1
|
Wang MX, Li YM, Zeng W, Zhang MY, Yu WZ, Zheng ZH, Sun YY, Li JH, Zhu YP. Palladium/Norbornene Cooperative Catalysis 2-Fold C-H/C-X Coupling: Construction of Polycyclic Aromatic Hydrocarbons from Brominated Benzimidazoles. Org Lett 2025; 27:2647-2652. [PMID: 40059672 DOI: 10.1021/acs.orglett.5c00298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
A palladium/norbornene (NBE)-catalyzed 2-fold C-H/C-X coupling reaction of aryl iodides is reported. Bromine-substituted benzimidazoles were chosen as electrophilic and termination reagents, and the versatile polycyclic aromatic hydrocarbon products were successfully obtained. The strategy overcomes the challenge of catalyst poisoning by heterocyclic substrates. In addition, the imidazole moiety in the product is endowed with a localization role, thus enabling the compounds to be applied in a wider synthetic scenario, and the fluorescence persisted. Furthermore, the bioactivity evaluation has identified three promising leading compounds 3b, 4e, and 4i.
Collapse
Affiliation(s)
- Ming-Xuan Wang
- Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, School of Pharmacy, Yantai University, Shandong, Yantai 264005, P. R. China
| | - Yi-Ming Li
- Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, School of Pharmacy, Yantai University, Shandong, Yantai 264005, P. R. China
| | - Wei Zeng
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Hubei, Wuhan 430071, P. R. China
| | - Ming-Yao Zhang
- Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, School of Pharmacy, Yantai University, Shandong, Yantai 264005, P. R. China
| | - Wen-Zhou Yu
- Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, School of Pharmacy, Yantai University, Shandong, Yantai 264005, P. R. China
| | - Ze-Hui Zheng
- Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, School of Pharmacy, Yantai University, Shandong, Yantai 264005, P. R. China
| | - Yuan-Yuan Sun
- Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, School of Pharmacy, Yantai University, Shandong, Yantai 264005, P. R. China
| | - Jin-Heng Li
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Yan-Ping Zhu
- Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, School of Pharmacy, Yantai University, Shandong, Yantai 264005, P. R. China
| |
Collapse
|
2
|
Tian Q, Ge J, Liu Y, Wu X, Li Z, Cheng G. Palladium-Catalyzed Enantioselective Synthesis of P(V)-Stereogenic Compounds via Desymmetric Annulation of Prochiral Phosphinamides and Aryl Iodides. Org Lett 2025; 27:121-128. [PMID: 39791235 DOI: 10.1021/acs.orglett.4c04007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
The enantioselective synthesis of P(V)-stereogenic compounds has emerged as an interesting research topic primarily due to their significant biological activity and broad application prospects. Herein, we disclose a method for the construction of P(V)-stereogenic compounds from prochiral phosphinamides and aryl iodides via palladium- and chiral norbornene-catalyzed desymmetric annulation. The P(V)-stereogenic compounds were formed with a broad scope with excellent enantiomeric excesses. It is noteworthy that the synthetic value of this procedure was proven by a variety of transition metal-catalyzed cross-coupling reactions using the C-Br bond on the product as a versatile linchpin electrophile.
Collapse
Affiliation(s)
- Qingyu Tian
- College of Materials Science and Engineering, Huaqiao University, Xiamen 361021, China
| | - Jin Ge
- College of Materials Science and Engineering, Huaqiao University, Xiamen 361021, China
| | - Yaopeng Liu
- College of Materials Science and Engineering, Huaqiao University, Xiamen 361021, China
| | - Xi Wu
- College of Materials Science and Engineering, Huaqiao University, Xiamen 361021, China
| | - Zhenghao Li
- College of Materials Science and Engineering, Huaqiao University, Xiamen 361021, China
| | - Guolin Cheng
- College of Materials Science and Engineering, Huaqiao University, Xiamen 361021, China
- Xiamen Key Laboratory of Optoelectronic Materials and Advanced Manufacturing, College of Materials Science and Engineering, Huaqiao University, Xiamen 361021, China
| |
Collapse
|
3
|
Tian Q, Ge J, Liu Y, Wu X, Li Z, Cheng G. Solvent-Controlled Enantiodivergent Construction of P(V)-Stereogenic Molecules via Palladium-Catalyzed Annulation of Prochiral N-Aryl Phosphonamides with Aromatic Iodides. Angew Chem Int Ed Engl 2024; 63:e202409366. [PMID: 38979942 DOI: 10.1002/anie.202409366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/05/2024] [Accepted: 07/08/2024] [Indexed: 07/10/2024]
Abstract
In this work, we describe an efficient and modular method for enantiodivergent accessing P(V)-stereogenic molecules by utilizing the catalytic atroposelective Catellani-type C-H arylation/desymmetric intramolecular N-arylation cascade reaction. The enantioselectivity of this protocol was proved to be tuned by the polarity of the solvent, thus providing a wide range of both chiral P(V)-stereogenic enantiomers in moderate to good yields with good to excellent enantiomeric excesses. Noteworthy is that the strategy developed herein represents an unprecedented example of solvent-dictated inversion of the enantioselectivity of P(V)-stereogenic compounds.
