1
|
Bai Y, Sheng Y, Fu Y, Zhou Z, Wu J. Enzymatic Synthesis of Saturated Bioisosteres of Ortho-Substituted Benzenes by Artificial Photoenzyme. Chemistry 2025; 31:e202404519. [PMID: 39959939 DOI: 10.1002/chem.202404519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Accepted: 02/14/2025] [Indexed: 02/22/2025]
Abstract
Saturated bioisosteres of ortho-substituted benzenes are of significant interest due to their enhanced pharmacokinetic properties, such as improved metabolic stability and reduced toxicity, making them valuable in drug design and development. However, efficient synthesis of them remains a challenge in organic chemistry. Herein, we report the biocatalytic synthesis of saturated bioisosteres of ortho-substituted benzenes using engineered artificial photoenzymes. The artificial photoenzyme, incorporating genetically encoded unnatural amino acids with benzophenone photosensitizer residue, facilitate the formation of chiral saturated bioisosteres with moderate enantiomeric excess via the energy transfer process. Our results demonstrate the versatility of artificial photoenzymes in mediating new-to-nature reactions that are difficult to achieve with conventional chemical or enzymatic methods.
Collapse
Affiliation(s)
- Yuting Bai
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, China
| | - Yuhui Sheng
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, China
| | - Yi Fu
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, China
| | - Zhi Zhou
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, China
| | - Jing Wu
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, China
| |
Collapse
|
2
|
Liao H, Dong J, Zhou X, Jiang Q, Lv Z, Lei F, Xue D. Silver-mediated formal [4π + 2 σ] cycloaddition reactions of bicyclobutanes with nitrile imines: access to 2,3-diazobicyclo[3.1.1]heptenes. Chem Sci 2025; 16:4654-4660. [PMID: 39968285 PMCID: PMC11831073 DOI: 10.1039/d4sc08280j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Accepted: 02/06/2025] [Indexed: 02/20/2025] Open
Abstract
Despite recent advances in the synthesis of aza-bicyclo[3.1.1]heptanes (aza-BCHeps, which have an sp3-hybridized nitrogen atom) and azabicyclo[3.1.1]heptenes (aza-BCHepes, which have an sp2-hybridized nitrogen atom), which are bioisosteres of pyridine, construction of 2,3-diazobicyclo[3.1.1]heptenes (2,3-diazo-BCHepes), which have both sp2- and sp3-hybridized nitrogen atoms, has yet to be achieved. Herein, we disclose a method for silver-enabled formal [4π + 2σ] cycloaddition reactions between bicyclobutanes and nitrile imines (generated from hydrazonyl chlorides) to furnish a diverse array of 2,3-diazo-BCHepes, which feature both sp2- and sp3-hybridized nitrogen atoms embedded in a BCHepe framework. These compounds have the potential to serve as bioisosteres of both pyridines and pyridazines. Owing to the presence of the sp3-hybridized nitrogen, 2,3-diazo-BCHepes can be expected to exhibit geometries similar to those of aza-BCHepes and much better solubility. We demonstrated the synthetic utility of our method by carrying out a scaled-up reaction and diverse postcatalytic transformations.
Collapse
Affiliation(s)
- Huijuan Liao
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education and School of Chemistry and Chemical Engineering, Shaanxi Normal University Xi'an 710062 China
| | - Jianyang Dong
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education and School of Chemistry and Chemical Engineering, Shaanxi Normal University Xi'an 710062 China
| | - Xuechen Zhou
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education and School of Chemistry and Chemical Engineering, Shaanxi Normal University Xi'an 710062 China
| | - Qin Jiang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education and School of Chemistry and Chemical Engineering, Shaanxi Normal University Xi'an 710062 China
| | - Zishan Lv
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education and School of Chemistry and Chemical Engineering, Shaanxi Normal University Xi'an 710062 China
| | - Fang Lei
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education and School of Chemistry and Chemical Engineering, Shaanxi Normal University Xi'an 710062 China
| | - Dong Xue
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education and School of Chemistry and Chemical Engineering, Shaanxi Normal University Xi'an 710062 China
| |
Collapse
|
3
|
Yu T, Zhao X, Nie Z, Qin L, Ding Z, Xu L, Li P. Diverse Synthesis of Arene-Fused [n.1.1]-Bridged Molecules via Catalytic Cycloaddition and Rearrangement Reactions. Angew Chem Int Ed Engl 2025; 64:e202420831. [PMID: 39714393 DOI: 10.1002/anie.202420831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/19/2024] [Accepted: 12/20/2024] [Indexed: 12/24/2024]
Abstract
Although great advancement has been made in synthesis of 3D bridged bicyclic[n.1.1]-bioisosteres, facile construction of 2D/3D merged molecules incorporating bridged rings, as novel chemical space in drug discovery, remains a significant challenge. Herein a collective, selective, and diversity-oriented approach for up to 6 types of 2D/3D polycyclic scaffolds featuring bicyclo[n.1.1] substructure is reported. A boronyl radical-catalyzed [2σ+2π] cycloaddition between bicyclo[1.1.0]butanes and ortho-quinone methides afforded spirocyclic compounds containing a bicyclo[2.1.1]hexanes unit, which were used as intermediates for synthesis of three types of 2D/3D scaffolds via judiciously controlled Lewis acid-catalyzed rearrangements. The reaction and rearrangement of para-quinone methides worked analogously and provided another two polycyclic scaffolds.
