm.
Collapse
Affiliation(s)
- Jie Liang
- School of Materials Science and Hydrogen Energy, Foshan University Foshan 528000 China
- Guangdong Key Laboratory for Hydrogen Energy Technologies Foshan 528000 China
- Foshan Inorganic Micro-Nano Luminescent Materials Engineering Technology Research Center Foshan 528000 China
| | - Ting Fan
- School of Materials Science and Hydrogen Energy, Foshan University Foshan 528000 China
- Guangdong Key Laboratory for Hydrogen Energy Technologies Foshan 528000 China
- Foshan Inorganic Micro-Nano Luminescent Materials Engineering Technology Research Center Foshan 528000 China
| | - Jian-Tao Lü
- School of Physics and Optoelectronic Engineering, Foshan University Foshan 528200 China
| | - Tianjie Guan
- School of Materials Science and Hydrogen Energy, Foshan University Foshan 528000 China
- Guangdong Key Laboratory for Hydrogen Energy Technologies Foshan 528000 China
- Foshan Inorganic Micro-Nano Luminescent Materials Engineering Technology Research Center Foshan 528000 China
| | - Ting-Ting Deng
- School of Physics and Optoelectronic Engineering, Foshan University Foshan 528200 China
| | - Bangyun Xiong
- School of Materials Science and Hydrogen Energy, Foshan University Foshan 528000 China
- Guangdong Key Laboratory for Hydrogen Energy Technologies Foshan 528000 China
- Foshan Inorganic Micro-Nano Luminescent Materials Engineering Technology Research Center Foshan 528000 China
| |
Collapse
|
16
|
Wang Y, Li W, Ma Y, Hu B, Chen X, Lv R. Thermally activated upconversion luminescence and ratiometric temperature sensing under 1064 nm/808 nm excitation. NANOTECHNOLOGY 2023; 34:235704. [PMID: 36857764 DOI: 10.1088/1361-6528/acc037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 03/01/2023] [Indexed: 06/18/2023]
Abstract
In this research, a thermally activated upconversion luminescence (UCL) probe with ratiometric temperature sensing under 1064 nm and 808 nm excitation was designed. Especially, Nd3+, Tm3+and Ce3+were doped in rare earth nanoparticles (RENPs) as UCL modulators. By optimizing the elements and ratios, the excitation wavelength is successfully modulated to 1064 nm excitation with UCL intensity enhanced. Additionally, the prepared RENPs have a significant temperature response at 1064 nm excitation and can be used for thermochromic coatings. The intensity ratio of three-photon UCL (1064 nm excitation) to two-photon UCL (808 nm excitation) as an exponential function of temperature can be used as a ratiometric temperature detector. Therefore, this designed thermochromic coatings may enable new applications in optoelectronic device and industrial sensor.
Collapse
Affiliation(s)
- Yanxing Wang
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shanxi 710071, People's Republic of China
| | - Wenjing Li
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shanxi 710071, People's Republic of China
| | - Yaqun Ma
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shanxi 710071, People's Republic of China
| | - Bo Hu
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shanxi 710071, People's Republic of China
| | - Xueli Chen
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shanxi 710071, People's Republic of China
| | - Ruichan Lv
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shanxi 710071, People's Republic of China
| |
Collapse
|
17
|
Xie Y, Sun G, Mandl GA, Maurizio SL, Chen J, Capobianco JA, Sun L. Upconversion Luminescence through Cooperative and Energy-Transfer Mechanisms in Yb 3+ -Metal-Organic Frameworks. Angew Chem Int Ed Engl 2023; 62:e202216269. [PMID: 36437239 DOI: 10.1002/anie.202216269] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 11/24/2022] [Accepted: 11/25/2022] [Indexed: 11/29/2022]
Abstract
Lanthanide-doped metal-organic frameworks (Ln-MOFs) have versatile luminescence properties, however it is challenging to achieve lanthanide-based upconversion luminescence in these materials. Here, 1,3,5-benzenetricarboxylic acid (BTC) and trivalent Yb3+ ions were used to generate crystalline Yb-BTC MOF 1D-microrods with upconversion luminescence under near infrared excitation via cooperative luminescence. Subsequently, the Yb-BTC MOFs were doped with a variety of different lanthanides to evaluate the potential for Yb3+ -based upconversion and energy transfer. Yb-BTC MOFs doped with Er3+ , Ho3+ , Tb3+ , and Eu3+ ions exhibit both the cooperative luminescence from Yb3+ and the characteristic emission bands of these ions under 980 nm irradiation. In contrast, only the 497 nm upconversion emission band from Yb3+ is observed in the MOFs doped with Tm3+ , Pr3+ , Sm3+ , and Dy3+ . The effects of different dopants on the efficiency of cooperative luminescence were established and will provide guidance for the exploitation of Ln-MOFs exhibiting upconversion.