Collapse
Affiliation(s)
- Qingyu Tian
- Xiamen Key Laboratory of Optoelectronic Materials and Advanced Manufacturing, College of Materials Science and Engineering, Huaqiao University, Xiamen, 361021, China
| | - Jin Ge
- Xiamen Key Laboratory of Optoelectronic Materials and Advanced Manufacturing, College of Materials Science and Engineering, Huaqiao University, Xiamen, 361021, China
| | - Yaopeng Liu
- Xiamen Key Laboratory of Optoelectronic Materials and Advanced Manufacturing, College of Materials Science and Engineering, Huaqiao University, Xiamen, 361021, China
| | - Xi Wu
- Xiamen Key Laboratory of Optoelectronic Materials and Advanced Manufacturing, College of Materials Science and Engineering, Huaqiao University, Xiamen, 361021, China
| | - Zhenghao Li
- Xiamen Key Laboratory of Optoelectronic Materials and Advanced Manufacturing, College of Materials Science and Engineering, Huaqiao University, Xiamen, 361021, China
| | - Guolin Cheng
- Xiamen Key Laboratory of Optoelectronic Materials and Advanced Manufacturing, College of Materials Science and Engineering, Huaqiao University, Xiamen, 361021, China
- Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Jiangxi Normal University, Nanchang, 330022, China
| |
Collapse
|
4
|
Hong K, Liu M, Qian L, Bao M, Chen G, Jiang X, Huang J, Xu X. Catalytic [4+2]- and [4+4]-cycloaddition using furan-fused cyclobutanone as a privileged C4 synthon. Nat Commun 2024; 15:5407. [PMID: 38926359 PMCID: PMC11208666 DOI: 10.1038/s41467-024-49664-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024] Open
Abstract
Cycloaddition reactions play a pivotal role in synthetic chemistry for the direct assembly of cyclic architectures. However, hurdles remain for extending the C4 synthon to construct diverse heterocycles via programmable [4+n]-cycloaddition. Here we report an atom-economic and modular intermolecular cycloaddition using furan-fused cyclobutanones (FCBs) as a versatile C4 synthon. In contrast to the well-documented cycloaddition of benzocyclobutenones, this is a complementary version using FCB as a C4 reagent. It involves a C-C bond activation and cycloaddition sequence, including a Rh-catalyzed enantioselective [4 + 2]-cycloaddition with imines and an Au-catalyzed diastereoselective [4 + 4]-cycloaddition with anthranils. The obtained furan-fused lactams, which are pivotal motifs that present in many natural products, bioactive molecules, and materials, are inaccessible or difficult to prepare by other methods. Preliminary antitumor activity study indicates that 6e and 6 f exhibit high anticancer potency against colon cancer cells (HCT-116, IC50 = 0.50 ± 0.05 μM) and esophageal squamous cell carcinoma cells (KYSE-520, IC50 = 0.89 ± 0.13 μM), respectively.
Collapse
Affiliation(s)
- Kemiao Hong
- School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Mengting Liu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong, 510006, China
| | - Lixin Qian
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong, 510006, China
| | - Ming Bao
- School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Gang Chen
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong, 510006, China
| | - Xinyu Jiang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong, 510006, China
| | - Jingjing Huang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong, 510006, China
| | - Xinfang Xu
- School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China.