Collapse
Affiliation(s)
- Tao Yu
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710054, China
- School of Chemistry, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Xue Zhao
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi, Xinjiang, 832003, China
| | - Zaicheng Nie
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710054, China
| | - Lulu Qin
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710054, China
| | - Zhengwei Ding
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi, 710054, China
| | - Liang Xu
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi, Xinjiang, 832003, China
| | - Pengfei Li
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710054, China
- School of Chemistry, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
- State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, China
| |
Collapse
|
4
|
Yuan KN, Zhuang H, Wei J, Shen Y, Yao HQ, Li MH, Xu LL, Shang M. Modular access to saturated bioisosteres of anilines via photoelectrochemical decarboxylative C(sp 3)-N coupling. Nat Commun 2025; 16:920. [PMID: 39843427 PMCID: PMC11754425 DOI: 10.1038/s41467-024-54648-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 11/18/2024] [Indexed: 01/24/2025] Open
Abstract
In drug development, the substitution of benzene rings in aniline-based drug candidates with saturated bridged bicyclic ring systems often enhances pharmacokinetic properties while preserving biological activity. However, current efforts predominantly focuses on bicyclo[1.1.1]pentylamines, accessing analogs capable of mimicking ortho- and meta-substituted anilines remains challenging due to the lack of a versatile and modular synthetic methods. Herein, we present a modular approach to access a diverse array of saturated bioisosteres of anilines via photoelectrochemical-induced decarboxylative C(sp3)-N Coupling. The success of this reaction hinges on the merging the cooperative ligand-to-metal charge transfer (LMCT) with copper-catalyzed amination. Notably, this net-oxidative C(sp3)-N forming reaction operates under mild electrode potentials and proceeds through hydrogen evolution, eliminating the need for external chemical oxidants. Our research enables the facile decarboxylative amination of a set of sp3-rich small-ring cage carboxylic acids, thus offering a versatile bioisosteric replacement for ortho-, meta-, and para-substituted anilines and di(hetero)aryl amines.
Collapse
Affiliation(s)
- Kang-Ning Yuan
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Hongjun Zhuang
- Research Center for Translational Medicine, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361003, P.R. China
| | - Jie Wei
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yu Shen
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Hong-Qing Yao
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Ming-Hong Li
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Lin-Lin Xu
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Ming Shang
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
5
|
Zhang XG, Zhou ZY, Li JX, Chen JJ, Zhou QL. Copper-Catalyzed Enantioselective [4π + 2σ] Cycloaddition of Bicyclobutanes with Nitrones. J Am Chem Soc 2024; 146:27274-27281. [PMID: 39321390 DOI: 10.1021/jacs.4c10123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
The selective construction of bridged bicyclic scaffolds has garnered increasing attention because of their extensive use as saturated bioisosteres of arene in pharmaceutical industry. However, in sharp contrast to their racemic counterparts, assembling chiral bridged bicyclic structures in an enantioselective and regioselective manner remains challenging. Herein, we describe our protocol for constructing chiral 2-oxa-3-azabicyclo[3.1.1]heptanes (BCHeps) by enantioselective [4π + 2σ] cycloadditions of bicyclo[1.1.0]butanes (BCBs) and nitrones taking advantage of a chiral copper(II) complex as a Lewis acid catalyst. This method features mild conditions, good functional group tolerance, high yield (up to 99%), and excellent enantioselectivity (up to 99% ee). Density functional theory (DFT) calculation elucidates the origin of the reaction's enantioselectivity and the mechanism of BCB activation by Cu(II) complex.
Collapse
Affiliation(s)
- Xuan-Ge Zhang
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, China
| | - Zi-Yang Zhou
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, China
| | - Jia-Xin Li
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, China
| | - Jun-Jia Chen
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, China
| | - Qi-Lin Zhou
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, China
| |
Collapse
|
6
|
Nan H, Cheng B, Zhang D, Wang K, Wang S, Xu B, Zhang S, König B, Zhang G. Direct Diazoarylation of [1.1.1]Propellane with Arenediazonium Salts: A Modular Assembly of Arylated Diazo Bicyclo[1.1.1]pentanes. Org Lett 2024; 26:8424-8429. [PMID: 39311486 DOI: 10.1021/acs.orglett.4c03316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
A mild and concise diazoarylation of [1.1.1]propellane is described, which provides a modular approach to arylated diazo bicyclopentanes (BCPs). This reaction proceeds smoothly under basic conditions without requiring other additives or catalysts. The substrate scope shows that various electron-withdrawing and electron-donating groups are tolerated, and the subsequent modifications provide a novel avenue for assembling arylamino-BCP analogs.