Collapse
Affiliation(s)
- Yao Xie
- Department of Physics, College of Sciences, Shanghai University, 200444, Shanghai, China.,Department of Chemistry, College of Sciences, Shanghai University, 200444, Shanghai, China
| | - Guotao Sun
- School of Materials Science and Engineering, Shanghai University, 200444, Shanghai, China
| | - Gabrielle A Mandl
- Department of Chemistry and Biochemistry and Centre for NanoScience Research, Concordia University, H4B 1R6, Montreal, QC, Canada
| | - Steven L Maurizio
- Department of Chemistry and Biochemistry and Centre for NanoScience Research, Concordia University, H4B 1R6, Montreal, QC, Canada
| | - Jiabo Chen
- Department of Chemistry, College of Sciences, Shanghai University, 200444, Shanghai, China
| | - John A Capobianco
- Department of Chemistry and Biochemistry and Centre for NanoScience Research, Concordia University, H4B 1R6, Montreal, QC, Canada
| | - Lining Sun
- Department of Physics, College of Sciences, Shanghai University, 200444, Shanghai, China.,Department of Chemistry, College of Sciences, Shanghai University, 200444, Shanghai, China
| |
Collapse
|
18
|
Chen M, Ning Z, Ge X, Yang E, Sun Q, Yin F, Zhang M, Zhang Y, Shen Y. Ligands engineering of gold nanoclusters with enhanced photoluminescence for deceptive information encryption and glutathione detection. Biosens Bioelectron 2023; 219:114805. [PMID: 36279824 DOI: 10.1016/j.bios.2022.114805] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 09/28/2022] [Accepted: 10/10/2022] [Indexed: 11/05/2022]
Abstract
Gold nanoclusters (Au NCs) have appeared as an essential alternative to traditional quantum dots and fluorescent molecules for the development of intelligent stimuli-responsive photoluminescence (PL), but the low PL emission of Au NCs restricts their broad applications. Herein, we reported a simple yet effective strategy for preparing Au NCs with high PL by ligands engineering of 4-hydroxy-2-mercapto-6-methylpyrimidine (MTU) and L-Arginine (Arg). Owing to the rigidified shell and the ligand-to-metal charge transfer (LMCT) effects, it was found that the assembly of Arg ligand on MTU-protected Au NCs (Arg/MTU-Au NCs) led to a significantly enhanced PL in the alkaline solution up to 30 times. Moreover, utilizing the tunable LMCT, the Arg/MTU-Au NCs displayed rapid responses to multi-type ionic interaction in a reversible manner, such as H+/OH- and Cu2+/glutathione (GSH) pairs. Inspired by these intriguing ions-responsive LMCT and the associated switchable PL emission, the Arg/MTU-Au NCs were successfully used as excellent stimuli-responsive PL probes for intriguing deceptive information encryption and biosensing as well. This work would provide new insight into regulating the PL emission of Au NCs by ligands engineering and advance their potential applications in information encryption and bioassay.
Collapse
Affiliation(s)
- Mengyuan Chen
- School of Chemistry and Chemical Engineering, Medical School, Southeast University, Nanjing, 210009, China
| | - Zhenqiang Ning
- School of Chemistry and Chemical Engineering, Medical School, Southeast University, Nanjing, 210009, China
| | - Xue Ge
- School of Chemistry and Chemical Engineering, Medical School, Southeast University, Nanjing, 210009, China
| | - Erli Yang
- School of Chemistry and Chemical Engineering, Medical School, Southeast University, Nanjing, 210009, China
| | - Qian Sun
- School of Chemistry and Chemical Engineering, Medical School, Southeast University, Nanjing, 210009, China
| | - Fei Yin
- School of Chemistry and Chemical Engineering, Medical School, Southeast University, Nanjing, 210009, China
| | - Mingming Zhang
- School of Chemistry and Chemical Engineering, Medical School, Southeast University, Nanjing, 210009, China
| | - Yuanjian Zhang
- School of Chemistry and Chemical Engineering, Medical School, Southeast University, Nanjing, 210009, China
| | - Yanfei Shen
- School of Chemistry and Chemical Engineering, Medical School, Southeast University, Nanjing, 210009, China; Center of Clinical Laboratory Medicine, Zhongda Hospital, Southeast University, Nanjing, 210009, China; Jiangsu Provincial Key Laboratory of Critical Care Medicine, Southeast University, Nanjing, 210009, China.