| |
Collapse
|
5
|
Jin L, Li Y, Mao Y, He XB, Lu Z, Zhang Q, Shi BF. Chiral dinitrogen ligand enabled asymmetric Pd/norbornene cooperative catalysis toward the assembly of C-N axially chiral scaffolds. Nat Commun 2024; 15:4908. [PMID: 38851721 PMCID: PMC11162495 DOI: 10.1038/s41467-024-48582-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 05/07/2024] [Indexed: 06/10/2024] Open
Abstract
C - N axially chiral compounds have recently attracted significant interest among synthetic chemistry community due to their widespread application in pharmaceuticals, advanced materials and organic synthesis. Although the emerging asymmetric Catellani reaction offers great opportunity for their modular and efficient preparation, the only operative chiral NBE strategy to date requires using half stoichiometric amount of chiral NBE and 2,6-disubstituted bromoarenes as electrophiles. We herein report an efficient assembly of C-N axially chiral scaffolds through a distinct chiral ligand strategy. The crucial chiral source, a biimidazoline (BiIM) chiral dinitrogen ligand, is used in relatively low loading and permits the use of less bulky bromoarenes. The method also features the use of feedstock plain NBE, high reactivity, good enantioselectivity, ease of operation and scale-up. Applications in the preparation of chiral optoelectronic material candidates featuring two C-N chiral axes and a chiral ligand for asymmetric C-H activation have also been demonstrated.
Collapse
Affiliation(s)
- Liang Jin
- Department of Chemistry, Zhejiang University, Hangzhou, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, China
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China
| | - Ya Li
- Department of Chemistry, Zhejiang University, Hangzhou, China
| | - Yihui Mao
- Department of Chemistry, Zhejiang University, Hangzhou, China
| | - Xiao-Bao He
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, China
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China
| | - Zhan Lu
- Department of Chemistry, Zhejiang University, Hangzhou, China
| | - Qi Zhang
- Department of Chemistry, Zhejiang University, Hangzhou, China.
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, China.
| | - Bing-Feng Shi
- Department of Chemistry, Zhejiang University, Hangzhou, China.
| |
Collapse
|
6
|
Ding B, Xue Q, Wei H, Chen J, Liu ZS, Cheng HG, Cong H, Tang J, Zhou Q. Enantioconvergent synthesis of chiral fluorenols from racemic secondary alcohols via Pd(ii)/chiral norbornene cooperative catalysis. Chem Sci 2024; 15:7975-7981. [PMID: 38817591 PMCID: PMC11134410 DOI: 10.1039/d4sc01004c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 04/18/2024] [Indexed: 06/01/2024] Open
Abstract
An efficient protocol for the asymmetric synthesis of fluorenols has been developed through an enantioconvergent process enabled by Pd(ii)/chiral norbornene cooperative catalysis. This approach allows facile access to diverse functionalized chiral fluorenols with constantly excellent enantioselectivities, applying readily available racemic secondary ortho-bromobenzyl alcohols and aryl iodides as the starting materials.
Collapse
Affiliation(s)
- Bo Ding
- Engineering Research Center of Organosilicon Compounds & Materials (Ministry of Education), Hubei Key Lab on Organic and Polymeric OptoElectronic Materials, College of Chemistry and Molecular Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University Wuhan 430072 China
| | - Qilin Xue
- Engineering Research Center of Organosilicon Compounds & Materials (Ministry of Education), Hubei Key Lab on Organic and Polymeric OptoElectronic Materials, College of Chemistry and Molecular Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University Wuhan 430072 China
| | - Han Wei
- The Institute for Advanced Studies, Wuhan University Wuhan 430072 China
| | - Jiangwei Chen
- Engineering Research Center of Organosilicon Compounds & Materials (Ministry of Education), Hubei Key Lab on Organic and Polymeric OptoElectronic Materials, College of Chemistry and Molecular Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University Wuhan 430072 China
| | - Ze-Shui Liu
- Engineering Research Center of Organosilicon Compounds & Materials (Ministry of Education), Hubei Key Lab on Organic and Polymeric OptoElectronic Materials, College of Chemistry and Molecular Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University Wuhan 430072 China
| | - Hong-Gang Cheng
- Engineering Research Center of Organosilicon Compounds & Materials (Ministry of Education), Hubei Key Lab on Organic and Polymeric OptoElectronic Materials, College of Chemistry and Molecular Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University Wuhan 430072 China
| | - Hengjiang Cong
- Engineering Research Center of Organosilicon Compounds & Materials (Ministry of Education), Hubei Key Lab on Organic and Polymeric OptoElectronic Materials, College of Chemistry and Molecular Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University Wuhan 430072 China
| | - Jianting Tang
- Key Laboratory of Water Environment Evolution and Pollution Control in Three Gorges Reservoir, School of Environmental and Chemical Engineering, Chongqing Three Gorges University Chongqing 404100 China
| | - Qianghui Zhou
