1
|
Lu GS, Ruan ZL, Wang Y, Lü JF, Ye JL, Huang PQ. Catalytic Reductive Amination and Tandem Amination-Alkylation of Esters Enabled by a Cationic Iridium Complex. Angew Chem Int Ed Engl 2025; 64:e202422742. [PMID: 39655429 DOI: 10.1002/anie.202422742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Indexed: 12/21/2024]
Abstract
Reported herein is a convenient and efficient method for one-pot, catalytic reductive amination, as well as the first multi-component tandem reductive amination-functionalization of bench-stable and readily available common carboxylic esters. This method is based on the cationic [Ir(COD)2]BArF-catalyzed chemoselective hydrosilylation of esters, followed by one-pot acid-mediated amination and nucleophilic addition. The reaction was conducted under mild conditions at a very low catalyst loading (0.1 mol % of Ir), which could be further reduced to 0.001 mol %, as demonstrated by a reaction at a 15 g scale. The method is highly versatile, allowing the use of esters with or without α-protons for the N-mono-alkylation of primary and secondary amines to produce diverse secondary and tertiary amines, as well as α-branched/functionalized amines. The method is highly chemoselective and tolerates a variety of functional groups such as bromo, trifluoromethyl, ester, and cyano groups. The value of the method was demonstrated by the one-step catalytic synthesis of two bio-relevant N-mono-methyl α-amino esters and the antiparkinsonian agent piribedil, as well as by the use of two shorter chain triglycerides as alkylating feedstock.
Collapse
Affiliation(s)
- Guang-Sheng Lu
- Department of Chemistry and Fujian Provincial Key Laboratory of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, P. R. China
| | - Zhong-Lei Ruan
- Department of Chemistry and Fujian Provincial Key Laboratory of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, P. R. China
| | - Yan Wang
- Department of Chemistry and Fujian Provincial Key Laboratory of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, P. R. China
| | - Jin-Fang Lü
- Department of Chemistry and Fujian Provincial Key Laboratory of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, P. R. China
| | - Jian-Liang Ye
- Department of Chemistry and Fujian Provincial Key Laboratory of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, P. R. China
| | - Pei-Qiang Huang
- Department of Chemistry and Fujian Provincial Key Laboratory of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, P. R. China
| |
Collapse
|
2
|
Liu F, Yan X, Cai F, Hou W, Dong J, Yin SF, Huang G, Chen T, Szostak M, Zhou Y. Divergent alkynylative difunctionalization of amide bonds through C-O deoxygenation versus C-N deamination. Nat Commun 2025; 16:1294. [PMID: 39900580 PMCID: PMC11791076 DOI: 10.1038/s41467-024-55618-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 12/18/2024] [Indexed: 02/05/2025] Open
Abstract
The transformation and utilization of amides are significant in organic synthesis and drug discovery. Here we demonstrate a divergent alkynylative difunctionalization of amides in a single transformation. In this reaction, amides react with an organometallic nucleophile to form a tetrahedral intermediate. By altering the N-substitution or the acyl group, the tetrahedral intermediate species selectively undergoes C-O or C-N cleavage with a concomitant capture by an alkynyl nucleophile generated in situ. This process enables the selective introduction of two different functional groups into the amide molecular architecture, producing valuable propargyl amine and propargyl alcohol products. The selectivity between deoxygenation and deamination process has been further elucidated by DFT calculations. Overall, this reaction successfully transforms the traditional mode of nucleophilic acyl addition to amides to a divergent C-O/C-N cleavage. The particularly wide substrate scope, including late-stage modification of bioactive molecules, demonstrates its potential broad applications in organic synthesis.
Collapse
Affiliation(s)
- Feng Liu
- Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha, China
- School of Physics and Chemistry, Hunan First Normal University, Changsha, China
| | - Xueyuan Yan
- Department of Chemistry, School of Science, Tianjin University, Tianjin, China
| | - Fangfang Cai
- Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha, China
| | - Wenjuan Hou
- Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha, China
| | - Jianyu Dong
- Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha, China.
- School of Physics and Chemistry, Hunan First Normal University, Changsha, China.
| | - Shuang-Feng Yin
- Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha, China
| | - Genping Huang
- Department of Chemistry, School of Science, Tianjin University, Tianjin, China.
| | - Tieqiao Chen
- College of Chemical Engineering and Technology, Hainan University, Haikou, China.
| | - Michal Szostak
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, NJ, USA.
| | - Yongbo Zhou
- Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha, China.
| |
Collapse
|
3
|
Lin J, Tian J, Lu Y, Xu Y, Chen L, Jiang Y, Guo M, Zhang X, Zhang C. Divergent Synthesis of Enynals and Dihydrobenzo[ f]isoquinolines via Deoxyalkynylation of Enaminones Enabled by the Cooperative Action of Tf 2O/Pd/Cu. J Org Chem 2024; 89:16419-16425. [PMID: 39462843 DOI: 10.1021/acs.joc.4c01603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
A variety of enynals and dihydrobenzo[f]isoquinolines were effectively synthesized with favorable functional group compatibility via deoxyalkynylation of enaminones enabled by the cooperative action of Tf2O/Pd/Cu. The reaction system demonstrated the ability to be expanded to the deoxyarylation/deoxyaryloxylation of enaminones with arylboronic acids or phenols, facilitating the efficient formation of C-C/C-O bonds and showcasing the practicality and versatility of the methodology.