| |
Collapse
|
19
|
Fang M, Lu H, Li R, Wei W, Mao L, Christoforo T, Chen G, Guan Y, Pei X, Chen Q, Tian M, Wei Y. Triphenylamine derivatives functionalized di-ureasil hybrids for information encipherment. CHEMICAL ENGINEERING JOURNAL ADVANCES 2022. [DOI: 10.1016/j.ceja.2022.100411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
|
20
|
Emerging NIR-II luminescent bioprobes based on lanthanide-doped nanoparticles: From design towards diverse bioapplications. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
21
|
Cheng X, Zhou J, Yue J, Wei Y, Gao C, Xie X, Huang L. Recent Development in Sensitizers for Lanthanide-Doped Upconversion Luminescence. Chem Rev 2022; 122:15998-16050. [PMID: 36194772 DOI: 10.1021/acs.chemrev.1c00772] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The attractive features of lanthanide-doped upconversion luminescence (UCL), such as high photostability, nonphotobleaching or photoblinking, and large anti-Stokes shift, have shown great potentials in life science, information technology, and energy materials. Therefore, UCL modulation is highly demanded toward expected emission wavelength, lifetime, and relative intensity in order to satisfy stringent requirements raised from a wide variety of areas. Unfortunately, the majority of efforts have been devoted to either simple codoping of multiple activators or variation of hosts, while very little attention has been paid to the critical role that sensitizers have been playing. In fact, different sensitizers possess different excitation wavelengths and different energy transfer pathways (to different activators), which will lead to different UCL features. Thus, rational design of sensitizers shall provide extra opportunities for UCL tuning, particularly from the excitation side. In this review, we specifically focus on advances in sensitizers, including the current status, working mechanisms, design principles, as well as future challenges and endeavor directions.
Collapse
Affiliation(s)
- Xingwen Cheng
- Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing211816, China
| | - Jie Zhou
- Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing211816, China
| | - Jingyi Yue
- Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing211816, China
| | - Yang Wei
- Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing211816, China
| | - Chao Gao
- Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing211816, China
| | - Xiaoji Xie
- Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing211816, China
| | - Ling Huang
- Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing211816, China.,State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi830046, China
| |
Collapse
|
22
|
Sun G, Ren Y, Song Y, Xie Y, Zhang H, Sun L. Achieving Photon Upconversion in Mononuclear Lanthanide Molecular Complexes at Room Temperature. J Phys Chem Lett 2022; 13:8509-8515. [PMID: 36066905 DOI: 10.1021/acs.jpclett.2c02135] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Photon upconversion luminescence at the molecule scale is a rarely observed phenomenon despite possessing colossal potential for basic research and reality applications. Here we show that the eight-coordinate erbium molecular complex composed of Er3+ ion, dibenzoylmethane, and 2,2'-bipyridine exhibits upconversion emission. Under direct excitation at the absorption band of Er3+ ion at 980 nm, the complex shows upconverted green emissions of Er3+ ion at 525 and 545 nm at room temperature. Noticeably, upon the introduction of fluoride ions into this complex, an additional upconverted red emission at 667 nm appears as well, and the luminescence intensities of both the green and red emissions increase by a factor of 13 at most. This study not only provides a strategy to adjust the green and red emissions in mononuclear erbium complexes but also broadens the horizons of designing lanthanide-based molecular upconversion systems.
Collapse
Affiliation(s)
- Guotao Sun
- School of Materials Science and Engineering, Shanghai University, Shanghai 200444, China
- Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Yuan Ren
- School of Mechanical Engineering, Inner Mongolia University of Science & Technology, Baotou, Inner Mongolia 014010, China
| | - Yapai Song
- School of Materials Science and Engineering, Shanghai University, Shanghai 200444, China
- Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Yao Xie
- Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Hongjie Zhang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Lining Sun
- School of Materials Science and Engineering, Shanghai University, Shanghai 200444, China
- Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
| |
Collapse
|
23
|
Wei Z, Cao T, Li L, Zhu X, Zhou J, Liu Y. Dual-channel lanthanide-doped nanoprobe for reliable multi-signal ratiometric detection of H 2S in whole blood. Chem Commun (Camb) 2022; 58:9642-9645. [PMID: 35942652 DOI: 10.1039/d2cc03360g] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Wavelength-dependent absorbance of blood has impeded the development of fluorescence biodetection in whole blood. Here, by replacing the fluorescence working signal with a temperature signal, reliable H2S detection was performed in samples of whole blood. The developed system was based on a dual-channel lanthanide-doped nanoprobe, which further allowed precise serodiagnosis of acute pancreatitis.
Collapse
Affiliation(s)
- Zheng Wei
- Beijing Key Laboratory for Optical Materials and Photonic Devices & Department of Chemistry, Capital Normal University, 100048 Beijing, China.
| | - Tianqi Cao
- Beijing Key Laboratory for Optical Materials and Photonic Devices & Department of Chemistry, Capital Normal University, 100048 Beijing, China.
| | - Luoyuan Li
- The Eighth Affiliated Hospital, Sun Yat-sen University, 518033 Shenzhen, Guangdong, China
| | - Xingjun Zhu
- School of Physical Science and Technology, Shanghai Tech University, 201210 Shanghai, China
| | - Jing Zhou
- Beijing Key Laboratory for Optical Materials and Photonic Devices & Department of Chemistry, Capital Normal University, 100048 Beijing, China.
| | - Yuxin Liu
- Beijing Key Laboratory for Optical Materials and Photonic Devices & Department of Chemistry, Capital Normal University, 100048 Beijing, China.