Collapse
Affiliation(s)
- Hailing Nan
- School of Chemistry and Chemical Engineering, Yangzhou University, Siwangting Road 180, Yangzhou, Jiangsu 225002, China
| | - Beiyi Cheng
- Fakultät für Chemie und Pharmazie, Universität Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany
| | - Duo Zhang
- Medicine Center, Guangxi University of Science and Technology, Liushi Road 257, Liuzhou, Guangxi 545006, China
| | - Kaiping Wang
- School of Chemistry and Chemical Engineering, Yangzhou University, Siwangting Road 180, Yangzhou, Jiangsu 225002, China
| | - Shuli Wang
- School of Chemistry and Chemical Engineering, Yangzhou University, Siwangting Road 180, Yangzhou, Jiangsu 225002, China
| | - Bingxin Xu
- Medicine Center, Guangxi University of Science and Technology, Liushi Road 257, Liuzhou, Guangxi 545006, China
| | - Shuwei Zhang
- School of Chemistry and Chemical Engineering, Yangzhou University, Siwangting Road 180, Yangzhou, Jiangsu 225002, China
| | - Burkhard König
- Fakultät für Chemie und Pharmazie, Universität Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany
| | - Guodong Zhang
- School of Chemistry and Chemical Engineering, Yangzhou University, Siwangting Road 180, Yangzhou, Jiangsu 225002, China
| |
Collapse
|
7
|
Hou H, Guo S, Shen X, Chen C, Chen X, Yu H, Han Y, Sun Q, Zhu S. Site-Specific Radical Alkylation of Aryl Cyanide: Visible-Light, Photoredox-Catalyzed, Three-Component Arylalkylation of [1.1.1]Propellane. Org Lett 2024; 26:7769-7773. [PMID: 39230003 DOI: 10.1021/acs.orglett.4c02969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
We report herein a three-component radical arylalkylation of [1.1.1]propellane toward the synthesis of aryl-substituted bicyclo[1.1.1]pentane derivatives. The use of electron-deficient aryl cyanide as an aryl group source not only reduces the energy barrier of the arylation of the nucleophilic alkyl radical species, but also suppresses the electrophilic Friedel-Crafts alkylation process, enabling the present site-selective arylalkylation.
Collapse
Affiliation(s)
- Hong Hou
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225009, China
| | - Shengkun Guo
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225009, China
| | - Xiaoyu Shen
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225009, China
| | - Chengjun Chen
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225009, China
| | - Xiaoyun Chen
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212005, China
| | - Huaguang Yu
- Key Laboratory of Optoelectronic Chemical Materials and Devices, Ministry of Education, College of Optoelectronic Materials and Technology, Jianghan University, Wuhan 430056, China
| | - Ying Han
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225009, China
| | - Qiu Sun
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225009, China
| | - Shaoqun Zhu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
8
|
Ripenko V, Sham V, Levchenko V, Holovchuk S, Vysochyn D, Klymov I, Kyslyi D, Veselovych S, Zhersh S, Dmytriv Y, Tolmachev A, Sadkova I, Pishel I, Horbatok K, Kosach V, Nikandrova Y, Mykhailiuk PK. Light-enabled scalable synthesis of bicyclo[1.1.1]pentane halides and their functionalizations. NATURE SYNTHESIS 2024; 3:1538-1549. [PMID: 39664797 PMCID: PMC11628397 DOI: 10.1038/s44160-024-00637-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 08/02/2024] [Indexed: 12/13/2024]
Abstract
In 2012, bicyclo[1.1.1]pentanes were demonstrated to be bioisosteres of the benzene ring. Here, we report a general scalable reaction between alkyl iodides and propellane that provides bicyclo[1.1.1]pentane iodides in milligram, gram and even kilogram quantities. The reaction is performed in flow and requires just light; no catalysts, initiators or additives are needed. The reaction is clean enough that, in many cases, evaporation of the reaction mixture provides products in around 90% purity that can be directly used in further transformations without any purification. Combined with the subsequent functionalization, >300 bicyclo[1.1.1]pentanes for medicinal chemistry have been prepared. So far, this is the most general and scalable approach towards functionalized bicyclo[1.1.1]pentanes.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Yurii Dmytriv
- Enamine Ltd., Kyiv, Ukraine
- National Technical University of Ukraine, Igor Sikorsky Kyiv Polytechnic Institute, Kyiv, Ukraine
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Kim C, Kim Y, Hong S. 1,3-Difunctionalization of [1.1.1]propellane through iron-hydride catalyzed hydropyridylation. Nat Commun 2024; 15:5993. [PMID: 39013909 PMCID: PMC11252317 DOI: 10.1038/s41467-024-50356-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 07/08/2024] [Indexed: 07/18/2024] Open