Collapse
Affiliation(s)
- Jianping Lin
- Key Laboratory of Jiangxi University for Applied Chemistry and Chemical Biology, College of Chemistry and Bio-engineering, Yichun University, Yichun 336000, P. R. China
| | - Jiakai Tian
- Key Laboratory of Jiangxi University for Applied Chemistry and Chemical Biology, College of Chemistry and Bio-engineering, Yichun University, Yichun 336000, P. R. China
| | - Yu Lu
- Key Laboratory of Jiangxi University for Applied Chemistry and Chemical Biology, College of Chemistry and Bio-engineering, Yichun University, Yichun 336000, P. R. China
| | - Yiming Xu
- Key Laboratory of Jiangxi University for Applied Chemistry and Chemical Biology, College of Chemistry and Bio-engineering, Yichun University, Yichun 336000, P. R. China
| | - Lulu Chen
- Key Laboratory of Jiangxi University for Applied Chemistry and Chemical Biology, College of Chemistry and Bio-engineering, Yichun University, Yichun 336000, P. R. China
| | - Yucai Jiang
- Department of Pharmacy, Affiliated Hospital of Putian University, Putian 35110, P. R. China
| | - Mengping Guo
- Key Laboratory of Jiangxi University for Applied Chemistry and Chemical Biology, College of Chemistry and Bio-engineering, Yichun University, Yichun 336000, P. R. China
| | - Xiaohan Zhang
- Key Laboratory of Jiangxi University for Applied Chemistry and Chemical Biology, College of Chemistry and Bio-engineering, Yichun University, Yichun 336000, P. R. China
| | - Changyuan Zhang
- Key Laboratory of Jiangxi University for Applied Chemistry and Chemical Biology, College of Chemistry and Bio-engineering, Yichun University, Yichun 336000, P. R. China
| |
Collapse
|
4
|
Chen L, Zhou W, Zhang J, Ding Y, Szostak M, Liu C. Deoxygenative alkynylation of amides via CO bond cleavage. Chem Commun (Camb) 2024; 60:8454-8457. [PMID: 39037708 DOI: 10.1039/d4cc02316a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
A novel deoxygenative alkynylation of amides promoted by a synergistic action of a divalent rare-earth element and a transition metal has been developed. In this method, α-alkynyl substituted amines are synthesized from unactivated amides and alkynes in a single transformation. Broad substrate scope and excellent selectivity for CO cleavage has been demonstrated. This approach represents a general method for the construction of versatile α-alkynyl substituted amines from unactivated amide bonds.
Collapse
Affiliation(s)
- Lan Chen
- Department of Chemistry, Shanghai University, 99 Shangda Road, Shanghai 200444, China.
| | - Wei Zhou
- Department of Chemistry, Shanghai University, 99 Shangda Road, Shanghai 200444, China.
| | - Jianwen Zhang
- Department of Chemistry, Shanghai University, 99 Shangda Road, Shanghai 200444, China.
| | - Yimin Ding
- Department of Chemistry, Shanghai University, 99 Shangda Road, Shanghai 200444, China.
| | - Michal Szostak
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, NJ 07102, USA.
| | - Chengwei Liu
- Department of Chemistry, Shanghai University, 99 Shangda Road, Shanghai 200444, China.
| |
Collapse
|
5
|
Wang Y, Li SJ, Jiang F, Lan Y, Wang X. Making Full Use of TMSCF 3: Deoxygenative Trifluoromethylation/Silylation of Amides. J Am Chem Soc 2024; 146:19286-19294. [PMID: 38956888 DOI: 10.1021/jacs.4c04760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
As one of the most powerful trifluoromethylation reagents, (trifluoromethyl)trimethylsilane (TMSCF3) has been widely used for the synthesis of fluorine-containing molecules. However, to the best of our knowledge, the simultaneous incorporation of both TMS- and CF3- groups of this reagent onto the same carbon of the products has not been realized. Herein, we report an unprecedented SmI2/Sm promoted deoxygenative difunctionalization of amides with TMSCF3, in which both silyl and trifluoromethyl groups are incorporated into the final product, yielding α-silyl-α-trifluoromethyl amines with high efficiency. Notably, the silyl group could be further transformed into other functional groups, providing a new method for the synthesis of α-quaternary α-CF3-amines.
Collapse
Affiliation(s)
- Yuxiao Wang
- State Key Laboratory of Organometallic Chemistry and Shanghai Hongkong Joint Laboratory in Chemical Synthesis, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Shi-Jun Li
- Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Feng Jiang
- State Key Laboratory of Organometallic Chemistry and Shanghai Hongkong Joint Laboratory in Chemical Synthesis, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Yu Lan
- Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
- School of Chemistry and Chemical Engineering and Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing 400030, China
| | - Xiaoming Wang
- State Key Laboratory of Organometallic Chemistry and Shanghai Hongkong Joint Laboratory in Chemical Synthesis, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou 310024, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| |
Collapse
|
6
|
He J, Li Z, Li R, Kou X, Liu D, Zhang W. Bimetallic Ru/Ru-Catalyzed Asymmetric One-Pot Sequential Hydrogenations for the Stereodivergent Synthesis of Chiral Lactones. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400621. [PMID: 38509867 PMCID: PMC11187880 DOI: 10.1002/advs.202400621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 02/23/2024] [Indexed: 03/22/2024]
Abstract
Asymmetric sequential hydrogenations of α-methylene γ- or δ-keto carboxylic acids are established in one-pot using a bimetallic Ru/Ru catalyst system, achieving the stereodivergent synthesis of all four stereoisomers of both chiral γ- and δ-lactones with two non-vicinal carbon stereocenters in high yields (up to 99%) and with excellent stereoselectivities (up to >99% ee and >20:1 dr). The compatibility of the two chiral Ru catalyst systems is investigated in detail, and it is found that the basicity of the reaction system plays a key role in the sequential hydrogenation processes. The protocol can be performed on a gram-scale with a low catalyst loading (up to 11000 S/C) and the resulting products allow for many transformations, particularly for the synthesis of several key intermediates useful for the preparation of chiral drugs and natural products.