- Department of Biomolecular System, Max-Planck Institute of Colloids and Interfaces, 14476 Potsdam, Germany.
| |
Collapse
|
24
|
Kotulska AM, Pilch-Wróbel A, Lahtinen S, Soukka T, Bednarkiewicz A. Upconversion FRET quantitation: the role of donor photoexcitation mode and compositional architecture on the decay and intensity based responses. LIGHT, SCIENCE & APPLICATIONS 2022; 11:256. [PMID: 35986019 PMCID: PMC9391450 DOI: 10.1038/s41377-022-00946-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 07/03/2022] [Accepted: 07/25/2022] [Indexed: 05/15/2023]
Abstract
Lanthanide-doped colloidal nanoparticles capable of photon upconversion (UC) offer long luminescence lifetimes, narrowband absorption and emission spectra, and efficient anti-Stokes emission. These features are highly advantageous for Förster Resonance Energy Transfer (FRET) based detection. Upconverting nanoparticles (UCNPs) as donors may solve the existing problems of molecular FRET systems, such as photobleaching and limitations in quantitative analysis, but these new labels also bring new challenges. Here we have studied the impact of the core-shell compositional architecture of upconverting nanoparticle donors and the mode of photoexcitation on the performance of UC-FRET from UCNPs to Rose Bengal (RB) molecular acceptor. We have quantitatively compared luminescence rise and decay kinetics of Er3+ emission using core-only NaYF4: 20% Yb, 2% Er and core-shell NaYF4: 20% Yb @ NaYF4: 20% Yb, 5% Er donor UCNPs under three photoexcitation schemes: (1) direct short-pulse photoexcitation of Er3+ at 520 nm; indirect photoexcitation of Er3+ through Yb3+ sensitizer with (2) 980 nm short (5-7 ns) or (3) 980 nm long (4 ms) laser pulses. The donor luminescence kinetics and steady-state emission spectra differed between the UCNP architectures and excitation schemes. Aiming for highly sensitive kinetic upconversion FRET-based biomolecular assays, the experimental results underline the complexity of the excitation and energy-migration mechanisms affecting the Er3+ donor responses and suggest ways to optimize the photoexcitation scheme and the architecture of the UCNPs used as luminescent donors.
Collapse
Affiliation(s)
- Agata M Kotulska
- Division of Biomedical Physicochemistry, Institute of Low Temperature and Structure Research, PAN, ul. Okolna 2, Wrocław, 50-422, Poland
| | - Aleksandra Pilch-Wróbel
- Division of Biomedical Physicochemistry, Institute of Low Temperature and Structure Research, PAN, ul. Okolna 2, Wrocław, 50-422, Poland
| | - Satu Lahtinen
- Department of Life Technologies/Biotechnology, University of Turku, Kiinamyllynkatu 10, 20520, Turku, Finland
| | - Tero Soukka
- Department of Life Technologies/Biotechnology, University of Turku, Kiinamyllynkatu 10, 20520, Turku, Finland.
| | - Artur Bednarkiewicz
- Division of Biomedical Physicochemistry, Institute of Low Temperature and Structure Research, PAN, ul. Okolna 2, Wrocław, 50-422, Poland.
| |
Collapse
|
25
|
Controlling the Energy‐Transfer Processes in a Nanosized Molecular Upconverter to Tap into Luminescence Thermometry Application. Angew Chem Int Ed Engl 2022; 61:e202204839. [DOI: 10.1002/anie.202204839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Indexed: 11/07/2022]
|
26
|
Hong Y, Tao Q, Liu YY, Wang Z, Wang H, Sun L. Copper peroxide coated upconversion nanoparticle modified with glucose oxidase for H 2O 2 self-supplying starvation-enhanced chemodynamic therapy in vitro. Dalton Trans 2022; 51:11325-11334. [PMID: 35838196 DOI: 10.1039/d2dt00163b] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Chemodynamic therapy (CDT) can convert endogenous hydrogen peroxide (H2O2) to highly reactive hydroxyl radical (˙OH) through Fenton or Fenton-like reaction to kill tumor cells, which is a promising anticancer strategy. However, the limited H2O2 and overexpressed glutathione (GSH) in tumor cells make CDT ineffective. Here, an efficient nanocomposite, UCN@CuO2-GOx (UCCuG), was synthesized, realizing both starvation therapy and H2O2 self-supplying CDT in vitro. In this case, the glucose oxidase (GOx) of the nanocomposite could consume glucose for starvation therapy after the UCCuG nanocomposite entered tumor cells. In addition, the acidic environment of the lysosome triggered the release of Cu2+ and H2O2 by the decomposition of UCCu; then, Cu2+ was reduced to Cu+ by GSH in tumor cells; and finally, Cu+ catalyzed the released H2O2 to generate ˙OH for CDT. The in vitro experiments demonstrated starvation-enhanced CDT with remarkable results. Meanwhile, under 980 nm laser irradiation, the upconversion luminescence signal of UCN in the UCCuG nanocomposite was reduced due to the CuO2-GOx coating, while it gradually recovered after the UCCuG nanocomposite reacted with glucose and GSH under the tumor microenvironment (TME). Such a luminescent intensity recovery process is expected to monitor the TME-activated therapeutic effect in real time. This strategy may solve the problem of insufficient CDT efficacy caused by limited endogenous H2O2 and overexpressed GSH in tumor cells. This multifunctional nanocomposite demonstrates the promising application of starvation-enhanced CDT in tumor treatment.