Abstract
Current methodologies for the functionalization of [1.1.1]propellane primarily focus on achieving 1, 3-difunctionalized bicyclo[1.1.1]pentane or ring-opened cyclobutane moiety. Herein, we report an innovative approach for the 1, 3-difunctionalization of [1.1.1]propellane, enabling access to a diverse range of highly functionalized cyclobutanes via nucleophilic attack followed by ring opening and iron-hydride hydrogen atom transfer. To enable this method, we developed an efficient iron-catalyzed hydropyridylation of various alkenes for C - H alkylation of pyridines at the C4 position, eliminating the need for stoichiometric quantities of oxidants or reductants. Mechanistic investigations reveal that the resulting N-centered radical serves as an effective oxidizing agent, facilitating single-electron transfer oxidation of the reduced iron catalyst. This process efficiently sustains the catalytic cycle, offering significant advantages for substrates with oxidatively sensitive functionalities that are generally incompatible with alternative approaches. The strategy presented herein is not only mechanistically compelling but also demonstrates broad versatility, highlighting its potential for late-stage functionalization.
Collapse
Affiliation(s)
- Changha Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon, Korea
| | - Yuhyun Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon, Korea
| | - Sungwoo Hong
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea.
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon, Korea.
| |
Collapse
|
10
|
Zhao Y, Zhang J, Zhan ZJ, Fan Q, Xiao XQ, Bai Y, Ni SF, Shao X. Synthesis of Azo-Substituted Bicyclo[1.1.1]pentanes (BCPs) via Base-Promoted Halogen Atom Transfer. Org Lett 2024; 26:4406-4410. [PMID: 38742800 DOI: 10.1021/acs.orglett.4c01546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Because of the three-dimensional bioisosteric feature, bicyclo[1.1.1]pentylamines (BCPAs) are valuable scaffolds in synthetic chemistry and medicinal chemistry. Here, we report a Halogen Atom Transfer (XAT) mediated radical C-N coupling between C3-iodo-BCPs and diazonium salts in the presence of base. Similarly, a multicomponent reaction (MCR) enables the simultaneous construction of the C-C bond and C-N bond simultaneously. Versatile roles of diazonium salts were also explored.
Collapse
Affiliation(s)
- Yanchuang Zhao
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, Hangzhou 311121, P. R. China
| | - Jing Zhang
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, Hangzhou 311121, P. R. China
| | - Zhi-Jin Zhan
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guang-dong Province, Shantou University, Shantou 515063, P. R. China
| | - Qiujin Fan
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, Hangzhou 311121, P. R. China
| | - Xu-Qiong Xiao
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, Hangzhou 311121, P. R. China
| | - Ying Bai
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, Hangzhou 311121, P. R. China
| | - Shao-Fei Ni
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guang-dong Province, Shantou University, Shantou 515063, P. R. China
| | - Xinxin Shao
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, Hangzhou 311121, P. R. China
| |
Collapse
|
11
|
Liang Y, Nematswerani R, Daniliuc CG, Glorius F. Silver-Enabled Cycloaddition of Bicyclobutanes with Isocyanides for the Synthesis of Polysubstituted 3-Azabicyclo[3.1.1]heptanes. Angew Chem Int Ed Engl 2024; 63:e202402730. [PMID: 38441241 DOI: 10.1002/anie.202402730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Indexed: 04/17/2024]
Abstract
Synthesis of bicyclic scaffolds has emerged as an important research topic in modern drug development because they can serve as saturated bioisosters to enhance the physicochemical properties and metabolic profiles of drug candidates. Here we report a remarkably simple silver-enabled strategy to access polysubstituted 3-azabicyclo[3.1.1]heptanes in a single operation from readily accessible bicyclobutanes (BCBs) and isocyanides. The process is proposed to involve a formal (3+3)/(3+2)/retro-(3+2) cycloaddition sequence. This novel protocol allows for rapid generation of molecular complexity from simple starting materials, and the products can be easily derivatized, further enriching the BCB cycloaddition chemistry and the growing set of valuable sp3-rich bicyclic building blocks.