Collapse
Affiliation(s)
- Jingli He
- Shanghai Key Laboratory for Molecular Engineering of Chiral DrugsSchool of PharmacyShanghai Jiao Tong University800 Dongchuan RoadShanghai200240China
| | - Zhaodi Li
- Shanghai Key Laboratory for Molecular Engineering of Chiral DrugsSchool of PharmacyShanghai Jiao Tong University800 Dongchuan RoadShanghai200240China
| | - Ruhui Li
- Shanghai Key Laboratory for Molecular Engineering of Chiral DrugsSchool of PharmacyShanghai Jiao Tong University800 Dongchuan RoadShanghai200240China
| | - Xuezhen Kou
- Frontiers Science Center for Transformative MoleculesSchool of Chemistry and Chemical EngineeringShanghai Jiao Tong University800 Dongchuan RoadShanghai200240China
| | - Delong Liu
- Shanghai Key Laboratory for Molecular Engineering of Chiral DrugsSchool of PharmacyShanghai Jiao Tong University800 Dongchuan RoadShanghai200240China
| | - Wanbin Zhang
- Shanghai Key Laboratory for Molecular Engineering of Chiral DrugsSchool of PharmacyShanghai Jiao Tong University800 Dongchuan RoadShanghai200240China
- Frontiers Science Center for Transformative MoleculesSchool of Chemistry and Chemical EngineeringShanghai Jiao Tong University800 Dongchuan RoadShanghai200240China
| |
Collapse
|
7
|
Lu J, Yu Y, Li Z, Luo J, Deng L. Practical Synthesis of Chiral α-Aminophosphonates with Weak Bonding Organocatalysis at ppm Loading. J Am Chem Soc 2024. [PMID: 38762889 DOI: 10.1021/jacs.4c04129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/21/2024]
Abstract
α-Aminophosphonic acids as an important class of bioisosteres of α-amino acids demonstrate various biologically important activities. We report here the development of a highly enantioselective isomerization of α-iminophosphonates enabled by an extraordinarily efficient organocatalyst. This organocatalyst afforded a total turnover number (TON) of 20,000-1,000,000 for a wide range of α-alkyl iminophosphonates. Even at a parts-per-million (ppm) loading, this catalyst achieved a complete reaction in greater than 93% enantiomeric excess (ee). Computational studies revealed that this small-molecule catalyst achieved enzyme-like efficiency via a network of weak bonding interactions that effectively preorganized the substrate and catalyst toward a transition-state-like complex. Considering the substrate tolerance, catalytic efficiency, and mechanism, this organocatalyst could be regarded as a small-molecule isomerase.
Collapse
Affiliation(s)
- Jiaxiang Lu
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, Hangzhou 310030, China
| | - Yang Yu
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, Hangzhou 310030, China
| | - Zhenghua Li
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, Hangzhou 310030, China
| | - Jisheng Luo
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, Hangzhou 310030, China
| | - Li Deng
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, Hangzhou 310030, China
| |
Collapse
|
8
|
Yang KC, Zheng SL, Wen Z, Zhang YS, Ni HL, Chen L. Dehydrative alkynylation of 3-hydroxyisoindolinones with terminal alkynes for the synthesis of 3-alkynylated 3,3-disubstituted isoindolinones. Org Biomol Chem 2024; 22:3453-3458. [PMID: 38596838 DOI: 10.1039/d4ob00190g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
A brand-new procedure for the synthesis of 3-alkynylated 3,3-disubstituted isoindolinones has been disclosed via a HOTf or Fe(OTf)3-catalyzed dehydrative alkynylation of 3-hydroxyisoindolinones with terminal alkynes. Aryl, alkenyl and alkyl terminal alkynes are suitable to couple with a broad range of 3-hydroxyisoindolinones to afford the desired products in moderate to good yields. This protocol features the use of an inexpensive catalyst, mild reaction conditions, broad substrate scope and easy elaboration of the products.
Collapse
Affiliation(s)
- Kai-Cheng Yang
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, 2025 Chengluo Avenue, Chengdu 610016, P. R. China.
| | - Shi-Lu Zheng
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, 2025 Chengluo Avenue, Chengdu 610016, P. R. China.
| | - Zhong Wen
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, 2025 Chengluo Avenue, Chengdu 610016, P. R. China.
| | - Yu-Shan Zhang
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, 2025 Chengluo Avenue, Chengdu 610016, P. R. China.
| | - Hai-Liang Ni
- College of Chemistry and Materials Science, Sichuan Normal University, 5 Jing An Road, Chengdu 610066, P. R. China
| | - Long Chen
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, 2025 Chengluo Avenue, Chengdu 610016, P. R. China.
| |
Collapse
|
9
|
Soda Y, Tatsumi K, Forner M, Sato S, Shibuya K, Matagawa T, Simizu S, Chida N, Okamura T, Sato T. Stereodivergent synthesis of 2-oxo-oligopyrrolidines by an iterative coupling strategy. Org Biomol Chem 2024; 22:3230-3236. [PMID: 38564238 DOI: 10.1039/d4ob00350k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Natural linear polyamines play diverse roles in physiological processes by interacting with receptors at the cellular level. Herein, we describe the stereodivergent synthesis of oligopyrrolidines, which are conformationally constrained polyamines. We synthesized dimeric and trimeric 2-oxo-oligopyrrolidines using an iterative coupling strategy. The key to our success is an iridium-catalyzed trans/cis-selective nucleophilic addition and subsequent threo/erythro-stereoselective reduction. The synthesized pyrrolidines show varying cytotoxicities against a human cancer cell line depending on the number of rings and their stereochemistry.
Collapse
Affiliation(s)
- Yasuki Soda
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1, Hiyoshi, Kohoku-ku, Yokohama, 223-8522, Japan.
| | - Kumpei Tatsumi
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1, Hiyoshi, Kohoku-ku, Yokohama, 223-8522, Japan.
| | - Matteo Forner
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1, Hiyoshi, Kohoku-ku, Yokohama, 223-8522, Japan.
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via Marzolo, 5, 35131 Padova, PD, Italy
| | - Shunsei Sato
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1, Hiyoshi, Kohoku-ku, Yokohama, 223-8522, Japan.
| | - Kana Shibuya
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1, Hiyoshi, Kohoku-ku, Yokohama, 223-8522, Japan.
| | - Tomoe Matagawa
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1, Hiyoshi, Kohoku-ku, Yokohama, 223-8522, Japan.
| | - Siro Simizu
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1, Hiyoshi, Kohoku-ku, Yokohama, 223-8522, Japan.
| | - Noritaka Chida
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1, Hiyoshi, Kohoku-ku, Yokohama, 223-8522, Japan.
| | - Toshitaka Okamura
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1, Hiyoshi, Kohoku-ku, Yokohama, 223-8522, Japan.
| | - Takaaki Sato
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1, Hiyoshi, Kohoku-ku, Yokohama, 223-8522, Japan.
| |
Collapse
|
10
|
Deng X, Jiang F, Wang X. Asymmetric Deoxygenative Functionalization of Secondary Amides with Vinylpyridines Enabled by a Triple Iridium-Photoredox-Chiral Phosphoric Acid System. Org Lett 2024. [PMID: 38489756 DOI: 10.1021/acs.orglett.4c00692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2024]
Abstract
An enantioselective deoxygenative functionalization of secondary amides with vinylpridines is developed by merging relay iridium catalysis and cooperative photoredox-chiral Brønsted acid catalysis, affording a series of valuable chiral amines in moderate to good yields with good enantioselectivities. The intriguing multiple catalytic system invoking triple-catalysis was found to be the key to the success of the current reactions, which may stimulate further development of catalytic methodologies for asymmetric deoxygenative transformations of amides.