Collapse
Affiliation(s)
- Yale Hong
- Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China. .,Research Center of Nano Science and Technology, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Qinfeng Tao
- Research Center of Nano Science and Technology, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Yuan-Yuan Liu
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China.
| | - Zhuo Wang
- State Key Laboratory of Marine Resource Utilization in South China Sea & Special Glass Key Lab of Hainan Province, School of Information and Communication Engineering, Hainan University, Haikou 570228, China
| | - Haifang Wang
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China.
| | - Lining Sun
- Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China. .,Research Center of Nano Science and Technology, College of Sciences, Shanghai University, Shanghai 200444, China
| |
Collapse
|
27
|
Chen X, Chen X, Zhai X, Li Y, Zhao W, Sun W, Zhang Q, Feng J. Remarkably Enhanced Red Upconversion Emission in β-NaLuF 4:Er,Tm Microcrystals via Ion Exchange. Inorg Chem 2022; 61:10713-10721. [DOI: 10.1021/acs.inorgchem.2c00899] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Xiaolong Chen
- School of Materials Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, China
| | - Xiangyu Chen
- School of Materials Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, China
| | - Xuesong Zhai
- School of Materials Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, China
| | - Yin Li
- School of Materials Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, China
| | - Wei Zhao
- School of Materials Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, China
| | - Wu Sun
- School of Materials Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, China
| | - Qinfang Zhang
- School of Materials Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, China
| | - Jing Feng
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| |
Collapse
|
28
|
Zhu H, Ren F, Wang T, Jiang Z, Sun Q, Li Z. Targeted Immunoimaging of Tumor-Associated Macrophages in Orthotopic Glioblastoma by the NIR-IIb Nanoprobes. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2202201. [PMID: 35771091 DOI: 10.1002/smll.202202201] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 06/10/2022] [Indexed: 06/15/2023]
Abstract
Developing dynamic and highly sensitive methods for imaging M2-type tumor-associated macrophages (TAMs) is vital for monitoring the tumor progression and assessing the therapeutic efficacy. Here, the fabrication and application of rationally designed Er-based rare-earth nanoprobes for the targeted imaging of M2-type TAMs in glioblastoma (GBM) through the second near-infrared (NIR-II) fluorescence beyond 1500 nm is reported. The NIR-IIb fluorescence of Er-based rare-earth nanoparticles can be remarkably enhanced by optimizing their core-shell structures and the shell thickness, which allows for in vivo imaging under excitation by a 980 nm laser with the lowest power density (40 mW cm-2 ). These bright Er-based nanoparticles functionalized with M2pep polypeptide show notable targeting ability to M2-type macrophages, which has been well tested in both in vitro and in vivo experiments by their up-conversion (UC) fluorescence (540 nm) and down-shifting (DS) fluorescence (1525 nm), respectively. The targeting capability of these nanoprobes in vivo is also demonstrated by the overlap of immunofluorescence of M2-type TAMs and Arsenazo III staining of rare-earth ions in tumor tissue. It is envisioned that these nanoprobes can serve as a companion diagnostic tool to dynamically assess the progression and prognosis of GBM.
Collapse
Affiliation(s)
- Hongqin Zhu
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, P. R. China
| | - Feng Ren
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, P. R. China
| | - Tingting Wang
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, P. R. China
| | - Zhilin Jiang
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, P. R. China
| | - Qiao Sun
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, P. R. China
| | - Zhen Li
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, P. R. China
| |
Collapse
|
29
|
Song Y, Sun R, Sun G, Xie Y, Sun L. Upconversion/Downshifting Multimode Luminescence of Lanthanide-doped Nanocrystals for Multidimensional Information Encoding Security. Chem Asian J 2022; 17:e202200537. [PMID: 35766792 DOI: 10.1002/asia.202200537] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/28/2022] [Indexed: 01/01/2023]
Abstract
Information encoding security has always been a research hotspot in the optical field. Although many studies focused on luminescent materials and techniques for information security, the optical information encoding is limited by low information capacity and security. Herein, we present new core-shell-shell (CSS) lanthanide-doped nanocrystals which display multi-stimuli-responsive and multimode emission. In the designed CSS nanostructure, the Stokes and anti-Stokes processes can be both achieved in the same nanocrystals under the excitation of 1532, 980, and 254 nm via self-excited Er3+ and Ce3+ -sensitized mechanisms. Subsequently, a group of unique multimode emission CSS nanocrystals were designed as optical modules and successfully utilized in multidimensional information encoding, which demonstrates high-level information encoding capability and security. This work brings a powerful idea for information encoding security designs based on multimode luminesce materials.