Collapse
Affiliation(s)
- Yujie Liang
- Organisch-Chemisches Institut, Universität Münster, Corrensstraße 40, 48149, Münster, Germany
| | - Ronewa Nematswerani
- Organisch-Chemisches Institut, Universität Münster, Corrensstraße 40, 48149, Münster, Germany
| | - Constantin G Daniliuc
- Organisch-Chemisches Institut, Universität Münster, Corrensstraße 40, 48149, Münster, Germany
| | - Frank Glorius
- Organisch-Chemisches Institut, Universität Münster, Corrensstraße 40, 48149, Münster, Germany
| |
Collapse
|
12
|
Zhang J, Su JY, Zheng H, Li H, Deng WP. Eu(OTf) 3 -Catalyzed Formal Dipolar [4π+2σ] Cycloaddition of Bicyclo-[1.1.0]butanes with Nitrones: Access to Polysubstituted 2-Oxa-3-azabicyclo[3.1.1]heptanes. Angew Chem Int Ed Engl 2024; 63:e202318476. [PMID: 38288790 DOI: 10.1002/anie.202318476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Indexed: 02/21/2024]
Abstract
Herein, we have synthesized multifunctionalized 2-oxa-3-azabicyclo[3.1.1]heptanes, which are considered potential bioisosteres for meta-substituted arenes, through Eu(OTf)3 -catalyzed formal dipolar [4π+2σ] cycloaddition of bicyclo[1.1.0]butanes with nitrones. This methodology represents the initial instance of fabricating bicyclo[3.1.1]heptanes adorned with multiple heteroatoms. The protocol exhibits both mild reaction conditions and a good tolerance for various functional groups. Computational density functional theory calculations support that the reaction mechanism likely involves a nucleophilic addition of nitrones to bicyclo[1.1.0]butanes, succeeded by an intramolecular cyclization. The synthetic utility of this novel protocol has been demonstrated in the concise synthesis of the analogue of Rupatadine.
Collapse
Affiliation(s)
- Jian Zhang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, Zhejiang Normal University, 688 Yingbin Road, Jinhua, 321004, China
| | - Jia-Yi Su
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Hanliang Zheng
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, Zhejiang Normal University, 688 Yingbin Road, Jinhua, 321004, China
| | - Hao Li
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Wei-Ping Deng
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, Zhejiang Normal University, 688 Yingbin Road, Jinhua, 321004, China
| |
Collapse
|
13
|
Bai Z, Lansbergen B, Ritter T. Bicyclopentylation of Alcohols with Thianthrenium Reagents. J Am Chem Soc 2023; 145:25954-25961. [PMID: 38010346 PMCID: PMC10704608 DOI: 10.1021/jacs.3c10024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/15/2023] [Accepted: 11/16/2023] [Indexed: 11/29/2023]
Abstract
Herein we present the first method for the synthesis of bicyclo[1.1.1]pentyl (BCP) alkyl ethers from alcohols. The reaction uses BCP-thianthrenium reagents and is catalyzed by a dual copper/photoredox catalyst system. Unlike known alkylations of tertiary alcohols via carbocation intermediates, our Cu-mediated radical process circumvents the labile BCP carbocations. The approach demonstrates a broad tolerance for functional groups when applied to primary, secondary, and even tertiary alcohols. In addition, we highlight the utility of this method in late-stage functionalizations of both natural products and pharmaceuticals as well as in the rapid construction of BCP analogs of known pharmaceuticals that would otherwise be difficult to access.
Collapse
Affiliation(s)
- Zibo Bai
- Max-Planck-Institut für
Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-45470 Mülheim an der Ruhr, Germany
| | - Beatrice Lansbergen
- Max-Planck-Institut für
Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-45470 Mülheim an der Ruhr, Germany
| | - Tobias Ritter
- Max-Planck-Institut für
Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-45470 Mülheim an der Ruhr, Germany
| |
Collapse
|
14
|
Liang Y, Paulus F, Daniliuc CG, Glorius F. Catalytic Formal [2π+2σ] Cycloaddition of Aldehydes with Bicyclobutanes: Expedient Access to Polysubstituted 2-Oxabicyclo[2.1.1]hexanes. Angew Chem Int Ed Engl 2023; 62:e202305043. [PMID: 37307521 DOI: 10.1002/anie.202305043] [Citation(s) in RCA: 62] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/17/2023] [Accepted: 06/12/2023] [Indexed: 06/14/2023]
Abstract
Synthesis of bicyclic scaffolds has attracted tremendous attention because they are playing an important role as saturated bioisosteres of benzenoids in modern drug discovery. Here, we report a BF3 -catalyzed [2π+2σ] cycloaddition of aldehydes with bicyclo[1.1.0]butanes (BCBs) to access polysubstituted 2-oxabicyclo[2.1.1]hexanes. A new kind of BCB containing an acyl pyrazole group was invented, which not only significantly facilitates the reactions, but can also serve as a handle for diverse downstream transformations. Furthermore, aryl and vinyl epoxides can also be utilized as substrates which undergo cycloaddition with BCBs after in situ rearrangement to aldehydes. We anticipate that our results will promote access to challenging sp3 -rich bicyclic frameworks and the exploration of BCB-based cycloaddition chemistry.
