1
|
Zhang J, Xu M, Zhang N, Tao L, Shao M, Wang T, Yang Z, Wang Q, Zhang Y. Exploring the Adaptability of 4D Printed Shape Memory Polymer Featuring Dynamic Covalent Bonds. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2406358. [PMID: 39254280 DOI: 10.1002/smll.202406358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 09/01/2024] [Indexed: 09/11/2024]
Abstract
4D printing (4DP) of high-performance shape memory polymers (SMPs), particularly using digital light processing (DLP), has garnered intense global attention due to its capability for rapid and high-precision fabrication of complex configurations, meeting diverse application requirements. However, the development of high-performance dynamic shape memory polymers (DSMPs) for DLP printing remains a significant challenge due to the inherent incompatibilities between the photopolymerization process and the curing/polymerization of high-strength polymers. Here, a mechanically robust DSMP compatible is developed with DLP printing, which incorporates dynamic covalent bonds of imine linking polyimide rigid segments, exhibiting remarkable mechanical performance (tensile strength ≈41.7 MPa, modulus ≈1.63 GPa) and thermal stability (Tg ∼ 113 °C, Td ∼ 208 °C). More importantly, benefiting from the solid-state plasticity conferred by dynamic covalent bonds, 4D printed structures demonstrate rapid network adaptiveness, enabling effortless realization of reconfiguration, self-healing, and recycling. Meanwhile, the extensive π-π conjugated structures bestow DSMP with an intrinsic photothermal effect, allowing controllable morphing of the 4D configuration through dual-mode triggering. This work not only greatly enriches the application scope of high-performance personalized configurations but also provides a reliable approach to addressing environmental pollution and energy crises.
Collapse
Affiliation(s)
- Jing Zhang
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Mingkun Xu
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Nan Zhang
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Liming Tao
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Mingchao Shao
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Tingmei Wang
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zenghui Yang
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Qihua Wang
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yaoming Zhang
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
| |
Collapse
|
2
|
Wan B, Xiao M, Dong X, Yang X, Zheng MS, Dang ZM, Chen G, Zha JW. Dynamic Covalent Adaptable Polyimide Hybrid Dielectric Films with Superior Recyclability. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2304175. [PMID: 37382198 DOI: 10.1002/adma.202304175] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/27/2023] [Indexed: 06/30/2023]
Abstract
Polyimides (PIs) used in advanced electrical and electronic devices can be electrically/mechanically damaged, resulting in a significant waste of resources. Closed-loop chemical recycling may prolong the service life of synthetic polymers. However, the design of dynamic covalent bonds for preparing chemically recyclable crosslinked PIs remains a challenging task. Herein, new crosslinked PI films containing a PI oligomer, chain extender, and crosslinker are reported. They exhibit superior recyclability and excellent self-healable ability owing to the synergistic effect of the chain extender and crosslinker. The produced films can be completely depolymerized in an acidic solution at ambient temperature, leading to efficient monomer recovery. The recovered monomers may be used to remanufacture crosslinked PIs without deteriorating their original performance. In particular, the designed films can serve as corona-resistant films with a recovery rate of approximately 100%. Furthermore, carbon fiber reinforced composites (CFRCs) with PI matrices are suitable for harsh environments and can be recycled multiple times at a non-destructive recycling rate up to 100%. The preparation of high-strength dynamic covalent adaptable PI hybrid films from simple PI oligomers, chain extenders, and crosslinkers may provide a solid basis for sustainable development in the electrical and electronic fields.
Collapse
Affiliation(s)
- Baoquan Wan
- Beijing Advanced Innovation Center for Materials Genome Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Mengyu Xiao
- Beijing Advanced Innovation Center for Materials Genome Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Xiaodi Dong
- Beijing Advanced Innovation Center for Materials Genome Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Xing Yang
- Beijing Advanced Innovation Center for Materials Genome Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Ming-Sheng Zheng
- Beijing Advanced Innovation Center for Materials Genome Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
- Shunde Graduate School of University of Science and Technology Beijing, Foshan, 528300, P. R. China
| | - Zhi-Min Dang
- State Key Laboratory of Power System, Department of Electrical Engineering, Tsinghua University, Beijing, 100084, P. R. China
| | - George Chen
- Department of Electronics and Computer Science, University of Southampton, Southampton, SO17 1BJ, UK
| | - Jun-Wei Zha
- Beijing Advanced Innovation Center for Materials Genome Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
- Shunde Graduate School of University of Science and Technology Beijing, Foshan, 528300, P. R. China
| |
Collapse
|
3
|
Li X, Zhang B, Wang Z, Chen Y, Guo J, Kang S, Zou W, Zheng J, Li S, Zhang S. Confined Nano-Channels Incorporated with Multi-Quaternized Cations for Highly Phosphoric Acid Retention HT-PEMs. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2308860. [PMID: 38168096 DOI: 10.1002/smll.202308860] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 12/07/2023] [Indexed: 01/05/2024]
Abstract
Developing a new strategy to retain phosphoric acid (PA) to improve the performance and durability of high-temperature proton exchange membrane fuel cell (HT-PEMFC) remains a challenge. Here, a strategy for ion-restricted catcher microstructure that incorporates PA-doped multi-quaternized poly(fluorene alkylene-co-biphenyl alkylene) (PFBA) bearing confined nanochannels is reported. Dynamic analysis reveals strong interaction between side chains and PA molecules, confirming that the microstructure can improve PA retention. The PFBA linked with triquaternary ammonium side chain (PFBA-tQA) shows the highest PA retention rate of 95%. Its H2/O2 fuel cell operates within 0.6% voltage decay at 160 °C/0% RH, and it also runs over 100 h at 100 °C/49% RH under external humidification. This combination of high PA retention, and chemical and dimensional stability fills a gap in the HT-PEMFC field, which requires strict moisture control at 90-120 °C to prevent acid leaching, simplifying the start-up procedure of HT-PEMFC without preheating.