Collapse
Affiliation(s)
- Yapai Song
- School of Materials Science and Engineering, Shanghai University, Shanghai, 200444, P. R. China.,Department of Chemistry, College of Sciences, Shanghai University, Shanghai, 200444, P. R. China
| | - Renrui Sun
- Department of Chemistry, College of Sciences, Shanghai University, Shanghai, 200444, P. R. China
| | - Guotao Sun
- School of Materials Science and Engineering, Shanghai University, Shanghai, 200444, P. R. China.,Department of Chemistry, College of Sciences, Shanghai University, Shanghai, 200444, P. R. China
| | - Yao Xie
- Department of Physics, College of Sciences, Shanghai University, Shanghai, 200444, P. R. China
| | - Lining Sun
- School of Materials Science and Engineering, Shanghai University, Shanghai, 200444, P. R. China.,Department of Chemistry, College of Sciences, Shanghai University, Shanghai, 200444, P. R. China
| |
Collapse
|
30
|
Lv R, Raab M, Wang Y, Tian J, Lin J, Prasad PN. Nanochemistry advancing photon conversion in rare-earth nanostructures for theranostics. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214486] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
31
|
Wei Y, Gong C, Zhao M, Zhang L, Yang S, Li P, Ding Z, Yuan Q, Yang Y. Recent progress in the synthesis of lanthanide-based persistent luminescence nanoparticles. J RARE EARTH 2022. [DOI: 10.1016/j.jre.2022.05.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
32
|
Xie Y, Song Y, Sun G, Hu P, Bednarkiewicz A, Sun L. Lanthanide-doped heterostructured nanocomposites toward advanced optical anti-counterfeiting and information storage. LIGHT, SCIENCE & APPLICATIONS 2022; 11:150. [PMID: 35595732 PMCID: PMC9122995 DOI: 10.1038/s41377-022-00813-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 04/12/2022] [Accepted: 04/22/2022] [Indexed: 05/27/2023]
Abstract
The continuously growing importance of information storage, transmission, and authentication impose many new demands and challenges for modern nano-photonic materials and information storage technologies, both in security and storage capacity. Recently, luminescent lanthanide-doped nanomaterials have drawn much attention in this field because of their photostability, multimodal/multicolor/narrowband emissions, and long luminescence lifetime. Here, we report a multimodal nanocomposite composed of lanthanide-doped upconverting nanoparticle and EuSe semiconductor, which was constructed by utilizing a cation exchange strategy. The nanocomposite can emit blue and white light under 365 and 394 nm excitation, respectively. Meanwhile, the nanocomposites show different colors under 980 nm laser excitation when the content of Tb3+ ions is changed in the upconversion nanoparticles. Moreover, the time-gating technology is used to filter the upconversion emission of a long lifetime from Tb3+ or Eu3+, and the possibilities for modulating the emission color of the nanocomposites are further expanded. Based on the advantage of multiple tunable luminescence, the nanocomposites are designed as optical modules to load optical information. This work enables multi-dimensional storage of information and provides new insights into the design and fabrication of next-generation storage materials.
Collapse
Affiliation(s)
- Yao Xie
- Department of Physics, College of Sciences, Shanghai University, Shanghai, 200444, China
- Department of Chemistry, College of Sciences, Shanghai University, Shanghai, 200444, China
| | - Yapai Song
- School of Materials Science and Engineering, Shanghai University, Shanghai, 200444, China
- Research Center of Nano Science and Technology, College of Sciences, Shanghai University, Shanghai, 200444, China
| | - Guotao Sun
- School of Materials Science and Engineering, Shanghai University, Shanghai, 200444, China
- Research Center of Nano Science and Technology, College of Sciences, Shanghai University, Shanghai, 200444, China
| | - Pengfei Hu
- Instrumental Analysis & Research Center, Shanghai University, Shanghai, 200444, China
| | - Artur Bednarkiewicz
- Institute of Low Temperature and Structure Research, Polish Academy of Sciences, 50-422, Wrocław, Poland
| | - Lining Sun
- Department of Chemistry, College of Sciences, Shanghai University, Shanghai, 200444, China.
- School of Materials Science and Engineering, Shanghai University, Shanghai, 200444, China.