Collapse
Affiliation(s)
- Yujie Liang
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraße 40, 48149, Münster, Germany
| | - Fritz Paulus
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraße 40, 48149, Münster, Germany
| | - Constantin G Daniliuc
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraße 40, 48149, Münster, Germany
| | - Frank Glorius
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraße 40, 48149, Münster, Germany
| |
Collapse
|
15
|
Denisenko A, Garbuz P, Voloshchuk NM, Holota Y, Al-Maali G, Borysko P, Mykhailiuk PK. 2-Oxabicyclo[2.1.1]hexanes as saturated bioisosteres of the ortho-substituted phenyl ring. Nat Chem 2023:10.1038/s41557-023-01222-0. [PMID: 37277469 PMCID: PMC10396955 DOI: 10.1038/s41557-023-01222-0] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 04/25/2023] [Indexed: 06/07/2023]
Abstract
The ortho-substituted phenyl ring is a basic structural element in chemistry. It is found in more than three hundred drugs and agrochemicals. During the past decade, scientists have tried to replace the phenyl ring in bioactive compounds with saturated bioisosteres to obtain novel patentable structures. However, most of the research in this area has been devoted to the replacement of the para-substituted phenyl ring. Here we have developed saturated bioisosteres of the ortho-substituted phenyl ring with improved physicochemical properties: 2-oxabicyclo[2.1.1]hexanes. Crystallographic analysis revealed that these structures and the ortho-substituted phenyl ring indeed have similar geometric properties. Replacement of the phenyl ring in marketed agrochemicals fluxapyroxad (BASF) and boscalid (BASF) with 2-oxabicyclo[2.1.1]hexanes dramatically improved their water solubility, reduced lipophilicity and most importantly retained bioactivity. This work suggests an opportunity for chemists to replace the ortho-substituted phenyl ring in bioactive compounds with saturated bioisosteres in medicinal chemistry and agrochemistry.
Collapse
Affiliation(s)
| | | | | | | | - Galeb Al-Maali
- Bienta, Kyiv, Ukraine
- M.G. Kholodny Institute of Botany of the National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | | | | |
Collapse
|
16
|
Li Z, Lan D, Zhou W, Li J, Zhu H, Yu C, Jiang X. Synthesis of C3-halo substituted bicyclo[1.1.1]pentylamines via halosulfoamidation of [1.1.1]propellane with sodium hypohalites and sulfonamides. Chem Commun (Camb) 2023; 59:6056-6059. [PMID: 37114292 DOI: 10.1039/d3cc01262j] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
Herein, we report a catalyst-free synthesis of C3-halo substituted bicyclo[1.1.1]pentylamines under mild conditions. The reaction involves the use of sodium hypohalites and sulfonamides to generate N-halosulfonamides in situ, which subsequently undergo radical addition with [1.1.1]propellane to yield the desired products with suitable functional group tolerance.
Collapse
Affiliation(s)
- Zhi Li
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, P. R. China.
| | - Deyou Lan
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, P. R. China.
| | - Wei Zhou
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, P. R. China.
| | - Jiacheng Li
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, P. R. China.
| | - Hui Zhu
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, P. R. China.
| | - Chuanming Yu
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, P. R. China.
| | - Xinpeng Jiang
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, P. R. China.
| |
Collapse
|
17
|
Iida T, Kanazawa J, Matsunaga T, Miyamoto K, Hirano K, Uchiyama M. Practical and Facile Access to Bicyclo[3.1.1]heptanes: Potent Bioisosteres of meta-Substituted Benzenes. J Am Chem Soc 2022; 144:21848-21852. [PMID: 36342862 DOI: 10.1021/jacs.2c09733] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
There is increasing interest in replacement of the planar aromatic rings of drug candidates with three-dimensional caged scaffolds in order to improve the physical properties, but bioisosteres of meta-substituted benzenes have remained elusive. We focused on the bicyclo[3.1.1]heptane (BCH) scaffold as a novel bioisostere of meta-substituted benzenes, anticipating that [3.1.1]propellane (2) would be a versatile precursor of diversely functionalized BCHs. Here, we describe a practical preparative method for [3.1.1]propellane from newly developed 1,5-diiodobicyclo[3.1.1]heptane (1), as well as difunctionalization reactions of 2 leading to functionalized BCHs. We also report postfunctionalization reactions of these products.