Collapse
Affiliation(s)
- Xiyike Deng
- School of Chemistry and Material Sciences, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Hangzhou 310024, China
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Feng Jiang
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Xiaoming Wang
- School of Chemistry and Material Sciences, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Hangzhou 310024, China
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
11
|
Lu J, Li Z, Deng L. Deoxygenative Nucleophilic Phosphonation and Electrophilic Alkylation of Secondary Amides: A Facile Access to Quaternary α-Aminophosphonates. J Am Chem Soc 2024; 146:4357-4362. [PMID: 38334815 DOI: 10.1021/jacs.3c14517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Abstract
The widespread occurrence and synthetic accessibility of amides render them valuable precursors for the synthesis of diverse nitrogen-containing compounds. Herein, we present a metal-free and streamlined synthetic strategy for the synthesis of quaternary α-aminophosphonates. This approach involves sequential deoxygenative nucleophilic phosphonation and versatile electrophilic alkylation of secondary amides in a one-pot fashion. Notably, this method enables the direct bis-functionalization of secondary amides with both nucleophiles and electrophiles for the first time, with simple derivatization leading to valuable free α-aminophosphonates by hydrolysis. The protocol has the advantages of operational simplicity, broad functional-group compatibility, environmental friendliness, and scalability to multigram quantities.
Collapse
Affiliation(s)
- Jiaxiang Lu
- Department of Chemistry, Zhejiang University, Hangzhou 310027, China
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, Hangzhou 310030, China
| | - Zhenghua Li
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, Hangzhou 310030, China
| | - Li Deng
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, Hangzhou 310030, China
| |
Collapse
|
12
|
Sugiyama Y, Yamada K, Kaneko D, Kusagawa Y, Okamura T, Sato T. Iridium-Catalyzed Reductive (3+2) Annulation of Lactams Enabling the Rapid Total Synthesis of (±)-Eburnamonine. Angew Chem Int Ed Engl 2024; 63:e202317290. [PMID: 38088513 DOI: 10.1002/anie.202317290] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Indexed: 12/30/2023]
Abstract
A reductive (3+2) annulation of lactams through iridium-catalyzed hydrosilylation and photoredox coupling with α-bromoacetic acid was developed. The iridium-catalyzed hydrosilylation of the lactam carbonyl group and subsequent elimination provide a transient cyclic enamine, which undergoes iridium-catalyzed photoredox coupling with α-bromoacetic acid in a one-pot process. The developed conditions show high functional-group tolerance and provide cyclic N,O-acetals containing a quaternary carbon center. The resulting N,O-acetals undergo a variety of acid-mediated nucleophilic addition reactions via iminium ions to give substituted cyclic amines. The developed sequence including reductive (3+2) annulation and acid-mediated nucleophilic addition was successfully applied to the four-step total synthesis of (±)-eburnamonine.
Collapse
Affiliation(s)
- Yasukazu Sugiyama
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1, Hiyoshi, Kohoku-ku, Yokohama, 223-8522, Japan
| | - Kento Yamada
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1, Hiyoshi, Kohoku-ku, Yokohama, 223-8522, Japan
| | - Daiki Kaneko
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1, Hiyoshi, Kohoku-ku, Yokohama, 223-8522, Japan
| | - Yuya Kusagawa
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1, Hiyoshi, Kohoku-ku, Yokohama, 223-8522, Japan
| | - Toshitaka Okamura
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1, Hiyoshi, Kohoku-ku, Yokohama, 223-8522, Japan
| | - Takaaki Sato
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1, Hiyoshi, Kohoku-ku, Yokohama, 223-8522, Japan
| |
Collapse
|
13
|
Miller AAM, Biallas P, Shennan BDA, Dixon DJ. Enantioselective Total Synthesis of (+)-Incargranine A Enabled by Bifunctional Iminophosphorane and Iridium Catalysis. Angew Chem Int Ed Engl 2024; 63:e202314308. [PMID: 37955594 DOI: 10.1002/anie.202314308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 11/08/2023] [Accepted: 11/10/2023] [Indexed: 11/14/2023]
Abstract
Herein we report the first enantioselective total synthesis of (+)-incargranine A, in nine steps. The total synthesis was enabled by an enantioselective intramolecular organocatalysed desymmetrising Michael addition of a malonamate ester to a linked dienone substrate that established pivotal stereocentres with excellent enantio- and complete diastereoselectivity. Furthermore, a key hemiaminal intermediate was accessed by developing an iridium-catalysed reductive cyclisation, and the scope of this transformation was explored to produce a range of bicyclic hemiaminal motifs. Once installed, the hemiaminal motif was used to initiate a biomimetic cascade to access the natural product directly in a single step.
Collapse
Affiliation(s)
- Anna A M Miller
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, UK
| | - Phillip Biallas
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, UK
| | - Benjamin D A Shennan
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, UK
| | - Darren J Dixon
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, UK
| |
Collapse
|
14
|
Shennan BA, Sánchez-Alonso S, Rossini G, Dixon DJ. 1,2-Redox Transpositions of Tertiary Amides. J Am Chem Soc 2023; 145:21745-21751. [PMID: 37756523 PMCID: PMC10571086 DOI: 10.1021/jacs.3c08466] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Indexed: 09/29/2023]
Abstract
Reactions capable of transposing the oxidation levels of adjacent carbon atoms enable rapid and fundamental alteration of a molecule's reactivity. Herein, we report the 1,2-transposition of the carbon atom oxidation level in cyclic and acyclic tertiary amides, resulting in the one-pot synthesis of 1,2- and 1,3-oxygenated tertiary amines. This oxidation level transfer was facilitated by the careful orchestration of an iridium-catalyzed reduction with the functionalization of transiently formed enamine intermediates. A novel 1,2-carbonyl transposition is described, and the breadth of this redox transposition strategy has been further explored by the development of aminoalcohol and enaminone syntheses. The diverse β-functionalized amine products were shown to be multifaceted and valuable synthetic intermediates, accessing challenging biologically relevant motifs.