- Research Center of Nano Science and Technology, College of Sciences, Shanghai University, Shanghai, 200444, China.
| |
Collapse
|
33
|
Gálico DA, Murugesu M. Controlling the Energy‐Transfer Processes in a Nanosized Molecular Upconverter to Tap into Luminescence Thermometry Application. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202204839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Diogo A. Gálico
- University of Ottawa Chemistry 10 marie curieOttawa K1N6N5 Ottawa CANADA
| | - Muralee Murugesu
- Faculty of Science Department of Chemistry University of OttawaD'Iorio Hall 10 Marie Curie Private K1N 6N5 Ottowa CANADA
| |
Collapse
|
34
|
Liu J, Yin J, Yuan H, Zhao Y, Luo S, Li F. 1O2-activatable Eu3+-afterglow nanoprobe for highly sensitive detection of porphyria in whole blood. J RARE EARTH 2022. [DOI: 10.1016/j.jre.2022.05.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
35
|
Zhang H, Liu Y, Jin R, Han S, Su Q. Intensifying upconverted ultraviolet emission towards efficient reactive oxygen species generation. Chem Asian J 2022; 17:e202200309. [PMID: 35485415 DOI: 10.1002/asia.202200309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 04/29/2022] [Indexed: 11/10/2022]
Abstract
Multiphoton upconversion that can convert near-infrared irradiation into ultraviolet emission offers many unique opportunities for photocatalysis and phototherapy. However, the high-lying excited states of lanthanide emitters are often quenched by the interior lattice defects and deleterious interactions among different lanthanides, resulting in weak ultraviolet emission. Here, we describe a novel excitation energy lock-in approach to boost ultraviolet upconversion emission in a new class of multilayer core-shell nanoparticles with a gadolinium-rich core domain. Remarkably, we observe more than 70-fold enhancements in Gd 3+ emission from the designed nanoparticles compared with the conventional nanoparticles. Our mechanistic investigation reveals that the combination of energy migration over the core domain and optically inert NaYF 4 interlayer can effectively confine the excitation energy and thus lead to intense multiphoton ultraviolet emission in upconversion nanostructures. We further achieve a 35.6% increase in photocatalytic reactivity and 26.5% in reactive oxygen species production yield in ZnO-coated upconversion nanocomposites under 808-nm excitation. This study provides a new insight to energy transfer mechanism in lanthanide-doped nanoparticles, and offers an exciting avenue for exploring novel near-infrared photocatalysts.
Collapse
Affiliation(s)
- Haoran Zhang
- Shanghai University, Institute of Nanochemistry and Nanobiology, CHINA
| | - Yachong Liu
- Shanghai University, Institute of Nanochemistry and Nanobiology, CHINA
| | - Rong Jin
- Shanghai University, Institute of Nanochemistry and Nanobiology, CHINA
| | - Sanyang Han
- Tsinghua University, Institute of Biopharmaceutical and Health Engineering, CHINA
| | - Qianqian Su
- Shanghai University, Institute of Nanochemistry and Nanobiology, #59, No. 99, Shangda Road,, Baoshan District, 200444, Shanghai, CHINA
| |
Collapse
|
36
|
Liang T, Guo Z, He Y, Wang Y, Li C, Li Z, Liu Z. Cyanine-Doped Lanthanide Metal-Organic Frameworks for Near-Infrared II Bioimaging. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2104561. [PMID: 35018733 PMCID: PMC8895151 DOI: 10.1002/advs.202104561] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/25/2021] [Indexed: 06/01/2023]
Abstract
Developing metal-organic frameworks (MOFs) with strong near-infrared II (NIR-II, 1000-1700 nm) emission is significant for biomedical research but highly challenging. So far there are no MOFs reported for NIR-II imaging in vivo due to their poor NIR-II emission efficiency. Herein, a strategy is proposed to prepare MOFs with strong NIR-II emission, by integrating NIR dye IR-3C and Ln3+ (Ln = Yb, Nd, and Er) into a same framework. IR-3C with high photon-absorption ability harvests the excitation photons and transfers energy to Ln3+ via a resonance energy transfer pathway, significantly enhancing the NIR-II emission of Ln3+ . The as-obtained Er-BTC-IR exhibits excellent NIR-IIb (1500-1700 nm) emission efficiency in aqueous phase and good biocompatibility after surface modification, which provides advanced bioimaging performance in vivo. It is able to clearly delineate the vessels, spine, and lymph of mice, and also to differentiate the vessels with acute vascular inflammation. This strategy paves the way to the preparation of NIR-II emissive MOFs and will promote their bioapplication.