Collapse
Affiliation(s)
- Xiaofeng Li
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Bin Zhang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Zimo Wang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Yaohan Chen
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Jing Guo
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Shuwen Kang
- Transimage Sodium-Ion Battery Technology, Gaoyou, 225600, China
| | - Weimin Zou
- Transimage Sodium-Ion Battery Technology, Gaoyou, 225600, China
| | - Jifu Zheng
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Shenghai Li
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Suobo Zhang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| |
Collapse
|
4
|
Xu F, Zhang H, Liu H, Han W, Nie Z, Lu Y, Wang H, Zhu J. Ultrafast universal fabrication of configurable porous silicone-based elastomers by Joule heating chemistry. Proc Natl Acad Sci U S A 2024; 121:e2317440121. [PMID: 38437532 PMCID: PMC10945771 DOI: 10.1073/pnas.2317440121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 02/01/2024] [Indexed: 03/06/2024] Open
Abstract
Silicone-based elastomers (SEs) have been extensively applied in numerous cutting-edge areas, including flexible electronics, biomedicine, 5G smart devices, mechanics, optics, soft robotics, etc. However, traditional strategies for the synthesis of polymer elastomers, such as bulk polymerization, suspension polymerization, solution polymerization, and emulsion polymerization, are inevitably restricted by long-time usage, organic solvent additives, high energy consumption, and environmental pollution. Here, we propose a Joule heating chemistry method for ultrafast universal fabrication of SEs with configurable porous structures and tunable components (e.g., graphene, Ag, graphene oxide, TiO2, ZnO, Fe3O4, V2O5, MoS2, BN, g-C3N4, BaCO3, CuI, BaTiO3, polyvinylidene fluoride, cellulose, styrene-butadiene rubber, montmorillonite, and EuDySrAlSiOx) within seconds by only employing H2O as the solvent. The intrinsic dynamics of the in situ polymerization and porosity creation of these SEs have been widely investigated. Notably, a flexible capacitive sensor made from as-fabricated silicone-based elastomers exhibits a wide pressure range, fast responses, long-term durability, extreme operating temperatures, and outstanding applicability in various media, and a wireless human-machine interaction system used for rescue activities in extreme conditions is established, which paves the way for more polymer-based material synthesis and wider applications.
Collapse
Affiliation(s)
- Feng Xu
- Frontiers Science Center for Flexible Electronics, Xi’an Institute of Flexible Electronics, Xi’an Institute of Biomedical Materials and Engineering, Northwestern Polytechnical University, Xi’an710072, People’s Republic of China
| | - Hongjian Zhang
- Frontiers Science Center for Flexible Electronics, Xi’an Institute of Flexible Electronics, Xi’an Institute of Biomedical Materials and Engineering, Northwestern Polytechnical University, Xi’an710072, People’s Republic of China
- School of Flexible Electronics and Henan Institute of Flexible Electronics, Henan University, Zhengzhou450046, People’s Republic of China
| | - Haodong Liu
- Frontiers Science Center for Flexible Electronics, Xi’an Institute of Flexible Electronics, Xi’an Institute of Biomedical Materials and Engineering, Northwestern Polytechnical University, Xi’an710072, People’s Republic of China
| | - Wenqi Han
- Frontiers Science Center for Flexible Electronics, Xi’an Institute of Flexible Electronics, Xi’an Institute of Biomedical Materials and Engineering, Northwestern Polytechnical University, Xi’an710072, People’s Republic of China
| | - Zhentao Nie
- Frontiers Science Center for Flexible Electronics, Xi’an Institute of Flexible Electronics, Xi’an Institute of Biomedical Materials and Engineering, Northwestern Polytechnical University, Xi’an710072, People’s Republic of China
| | - Yufei Lu
- Frontiers Science Center for Flexible Electronics, Xi’an Institute of Flexible Electronics, Xi’an Institute of Biomedical Materials and Engineering, Northwestern Polytechnical University, Xi’an710072, People’s Republic of China
- School of Flexible Electronics and Henan Institute of Flexible Electronics, Henan University, Zhengzhou450046, People’s Republic of China
| | - Haoyang Wang
- Frontiers Science Center for Flexible Electronics, Xi’an Institute of Flexible Electronics, Xi’an Institute of Biomedical Materials and Engineering, Northwestern Polytechnical University, Xi’an710072, People’s Republic of China
| | - Jixin Zhu
- State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei230027, People’s Republic of China
| |