Collapse
Affiliation(s)
- Benjamin
D. A. Shennan
- Department
of Chemistry, University of Oxford, Chemical
Research Laboratory, 12 Mansfield Road, Oxford, OX1 3TA, U.K.
| | - Sergio Sánchez-Alonso
- Department
of Chemistry, University of Oxford, Chemical
Research Laboratory, 12 Mansfield Road, Oxford, OX1 3TA, U.K.
| | - Gabriele Rossini
- Department
of Chemistry, University of Oxford, Chemical
Research Laboratory, 12 Mansfield Road, Oxford, OX1 3TA, U.K.
| | - Darren J. Dixon
- Department
of Chemistry, University of Oxford, Chemical
Research Laboratory, 12 Mansfield Road, Oxford, OX1 3TA, U.K.
| |
Collapse
|
15
|
Xu FF, Chen JQ, Shao DY, Huang PQ. Catalytic enantioselective reductive alkynylation of amides enables one-pot syntheses of pyrrolidine, piperidine and indolizidine alkaloids. Nat Commun 2023; 14:6251. [PMID: 37803030 PMCID: PMC10558451 DOI: 10.1038/s41467-023-41846-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 09/13/2023] [Indexed: 10/08/2023] Open
Abstract
The primary objective in synthetic organic chemistry is to develop highly efficient, selective, and versatile synthetic methodologies, which are essential for discovering new drug candidates and agrochemicals. In this study, we present a unified strategy for a one-pot, catalytic enantioselective synthesis of α-alkyl and α,α'-dialkyl pyrrolidine, piperidine, and indolizidine alkaloids using readily available amides and alkynes. This synthesis is enabled by the identification and development of an Ir/Cu/N-PINAP catalyzed highly enantioselective and chemoselective reductive alkynylation of α-unbranched aliphatic amides, which serves as the key reaction. This reaction is combined with Pd-catalyzed tandem reactions in a one-pot approach, enabling the collective, catalytic enantioselective total syntheses of eight alkaloids and an anticancer antipode with 90-98% ee. The methodology's enantio-divergence is exemplified by the one-step access to either enantiomer of alkaloid bgugaine.
Collapse
Affiliation(s)
- Fang-Fang Xu
- Department of Chemistry and Fujian Provincial Key Laboratory of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, P. R. China
| | - Jin-Quan Chen
- Department of Chemistry and Fujian Provincial Key Laboratory of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, P. R. China
| | - Dong-Yang Shao
- Department of Chemistry and Fujian Provincial Key Laboratory of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, P. R. China
| | - Pei-Qiang Huang
- Department of Chemistry and Fujian Provincial Key Laboratory of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, P. R. China.
| |
Collapse
|
16
|
Shi Q, Liu WH. Reactivity Umpolung of Tertiary Amide Enabled by Catalytic Reductive Stannylation. Angew Chem Int Ed Engl 2023; 62:e202309567. [PMID: 37479672 DOI: 10.1002/anie.202309567] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 07/20/2023] [Accepted: 07/21/2023] [Indexed: 07/23/2023]
Abstract
Reactivity umpolung is an important concept in organic chemistry. Established reactivity umpolung mainly focuses on the aldehyde and umpolung of amide carbonyl group is not known. In this report, we describe a process to obtain the umpolung reactivity of tertiary amide. This process hinges on the efficient reductive stannylation catalyzed by Ir/silane and facile Sn-Li exchange. By leveraging this umpolung reactivity, drug Fluoxetine was derivatized to 12 different analogues via reacting with various electrophiles and four biologically active molecules were prepared concisely. This unlocked umpolung reactivity of tertiary amide is expected to find applications to synthesize complex amines from amides.
Collapse
Affiliation(s)
- Qiu Shi
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510006, China
| | - Wenbo H Liu
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510006, China
| |
Collapse
|
17
|
Li C, Ling L, Luo Z, Wang S, Zhang X, Zeng X. Deoxygenative Cross-Coupling of C(aryl)–O and C(amide)═O Electrophiles Enabled by Chromium Catalysis Using Bipyridine Ligand. ACS Catal 2023. [DOI: 10.1021/acscatal.2c06264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Affiliation(s)
- Chao Li
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Liang Ling
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Zheng Luo
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Sha Wang
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Xiaoyu Zhang
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Xiaoming Zeng
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| |
Collapse
|
18
|
Han F, Lu GS, Wu DP, Huang PQ. Iridium and B(C6F5)3 co-catalyzed chemoselective deoxygenative reduction of tertiary amides: application to the efficient synthesis and late-stage modification of pharmaceuticals. Sci China Chem 2023. [DOI: 10.1007/s11426-022-1501-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
|
19
|
Jiao J, Yang W, Wang X. α-Aminocarbene-Mediated Si-H Insertion: Deoxygenative Silylation of Aromatic Amides with Silanes. J Org Chem 2023; 88:594-601. [PMID: 36521058 DOI: 10.1021/acs.joc.2c02649] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
While metal carbene-mediated Si-H insertion reactions have become a powerful strategy to build new C-Si bonds, the utilization of α-aminocarbene intermediates generated from readily available precursors in the Si-H insertion reaction remains a longstanding challenge. Herein, we develop a practical and general strategy to synthesize α-aminosilanes through a deoxygenative cross-coupling of amides and silanes mediated by Sm/SmI2. Given the simplicity and versatility, this methodology represents a fascinating example for the effective utilization of inert amides as α-aminocarbene precursors in organic synthesis.
Collapse
Affiliation(s)
- Jiwen Jiao
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Wenhan Yang
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China.,College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, China
| | - Xiaoming Wang
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China.,School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou 310024, China
| |
Collapse
|
20
|
Feng M, Zhang H, Maulide N. Challenges and Breakthroughs in Selective Amide Activation. Angew Chem Int Ed Engl 2022; 61:e202212213. [PMID: 36124856 PMCID: PMC10092240 DOI: 10.1002/anie.202212213] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Indexed: 11/09/2022]
Abstract
In contrast to ketones and carboxylic esters, amides are classically seen as comparatively unreactive members of the carbonyl family, owing to their unique structural and electronic features. However, recent decades have seen the emergence of research programmes focused on the selective activation of amides under mild conditions. In the past four years, this area has continued to rapidly develop, with new advances coming in at a fast pace. Several novel activation strategies have been demonstrated as effective tools for selective amide activation, enabling transformations that are at once synthetically useful and mechanistically intriguing. This Minireview comprises recent advances in the field, highlighting new trends and breakthroughs in what could be called a new age of amide activation.