Collapse
Affiliation(s)
- Tao Liang
- Key Laboratory of Analytical Chemistry of the State Ethnic Affairs CommissionCollege of Chemistry and Materials ScienceSouth‐Central University for NationalitiesWuhan430074China
| | - Zhi Guo
- College of Chemistry and Chemical EngineeringHubei UniversityWuhan430062China
| | - Yifan He
- Key Laboratory of Analytical Chemistry of the State Ethnic Affairs CommissionCollege of Chemistry and Materials ScienceSouth‐Central University for NationalitiesWuhan430074China
| | - Yanying Wang
- Key Laboratory of Analytical Chemistry of the State Ethnic Affairs CommissionCollege of Chemistry and Materials ScienceSouth‐Central University for NationalitiesWuhan430074China
| | - Chunya Li
- Key Laboratory of Analytical Chemistry of the State Ethnic Affairs CommissionCollege of Chemistry and Materials ScienceSouth‐Central University for NationalitiesWuhan430074China
| | - Zhen Li
- College of Chemistry and Chemical EngineeringHubei UniversityWuhan430062China
| | - Zhihong Liu
- College of Chemistry and Chemical EngineeringHubei UniversityWuhan430062China
| |
Collapse
|
37
|
Zhang L, Hu S, Lu Y, Jiang B, Liu X, Li X, Zhao X, Yan X, Wang C, Jia X, Liu F, Dong B, Lu G. Photonic Crystal Effects on Upconversion Enhancement of LiErF 4:0.5%Tm 3+@LiYF 4 for Noncontact Cholesterol Detection. ACS APPLIED MATERIALS & INTERFACES 2022; 14:428-438. [PMID: 34964605 DOI: 10.1021/acsami.1c21834] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Cholesterol is a vital compound in maintenance for human health, and its concentration levels are tightly associated with various diseases. Therefore, accurate monitoring of cholesterol is of great significance in clinical diagnosis. Herein, we fabricated a noncontact biosensor based on photonic crystal-enhanced upconversion nanoparticles (UCNPs) for highly sensitive and interference-free cholesterol detection. By compounding LiErF4:0.5%Tm3+@LiYF4 UCNPs with poly(methyl methacrylate) (PMMA) photonic crystals (OPCs), we were able to selectively tune the coupling of the photonic band gap to the excitation field and modulate the upconversion (UC) luminescence intensity, given the unique multi-wavelength excitation property of LiErF4:0.5%Tm3+@LiYF4. A 48.5-fold enhancement of the monochromatic red UC emission was ultimately achieved at 980 nm excitation, ensuring improved detection sensitivity. Based on the principle of quenching of the intense monochromic red UC emission by the oxidation products of 3,3',5,5'-tetramethylbenzidine (TMB) yielded from the cholesterol cascade reactions, the biosensor has a detection limit of 1.6 μM for cholesterol with excellent specificity and stability. In addition, the testing results of the as-designed biosensor in patients are highly consistent with clinical diagnostic data, providing a sensitive, reliable, reusable, interference-free, and alternative strategy for clinical cholesterol detection.
Collapse
Affiliation(s)
- Ling Zhang
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, People's Republic of China
| | - Songtao Hu
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, People's Republic of China
| | - Yang Lu
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, People's Republic of China
| | - Bin Jiang
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, People's Republic of China
| | - Xiaomin Liu
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, People's Republic of China
| | - Xiaodan Li
- Department of Respiratory Medicine, The First Hospital, Jilin University, Changchun 130021, People's Republic of China
| | - Xu Zhao
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, People's Republic of China
| | - Xu Yan
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, People's Republic of China
| | - Chenguang Wang
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, People's Republic of China
| | - Xiaoteng Jia
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, People's Republic of China
| | - Fengmin Liu
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, People's Republic of China
| | - Biao Dong
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, People's Republic of China
| | - Geyu Lu
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, People's Republic of China
| |
Collapse
|
38
|
Liu L, Peng S, Lin P, Wang R, Zhong H, Sun X, Song L, Shi J, Zhang Y. High-level information encryption based on optical nanomaterials with multi-mode luminescence and dual-mode reading. Inorg Chem Front 2022. [DOI: 10.1039/d2qi00889k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
High-level information encryption based on a visible up-conversion and invisible persistent luminescence material.
Collapse
Affiliation(s)
- Lin Liu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institute, Chinese Academy of Sciences, Xiamen 361021, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shanshan Peng
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institute, Chinese Academy of Sciences, Xiamen 361021, China
| | - Peng Lin
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institute, Chinese Academy of Sciences, Xiamen 361021, China
| | - Ruoping Wang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institute, Chinese Academy of Sciences, Xiamen 361021, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hongyun Zhong
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institute, Chinese Academy of Sciences, Xiamen 361021, China
| | - Xia Sun
- Fujian Science and Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou 350108, China
| | - Liang Song
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institute, Chinese Academy of Sciences, Xiamen 361021, China
| | - Junpeng Shi
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institute, Chinese Academy of Sciences, Xiamen 361021, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341000, China
| | - Yun Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institute, Chinese Academy of Sciences, Xiamen 361021, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Fujian Science and Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou 350108, China
- Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341000, China
| |
Collapse
|