Collapse
Affiliation(s)
- Toranosuke Iida
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Junichiro Kanazawa
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Tadafumi Matsunaga
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Kazunori Miyamoto
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Keiichi Hirano
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Masanobu Uchiyama
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.,Research Initiative for Supra-Materials (RISM), Shinshu University, 3-15-1 Tokida, Ueda, Nagano 386-8567, Japan
| |
Collapse
|
18
|
Liang Y, Kleinmans R, Daniliuc CG, Glorius F. Synthesis of Polysubstituted 2-Oxabicyclo[2.1.1]hexanes via Visible-Light-Induced Energy Transfer. J Am Chem Soc 2022; 144:20207-20213. [DOI: 10.1021/jacs.2c09248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yujie Liang
- Westfälische Wilhelms-Universität Münster, Organisch-Chemisches Institut, Corrensstraße 40, 48149 Münster, Germany
| | - Roman Kleinmans
- Westfälische Wilhelms-Universität Münster, Organisch-Chemisches Institut, Corrensstraße 40, 48149 Münster, Germany
| | - Constantin G. Daniliuc
- Westfälische Wilhelms-Universität Münster, Organisch-Chemisches Institut, Corrensstraße 40, 48149 Münster, Germany
| | - Frank Glorius
- Westfälische Wilhelms-Universität Münster, Organisch-Chemisches Institut, Corrensstraße 40, 48149 Münster, Germany
| |
Collapse
|
19
|
Livesley S, Trueman B, Robertson CM, Goundry WRF, Morris JA, Aïssa C. Synthesis of Sulfur-Substituted Bicyclo[1.1.1]pentanes by Iodo-Sulfenylation of [1.1.1]Propellane. Org Lett 2022; 24:7015-7020. [PMID: 36130142 PMCID: PMC9531248 DOI: 10.1021/acs.orglett.2c02875] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
![]()
Thiols easily react with [1.1.1]propellane to give sulfur-substituted
bicyclo[1.1.1]pentanes in radical reactions, but this reactivity is
not replicated in the case of heterocyclic thiols. Herein, we address
this issue by electrophilically activating [1.1.1]propellane to promote
its iodo-sulfenylation with 10 classes of heterocyclic thiols in two
protocols that can be conducted on a multigram scale without exclusion
of air or moisture.
Collapse
Affiliation(s)
- Sarah Livesley
- Department of Chemistry, University of Liverpool, Crown Street, Liverpool L69 7ZD, United Kingdom.,Early Chemical Development, Pharmaceutical Sciences, R&D, AstraZeneca, Macclesfield SK10 2NA, United Kingdom
| | - Bethany Trueman
- Department of Chemistry, University of Liverpool, Crown Street, Liverpool L69 7ZD, United Kingdom
| | - Craig M Robertson
- Department of Chemistry, University of Liverpool, Crown Street, Liverpool L69 7ZD, United Kingdom
| | - William R F Goundry
- Early Chemical Development, Pharmaceutical Sciences, R&D, AstraZeneca, Macclesfield SK10 2NA, United Kingdom
| | - James A Morris
- Syngenta, International Research Centre, Bracknell, Berkshire RG42 6EY, United Kingdom
| | - Christophe Aïssa
- Department of Chemistry, University of Liverpool, Crown Street, Liverpool L69 7ZD, United Kingdom
| |
Collapse
|
20
|
Bychek R, Mykhailiuk PK. A Practical and Scalable Approach to Fluoro-Substituted Bicyclo[1.1.1]pentanes. Angew Chem Int Ed Engl 2022; 61:e202205103. [PMID: 35638404 PMCID: PMC9401599 DOI: 10.1002/anie.202205103] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Indexed: 12/27/2022]
Abstract
After more than 20 years of trials, a practical scalable approach to fluoro-substituted bicyclo[1.1.1]pentanes (F-BCPs) has been developed. The physicochemical properties of the F-BCPs have been studied, and the core was incorporated into the structure of the anti-inflammatory drug Flurbiprofen in place of the fluorophenyl ring.
Collapse
|
21
|
Shi J, Xu QL, Ni YQ, Li L, Pan F. Radical Multicomponent Alkyl Alkynylation of Propellane via Synergistic Photoredox and Copper Catalysis. Org Lett 2022; 24:4609-4614. [PMID: 35726904 DOI: 10.1021/acs.orglett.2c01721] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Bicyclo[1.1.1]pentanes (BCPs) are important bioisosteres of aryl, tert-butyl groups, and internal alkynes that can impact key physicochemical properties on drug candidates. Herein, we describe a novel and efficient reaction to synthesize alkyl-alkynyl-substituted BCP derivatives by synergistic photoredox and copper catalysis at room temperature. The mild reaction conditions, simple protocol, broad functional group tolerance, and high efficiency of this procedure make it a valuable strategy for accessing alkynyl-substituted BCPs.