Collapse
Affiliation(s)
- Minghao Feng
- Faculty of ChemistryInstitute of Organic ChemistryUniversity of ViennaWähringer Straße 381090ViennaAustria
| | - Haoqi Zhang
- Faculty of ChemistryInstitute of Organic ChemistryUniversity of ViennaWähringer Straße 381090ViennaAustria
- Christian-Doppler Laboratory for Entropy-Oriented Drug DesignJosef-Holaubek-Platz 21090ViennaAustria
| | - Nuno Maulide
- Faculty of ChemistryInstitute of Organic ChemistryUniversity of ViennaWähringer Straße 381090ViennaAustria
- Christian-Doppler Laboratory for Entropy-Oriented Drug DesignJosef-Holaubek-Platz 21090ViennaAustria
| |
Collapse
|
21
|
Feng M, Zhang H, Maulide N. Challenges and Breakthroughs in Selective Amide Activation. ANGEWANDTE CHEMIE (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 134:e202212213. [PMID: 38504998 PMCID: PMC10947092 DOI: 10.1002/ange.202212213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Indexed: 11/09/2022]
Abstract
In contrast to ketones and carboxylic esters, amides are classically seen as comparatively unreactive members of the carbonyl family, owing to their unique structural and electronic features. However, recent decades have seen the emergence of research programmes focused on the selective activation of amides under mild conditions. In the past four years, this area has continued to rapidly develop, with new advances coming in at a fast pace. Several novel activation strategies have been demonstrated as effective tools for selective amide activation, enabling transformations that are at once synthetically useful and mechanistically intriguing. This Minireview comprises recent advances in the field, highlighting new trends and breakthroughs in what could be called a new age of amide activation.
Collapse
Affiliation(s)
- Minghao Feng
- Faculty of ChemistryInstitute of Organic ChemistryUniversity of ViennaWähringer Straße 381090ViennaAustria
| | - Haoqi Zhang
- Faculty of ChemistryInstitute of Organic ChemistryUniversity of ViennaWähringer Straße 381090ViennaAustria
- Christian-Doppler Laboratory for Entropy-Oriented Drug DesignJosef-Holaubek-Platz 21090ViennaAustria
| | - Nuno Maulide
- Faculty of ChemistryInstitute of Organic ChemistryUniversity of ViennaWähringer Straße 381090ViennaAustria
- Christian-Doppler Laboratory for Entropy-Oriented Drug DesignJosef-Holaubek-Platz 21090ViennaAustria
| |
Collapse
|
22
|
Chen H, Wu ZZ, Shao DY, Huang PQ. Multicatalysis protocol enables direct and versatile enantioselective reductive transformations of secondary amides. SCIENCE ADVANCES 2022; 8:eade3431. [PMID: 36417504 PMCID: PMC9683713 DOI: 10.1126/sciadv.ade3431] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 10/04/2022] [Indexed: 06/16/2023]
Abstract
The catalytic asymmetric geminal bis-nucleophilic addition to nonreactive functional groups is a type of highly desirable yet challenging transformation in organic chemistry. Here, we report the first catalytic asymmetric reductive/deoxygenative alkynylation of secondary amides. The method is based on a multicatalysis strategy that merges iridium/copper relay catalysis with organocatalysis. A further combination with the palladium-catalyzed alkyne hydrogenation allows the one-pot enantioselective reductive alkylation of secondary amides. This versatile protocol allows the efficient synthesis of four types of α-branched chiral amines, which are prevalent structural motifs of active pharmaceutical ingredients. The protocol also features excellent enantioselectivity, chemoselectivity, and functional group tolerance to be compatible with more reactive functional groups such as ketone and aldehyde. The synthetic utility of the method was further demonstrated by the late-stage functionalization of two drug derivatives and the concise, first catalytic asymmetric approach to the κ-opioid antagonist aticaprant.
Collapse
|
23
|
Xin N, Jing X, Zhang CG, Peng X, Liu J, Wang Q, Wang W, Cao J, Tao M. N-Heterocyclic Carbene Silver Complex Modified Polyacrylonitrile Fiber/MIL-101(Cr) Composite as Efficient Chiral Catalyst for Three-Component Coupling Reaction. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:4175. [PMID: 36500798 PMCID: PMC9736975 DOI: 10.3390/nano12234175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/18/2022] [Accepted: 11/20/2022] [Indexed: 06/17/2023]
Abstract
Complex asymmetric synthesis can be realized by the chiral induction of amino acids in nature. It is of great significance to design a new biomimetic catalytic system for asymmetric synthesis. In this context, we report the preparation and characterization of the composite of polyacrylonitrile fiber (PANF) and metal-organic framework to catalyze the chiral synthesis of propargylamines. A confined microenvironment is established with N-heterocyclic carbene (NHC) silver complex-supported PANF and D-proline-encapsulated MIL-101(Cr). This novel supported catalyst demonstrated high activity in addition to excellent stereoselectivity in the three-component reaction between alkynes, aldehydes, and amines (A3). The regeneration can be realized by adsorption of D-proline again when the stereoselectivity decreases after recycle uses. By regulating the confined microenvironment on the composite, the activity and selectivity of the catalytic system are improved with turnover numbers of up to 2800 and 98% ee. The biomimetic catalytic system to A3 coupling reaction is systematically studied, and the synergistic catalytic mechanism between NHC-Ag and D-proline in the confined microenvironment is revealed.