- Engineering Research Center of Organosilicon Compounds & Materials (Ministry of Education), Hubei Key Lab on Organic and Polymeric OptoElectronic Materials, College of Chemistry and Molecular Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University Wuhan 430072 China
- The Institute for Advanced Studies, Wuhan University Wuhan 430072 China
| |
Collapse
|
7
|
Hirako N, Yasui T, Yamamoto Y. Rh(iii)-catalyzed highly site- and regio-selective alkenyl C-H activation/annulation of 4-amino-2-quinolones with alkynes via reversible alkyne insertion. Chem Sci 2023; 14:10971-10978. [PMID: 37829027 PMCID: PMC10566469 DOI: 10.1039/d3sc03987k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 09/12/2023] [Indexed: 10/14/2023] Open
Abstract
3,4-Fused 2-quinolone frameworks are important structural motifs found in natural products and biologically active compounds. Intermolecular alkenyl C-H activation/annulation of 4-amino-2-quinolone substrates with alkynes is one of the most efficient methods for accessing such structural motifs. However, this is a formidable challenge because 4-amino-2-quinolones have two cleavable C-H bonds: an alkenyl C-H bond at the C3-position and an aromatic C-H bond at the C5-position. Herein, we report the Rh(iii)-catalyzed highly site-selective alkenyl C-H functionalization of 4-amino-2-quinolones to afford 3,4-fused 2-quinolones. This method has a wide substrate scope, including unsymmetrical internal alkynes, with complete regioselectivity. Several control experiments using an isolated key intermediate analog suggested that the annulation reaction proceeds via reversible alkyne insertion involving a binuclear Rh complex although alkyne insertion is generally recognized as an irreversible process due to the high activation barrier of the reverse process.
Collapse
Affiliation(s)
- Naohiro Hirako
- Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University Furo-cho Chikusa Nagoya 464-8603 Japan
| | - Takeshi Yasui
- Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University Furo-cho Chikusa Nagoya 464-8603 Japan
| | - Yoshihiko Yamamoto
- Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University Furo-cho Chikusa Nagoya 464-8603 Japan
| |
Collapse
|
8
|
Cheng HG, Jia S, Zhou Q. Benzo-Fused-Ring Toolbox Based on Palladium/Norbornene Cooperative Catalysis: Methodology Development and Applications in Natural Product Synthesis. Acc Chem Res 2023; 56:573-591. [PMID: 36716326 DOI: 10.1021/acs.accounts.2c00781] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
ConspectusBenzo-fused skeletons are ubiquitous in agrochemicals, medicines, natural products, catalysts, and other organic function materials. The assembly of these skeletons in an efficient manner is an actively explored field in organic synthesis. Palladium/norbornene (Pd/NBE) cooperative catalysis is a powerful tool for the expeditious assembly of polysubstituted arenes through bis-functionalization of the ortho and ipso positions of aryl iodides in one operation. Owing to the efforts of Lautens, Catellani, and others, an array of Pd/NBE-promoted annulations for the syntheses of diversified benzo-fused rings have been developed. However, these methods have not been broadly applied in total synthesis yet.Our group is interested in efficient and practical total synthesis of biologically active molecules. In the past 7 years, we have been devoted to the development of new annulation strategies for the assembly of common benzo-fused skeletons through Pd/NBE-promoted reactions of aryl iodides with novel bifunctional reagents. In this Account, we summarize our laboratory's systematic efforts in this direction. First, readily available epoxides and aziridines were exploited as versatile bifunctional alkylating reagents, which enables quick assembly of a series of valuable benzo-fused heterocycles, including isochromans, dihydrobenzofurans, 1,3-cis-tetrahydroisoquinolines (THIQs), 1,3-trans-THIQs, etc. Second, a convergent access to 5-7-membered benzo-fused carbocycles (including indanes and tetrahydronaphthalenes) was developed by Pd/NBE-promoted annulation of aryl iodides with simple olefinic alcohol-containing alkylating reagents. Third, a Pd/NBE-promoted annulation between aryl iodides and cyclohexanone-containing amination reagents was developed for the construction of benzo-fused N-containing bridged scaffolds. Thus, we have established a practical and versatile toolbox for the quick assembly of diversified benzo-fused skeletons. These new annulation reactions are of high chemo-, regio-, and stereoselectivities with good step and atom economy. Moreover, they are able to rapidly increase molecular complexity from simple building blocks. Finally, their synthetic value has been demonstrated by immediate adoption in several efficient total syntheses of medicines and complex natural products. Compared to conventional synthetic logics, the Pd/NBE-promoted annulation toolbox allows the development of highly convergent strategies, which significantly improves the overall synthetic efficiency.We believe the results presented in this Account will have significant implications beyond our research. It can be envisaged that new Pd/NBE-promoted annulations as well as new applications in complex total synthesis will be revealed in the near future.