Collapse
Affiliation(s)
- Jie Shi
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, People's Republic of China
| | - Qiao-Lin Xu
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, People's Republic of China
| | - Yu-Qing Ni
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, People's Republic of China
| | - Lin Li
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, People's Republic of China
| | - Fei Pan
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, People's Republic of China
| |
Collapse
|
22
|
Bychek R, Mykhailiuk PK. A Practical and Scalable Approach to Fluoro‐Substituted Bicyclo[1.1.1]pentanes. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202205103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Roman Bychek
- Enamine Ltd. Chervonotkatska 60 02094 Kyiv Ukraine
| | | |
Collapse
|
23
|
Li Q, Li L, Xu QL, Pan F. Radical Acylation of [1.1.1]Propellane with Aldehydes: Synthesis of Bicyclo[1.1.1]pentane Ketones. Org Lett 2022; 24:4292-4297. [PMID: 35658457 DOI: 10.1021/acs.orglett.2c01707] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Bicyclo[1.1.1]pentanes (BCPs) are widely utilized in drug design as sp3-rich bioisosteres for tert-butyl, internal alkynes, and aryl groups. A general and mild method for radical acylation of [1.1.1]propellane with aldehydes has been developed. The protocol provides straightforward access to bicyclo[1.1.1]pentane ketones with a broad substrate scope. The synthetic utility of this methodology is demonstrated by the late-stage modification of bioactive molecules and the versatile transformation of bicyclo[1.1.1]pentane ketones, making it useful for drug discovery.
Collapse
Affiliation(s)
- Qing Li
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, People's Republic of China
| | - Lin Li
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, People's Republic of China
| | - Qiao-Ling Xu
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, People's Republic of China
| | - Fei Pan
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, People's Republic of China
| |
Collapse
|
24
|
Go SY, Chung H, Shin SJ, An S, Youn JH, Im TY, Kim JY, Chung TD, Lee HG. A Unified Synthetic Strategy to Introduce Heteroatoms via Electrochemical Functionalization of Alkyl Organoboron Reagents. J Am Chem Soc 2022; 144:9149-9160. [PMID: 35575552 DOI: 10.1021/jacs.2c03213] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Based on systematic electrochemical analysis, an integrated synthetic platform of C(sp3)-based organoboron compounds was established for the introduction of heteroatoms. The electrochemically mediated bond-forming strategy was shown to be highly effective for the functionalization of sp3-hybridized carbon atoms with significant steric hindrance. Moreover, virtually all the nonmetallic heteroatoms could be utilized as reaction partners using one unified protocol. The observed reactivity stems from the two consecutive single-electron oxidations of the substrate, which eventually generates an extremely reactive carbocation as the key intermediate. The detailed reaction profile could be elucidated through multifaceted electrochemical studies. Ultimately, a new dimension in the activation strategies for organoboron compounds was accomplished through the electrochemically driven reaction development.
Collapse
Affiliation(s)
- Su Yong Go
- Department of Chemistry, College of Natural Science, Seoul National University, 1 Gwanak-ro, Seoul 08826, Republic of Korea
| | - Hyunho Chung
- Department of Chemistry, College of Natural Science, Seoul National University, 1 Gwanak-ro, Seoul 08826, Republic of Korea
| | - Samuel Jaeho Shin
- Department of Chemistry, College of Natural Science, Seoul National University, 1 Gwanak-ro, Seoul 08826, Republic of Korea
| | - Sohee An
- Department of Chemistry, College of Natural Science, Seoul National University, 1 Gwanak-ro, Seoul 08826, Republic of Korea
| | - Ju Hyun Youn
- Department of Chemistry, College of Natural Science, Seoul National University, 1 Gwanak-ro, Seoul 08826, Republic of Korea
| | - Tae Yeong Im
- Department of Chemistry, College of Natural Science, Seoul National University, 1 Gwanak-ro, Seoul 08826, Republic of Korea
| | - Ji Yong Kim
- Department of Chemistry, College of Natural Science, Seoul National University, 1 Gwanak-ro, Seoul 08826, Republic of Korea
| | - Taek Dong Chung
- Department of Chemistry, College of Natural Science, Seoul National University, 1 Gwanak-ro, Seoul 08826, Republic of Korea.,Advanced Institutes of Convergence Technology, Suwon-si, Gyeonggi-do 16229 Republic of Korea
| | - Hong Geun Lee
- Department of Chemistry, College of Natural Science, Seoul National University, 1 Gwanak-ro, Seoul 08826, Republic of Korea
| |
Collapse
|
25
|
Yu Z, Shi L. Synthetic routes to bicyclo[1.1.1]pentylamines: booming toolkits for drug design. Org Chem Front 2022. [DOI: 10.1039/d2qo00703g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
With the flourishing progress of modern medicinal chemistry, the bicyclo[1.1.1]pentylamines (BCPAs) have come to the fore as bioisosteres of arylamine motifs to reduce the growing concern about arylamines’ risks related...
Collapse
|