Collapse
Affiliation(s)
- Ningning Xin
- School of Chemistry and Material Science, Langfang Normal University, Langfang 065000, China
| | - Xuemin Jing
- School of Chemistry and Material Science, Langfang Normal University, Langfang 065000, China
| | - Cheng-Gen Zhang
- School of Chemistry and Material Science, Langfang Normal University, Langfang 065000, China
| | - Xiaoxia Peng
- School of Chemistry and Material Science, Langfang Normal University, Langfang 065000, China
| | - Jing Liu
- School of Chemistry and Material Science, Langfang Normal University, Langfang 065000, China
| | - Qixing Wang
- Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China
| | - Wei Wang
- Hebei Diyuan Pharmaceutical Technology Co., Ltd., Cangzhou 061007, China
| | - Jian Cao
- School of Chemistry and Material Science, Langfang Normal University, Langfang 065000, China
| | - Minli Tao
- Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China
| |
Collapse
|
24
|
Zheng P, Xu W, Wang H, Wang D, Wu X, Xu T. Deoxygenative Arylboration of Aldehydes via Copper and Nickel/Photoredox Catalysis. ACS Catal 2022. [DOI: 10.1021/acscatal.2c05043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- Purui Zheng
- Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, P. R. China
| | - Wenhao Xu
- Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, P. R. China
| | - Hepan Wang
- Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, P. R. China
| | - Dong Wang
- Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, P. R. China
| | - Xiaoqiang Wu
- Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, P. R. China
| | - Tao Xu
- Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, P. R. China
| |
Collapse
|
25
|
Zhang Y, Lv C, Hu C, Su Z. Mechanistic Study of Asymmetric Alkynylation of Isatin-Derived Ketimine Mediated by a Copper/Guanidine Catalyst. J Org Chem 2022; 87:11693-11707. [PMID: 36001814 DOI: 10.1021/acs.joc.2c01321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In this work, we performed a mechanistic study of asymmetric alkynylation of isatin-derived N-Boc ketimine that was first reported by Feng, Liu, and co-workers (Chem. Commun. 2018, 54, 678-681). Guanidine-amide promoted the formation of highly nucleophilic copper acetylene species by abstracting the terminal proton of phenylacetylene with an imine moiety. The guanidinium salt-Cu(I) complex was the most active species in the addition of the C═N bond, in which copper acetylene coordinated to the O atom of the amide moiety, and the isatin-derived ketimine substrate was activated by hydrogen bonding as well as tert-butoxycarbonyl···Cu(I) coordination. Due to weak interaction between Cu(I) and the Ph group in the amide of guanidine, as well as the repulsion between the tert-butyl group in ketimine and the cyclohexyl group in guanidine, the copper acetylene preferred to attack isatin-derived ketimine from the re-face, leading to the S-configuration product with excellent stereoselectivity. The affinity of the counterion for the Cu(I) center in the copper salt affected the deprotonation of phenylacetylene and the formation of guanidinium salt active species. In contrast to CuBr and CuCl, the combination of CuI with aniline-derived guanidine-amide exhibited high catalytic activity and a chiral induction effect, contributing to a high turnover frequency (9.70 × 10-4 s-1) in catalysis and ee%.
Collapse
Affiliation(s)
- Yan Zhang
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, P. R. China
| | - Cidan Lv
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, P. R. China
| | - Changwei Hu
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, P. R. China
| | - Zhishan Su
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, P. R. China
| |
Collapse
|
26
|
Donnelly LJ, Berthet J, Cantat T. Selective Reduction of Secondary Amides to Imines Catalysed by Schwartz's Reagent**. Angew Chem Int Ed Engl 2022; 61:e202206170. [DOI: 10.1002/anie.202206170] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Indexed: 12/14/2022]
Affiliation(s)
- Liam J. Donnelly
- Université Paris-Saclay CEA CNRS NIMBE 91191 Gif-sur-Yvette France
| | | | - Thibault Cantat
- Université Paris-Saclay CEA CNRS NIMBE 91191 Gif-sur-Yvette France
| |
Collapse
|
27
|
Wu DP, Ou W, Huang PQ. Ir-Catalyzed Chemoselective Reductive Condensation Reactions of Tertiary Amides with Active Methylene Compounds. Org Lett 2022; 24:5366-5371. [PMID: 35849542 DOI: 10.1021/acs.orglett.2c02045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The catalytic reductive condensation reactions of tertiary amides with active methylene compounds leading to multifunctionalized non-N-containing products is described. The reactions proceed through sequential iridium-catalyzed hydrosilylation of the amides followed by acid-mediated condensation with the active methylene compounds. This scalable method is broad in scope and shows remarkable chemoselectivity for the amide group in the presence of several sensitive or even more reactive functionalities such as ester, cyano, nitro, silyl dienol ether, and ketone.
Collapse
Affiliation(s)
- Dong-Ping Wu
- Department of Chemistry, Fujian Provincial Key Laboratory of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, P. R. China
| | - Wei Ou
- Department of Chemistry, Fujian Provincial Key Laboratory of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, P. R. China
| | - Pei-Qiang Huang
- Department of Chemistry, Fujian Provincial Key Laboratory of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, P. R. China
| |
Collapse
|
28
|
Zhao F, Jiang F, Wang X. Deoxygenative alkylation of tertiary amides using alkyl iodides under visible light. Sci China Chem 2022. [DOI: 10.1007/s11426-022-1331-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
29
|
Donnelly LJ, Berthet J, Cantat T. Selective Reduction of Secondary Amides to Imines Catalysed by Schwartz's Reagent**. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202206170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Liam J. Donnelly
- Université Paris-Saclay CEA CNRS NIMBE 91191 Gif-sur-Yvette France
| | | | - Thibault Cantat
- Université Paris-Saclay CEA CNRS NIMBE 91191 Gif-sur-Yvette France
| |
Collapse
|
30
|
Agrawal T, Perez-Morales KD, Cort JA, Sieber JD. Asymmetric Synthesis of Propargylic α-Stereogenic Tertiary Amines by Reductive Alkynylation of Tertiary Amides Using Ir/Cu Tandem Catalysis. J Org Chem 2022; 87:6387-6392. [PMID: 35435681 DOI: 10.1021/acs.joc.2c00131] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The development of an asymmetric protocol for the reductive alkynylation of amides to access important α-stereogenic tertiary propargylic amines is reported using a tandem Ir-catalyzed hydrosilylation/enantioselective Cu-catalyzed alkynylation. The reaction utilizes a Cu/PyBox catalyst system in the alkynylation step to achieve asymmetry and affords excellent yields with moderate to good levels of enantiocontrol while employing low Ir-catalyst loadings (0.5 mol %).