Collapse
Affiliation(s)
- Hong-Gang Cheng
- Sauvage Center for Molecular Sciences, Engineering Research Center of Organosilicon Compounds & Materials (Ministry of Education), Hubei Key Lab on Organic and Polymeric OptoElectronic Materials, College of Chemistry and Molecular Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan 430072, China
| | - Shihu Jia
- Sauvage Center for Molecular Sciences, Engineering Research Center of Organosilicon Compounds & Materials (Ministry of Education), Hubei Key Lab on Organic and Polymeric OptoElectronic Materials, College of Chemistry and Molecular Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan 430072, China
| | - Qianghui Zhou
- Sauvage Center for Molecular Sciences, Engineering Research Center of Organosilicon Compounds & Materials (Ministry of Education), Hubei Key Lab on Organic and Polymeric OptoElectronic Materials, College of Chemistry and Molecular Sciences, The Institute for Advanced Studies, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan 430072, China
| |
Collapse
|
9
|
Ma C, Sun Y, Yang J, Guo H, Zhang J. Catalytic Asymmetric Synthesis of Tröger's Base Analogues with Nitrogen Stereocenter. ACS CENTRAL SCIENCE 2023; 9:64-71. [PMID: 36712492 PMCID: PMC9881208 DOI: 10.1021/acscentsci.2c01121] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Indexed: 06/18/2023]
Abstract
Nitrogen stereocenters are common chiral units in natural products, pharmaceuticals, and chiral catalysts. However, their research has lagged largely behind, compared with carbon stereocenters and other heteroatom stereocenters. Herein, we report an efficient method for the catalytic asymmetric synthesis of Tröger's base analogues with nitrogen stereocenters via palladium catalysis and home-developed GF-Phos. It allows rapid construction of a new rigid cleft-like structure with both a C- and a N-stereogenic center in high efficiency and selectivity. A variety of applications as a chiral organocatalyst and metallic catalyst precursors were demonstrated. Furthermore, DFT calculations suggest that the NH···O hydrogen bonding and weak interaction between the substrate and ligand are crucial for the excellent enantioselectivity control.
Collapse
Affiliation(s)
- Chun Ma
- Department
of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200438, P. R. China
| | - Yue Sun
- Department
of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200438, P. R. China
| | - Junfeng Yang
- Department
of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200438, P. R. China
- Fudan
Zhangjiang Institute, Shanghai 201203, P. R. China
| | - Hao Guo
- Department
of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200438, P. R. China
- Zhuhai
Fudan Innovation Institute, Zhuhai, 519000, P. R. China
| | - Junliang Zhang
- Department
of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200438, P. R. China
- School
of Chemistry and Chemical Engineering, Henan
Normal University, Xinxiang, Henan 453007, P. R. China
| |
Collapse
|
10
|
Chakraborty N, Das B, Rajbongshi KK, Patel BK. Combined Power of Organo‐ and Transition Metal Catalysis in Organic Synthesis. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200273] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Nikita Chakraborty
- Indian Institute of Technology Guwahati Chemistry Indian Institute of Technology GuwahatiDepartment of ChemistryNorth Guwahati 781039 Guwahati INDIA
| | - Bubul Das
- Indian Institute of Technology Guwahati Chemistry Indian Institute of Technology GuwahatiDepartment of ChemistryNorth Guwahati 781039 Guwahati INDIA
| | - Kamal K. Rajbongshi
- Indian Institute of Technology Guwahati Chemistry Indian Institute of Technology GuwahatiDepartment of ChemistryNorth Guwahati 781039 Guwahati INDIA
| | - Bhisma K Patel
- Indian Institute of Technology Guwahati Chemistry North Guwahati-781 039 781 039 Guwahati INDIA
| |
Collapse
|
11
|
Ye J, Zhou Q. Pd/NBE/Chiral Amino Acid Cooperative Catalysis for Enantioselective Construction of All-Carbon Brideged Ring Systems. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202200003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|