Collapse
Affiliation(s)
- Toolika Agrawal
- Department of Chemistry, Virginia Commonwealth University, 1001 West Main Street, Richmond, Virginia 23284, United States
| | - Kimberly D Perez-Morales
- Department of Chemistry, Virginia Commonwealth University, 1001 West Main Street, Richmond, Virginia 23284, United States
| | - Jermaine A Cort
- Department of Chemistry, Virginia Commonwealth University, 1001 West Main Street, Richmond, Virginia 23284, United States
| | - Joshua D Sieber
- Department of Chemistry, Virginia Commonwealth University, 1001 West Main Street, Richmond, Virginia 23284, United States
| |
Collapse
|
31
|
Biallas P, Yamazaki K, Dixon DJ. Difluoroalkylation of Tertiary Amides and Lactams by an Iridium-Catalyzed Reductive Reformatsky Reaction. Org Lett 2022; 24:2002-2007. [PMID: 35258311 PMCID: PMC9082613 DOI: 10.1021/acs.orglett.2c00438] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Indexed: 12/16/2022]
Abstract
An iridium-catalyzed, reductive alkylation of abundant tertiary lactams and amides using 1-2 mol % of Vaska's complex (IrCl(CO)(PPh3)2), tetramethyldisiloxane (TMDS), and difluoro-Reformatsky reagents (BrZnCF2R) for the general synthesis of medicinally relevant α-difluoroalkylated tertiary amines is described. A broad scope (46 examples), including N-aryl- and N-heteroaryl-substituted lactams, demonstrated an excellent functional group tolerance. Furthermore, late-stage drug functionalizations, a gram-scale synthesis, and common downstream transformations proved the potential synthetic relevance of this new methodology.
Collapse
Affiliation(s)
- Phillip Biallas
- Chemistry Research Laboratory, Department
of Chemistry, University of Oxford, 12 Mansfield Road, Oxford OX1 2JD, U.K.
| | - Ken Yamazaki
- Chemistry Research Laboratory, Department
of Chemistry, University of Oxford, 12 Mansfield Road, Oxford OX1 2JD, U.K.
| | - Darren J. Dixon
- Chemistry Research Laboratory, Department
of Chemistry, University of Oxford, 12 Mansfield Road, Oxford OX1 2JD, U.K.
| |
Collapse
|
32
|
Okada K, Ueda H, Tokuyama H. Total synthesis of (±)-vinoxine: construction of the bridged pyrido[1,2- a]indole skeleton via Tf 2O-mediated Bischler-Napieralski reaction and stereoselective radical cyclization. Org Biomol Chem 2022; 20:5943-5947. [PMID: 35262132 DOI: 10.1039/d2ob00274d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The total synthesis of (±)-vinoxine was achieved featuring the assembly of a multi-substituted tetrahydropyrido[1,2-a]indole skeleton through the Tf2O-mediated Bischler-Napieralski reaction. The characteristic diazabicyclo[3.3.1]nonane skeleton was stereoselectively constructed via radical cyclization based on the one stereochemistry of the C3 position. The established methodology provides new options for the synthesis of natural products and pharmaceuticals containing the multi-substituted pyrido[1,2-a]indole skeleton.
Collapse
Affiliation(s)
- Kosuke Okada
- Graduate School of Pharmaceutical Sciences, Tohoku University, Aoba 6-3, Aramaki, Aoba-ku, Sendai, Miyagi 980-8578, Japan.
| | - Hirofumi Ueda
- Graduate School of Pharmaceutical Sciences, Tohoku University, Aoba 6-3, Aramaki, Aoba-ku, Sendai, Miyagi 980-8578, Japan.
| | - Hidetoshi Tokuyama
- Graduate School of Pharmaceutical Sciences, Tohoku University, Aoba 6-3, Aramaki, Aoba-ku, Sendai, Miyagi 980-8578, Japan.
| |
Collapse
|
33
|
He Y, Wang Y, Li SJ, Lan Y, Wang X. Deoxygenative Cross-Coupling of Aromatic Amides with Polyfluoroarenes. Angew Chem Int Ed Engl 2022; 61:e202115497. [PMID: 35014163 DOI: 10.1002/anie.202115497] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Indexed: 01/17/2023]
Abstract
Considering the ubiquitous nature and ready synthesis of amides, and the great significance of organofluorine-containing species, the cross-coupling of amides and polyfluoroarenes, leading to new carbon-carbon bond-forming methodologies, would find useful applications in synthesis, late-stage functionalization, and rapid generation of molecular diversity. Herein, we present a novel synthesis of α-polyfluoroaryl amines via Sm/SmI2 -mediated deoxygenative cross-coupling of aromatic amides with polyfluoroarenes through direct C-H functionalization. The structural and functional diversity of these readily available precursors provides a versatile and flexible strategy for the streamlined synthesis of α-polyfluoroaryl amines. Combining experimental and theoretical studies, a novel plausible mechanism of the α-aminocarbene-mediated C-H insertion has been revealed, which may stimulate future work for the development of novel methods in amine synthesis.
Collapse
Affiliation(s)
- Youliang He
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Yuxiao Wang
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Shi-Jun Li
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Yu Lan
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China.,School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing, 400030, China
| | - Xiaoming Wang
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China.,School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou, 310024, China
| |
Collapse
|
34
|
He Y, Wang Y, Li S, Lan Y, Wang X. Deoxygenative Cross‐Coupling of Aromatic Amides with Polyfluoroarenes. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202115497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Youliang He
- State Key Laboratory of Organometallic Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Yuxiao Wang
- State Key Laboratory of Organometallic Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Shi‐Jun Li
- Green Catalysis Center, and College of Chemistry Zhengzhou University Zhengzhou 450001 China
| | - Yu Lan
- Green Catalysis Center, and College of Chemistry Zhengzhou University Zhengzhou 450001 China
- School of Chemistry and Chemical Engineering Chongqing Key Laboratory of Theoretical and Computational Chemistry Chongqing University Chongqing 400030 China
| | - Xiaoming Wang
- State Key Laboratory of Organometallic Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
- School of Chemistry and Materials Science Hangzhou Institute for Advanced Study University of Chinese Academy of Sciences 1 Sub-lane Xiangshan Hangzhou 310024 China
| |
Collapse
|
35
|
Wang XG, Ou W, Liu MH, Liu ZJ, Huang PQ. Tandem Catalysis Enabled Highly Chemoselective Deoxygenative Alkynylation and Alkylation of Tertiary Amides: A Versatile Entry to Functionalized α-Substituted Amines. Org Chem Front 2022. [DOI: 10.1039/d2qo00335j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report here the highly chemoseive catalytic reductive alkynylation and reductive alkylation of tertiary amides to give propargylamines and α-branched amines, respectively. The method features a tandem iridium (Vaska’s complex)-catalyzed...
Collapse
|