Collapse
|
5
|
Mow R, Russell-Parks GA, Redwine GEB, Petel BE, Gennett T, Braunecker WA. Polymer-Coated Covalent Organic Frameworks as Porous Liquids for Gas Storage. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2024; 36:1579-1590. [PMID: 38370283 PMCID: PMC10870717 DOI: 10.1021/acs.chemmater.3c02828] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 01/02/2024] [Accepted: 01/04/2024] [Indexed: 02/20/2024]
Abstract
Several synthetic methods have recently emerged to develop high-surface-area solid-state organic framework-based materials into free-flowing liquids with permanent porosity. The fluidity of these porous liquid (PL) materials provides them with advantages in certain storage and transport processes. However, most framework-based materials necessitate the use of cryogenic temperatures to store weakly bound gases such as H2, temperatures where PLs lose their fluidity. Covalent organic framework (COF)-based PLs that could reversibly form stable complexes with H2 near ambient temperatures would represent a promising development for gas storage and transport applications. We report here the development, characterization, and evaluation of a material with these remarkable characteristics based on Cu(I)-loaded COF colloids. Our synthetic strategy required tailoring conditions for growing robust coatings of poly(dimethylsiloxane)-methacrylate (PDMS-MA) around COF colloids using atom transfer radical polymerization (ATRP). We demonstrate exquisite control over the coating thickness on the colloidal COF, quantified by transmission electron microscopy and dynamic light scattering. The coated COF material was then suspended in a liquid polymer matrix to make a PL. CO2 isotherms confirmed that the coating preserved the general porosity of the COF in the free-flowing liquid, while CO sorption measurements using diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) confirmed the preservation of Cu(I) coordination sites. We then evaluated the gas sorption phenomenon in the Cu(I)-COF-based PLs using DRIFTS and temperature-programmed desorption measurements. In addition to confirming that H2 transport is possible at or near mild refrigeration temperatures with these materials, our observations indicate that H2 diffusion is significantly influenced by the glass-transition temperature of both the coating and the liquid matrix. The latter result underscores an additional potential advantage of PLs in tailoring gas diffusion and storage temperatures through the coating composition.
Collapse
Affiliation(s)
- Rachel
E. Mow
- Materials
Science Program, Colorado School of Mines, Golden, Colorado 80401, United States
- Chemistry
and Nanoscience Center, National Renewable
Energy Laboratory, 15013 Denver West Pkwy, Golden, Colorado 80401, United States
| | - Glory A. Russell-Parks
- Department
of Chemistry, Colorado School of Mines, 1012 14th Street, Golden, Colorado 80401, United States
- Chemistry
and Nanoscience Center, National Renewable
Energy Laboratory, 15013 Denver West Pkwy, Golden, Colorado 80401, United States
| | - Grace E. B. Redwine
- Department
of Chemistry, Colorado School of Mines, 1012 14th Street, Golden, Colorado 80401, United States
- Chemistry
and Nanoscience Center, National Renewable
Energy Laboratory, 15013 Denver West Pkwy, Golden, Colorado 80401, United States
| | - Brittney E. Petel
- Catalytic
Carbon Transformation and Scale-Up Center, National Renewable Energy Laboratory, 15013 Denver West Pkwy, Golden, Colorado 80401, United States
| | - Thomas Gennett
- Materials
Science Program, Colorado School of Mines, Golden, Colorado 80401, United States
- Department
of Chemistry, Colorado School of Mines, 1012 14th Street, Golden, Colorado 80401, United States
- Chemistry
and Nanoscience Center, National Renewable
Energy Laboratory, 15013 Denver West Pkwy, Golden, Colorado 80401, United States
| | - Wade A. Braunecker
- Department
of Chemistry, Colorado School of Mines, 1012 14th Street, Golden, Colorado 80401, United States
- Chemistry
and Nanoscience Center, National Renewable
Energy Laboratory, 15013 Denver West Pkwy, Golden, Colorado 80401, United States
| |
Collapse
|
6
|
Shen L, Liu W, Lu Y, Fang C, Zhang S. Superoleophilic conjugated microporous polymer nano-surfactants for realizing unprecedented fast recovery of volatile organic compounds. MATERIALS HORIZONS 2023; 10:4562-4570. [PMID: 37565567 DOI: 10.1039/d3mh00798g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/12/2023]
Abstract
A pervaporation membrane with fast and selective permeation is key to improving the recovery efficiency of volatile organic compounds from water. Here, we synthesize a new type of nanofiller-conjugated microporous polymer (CMP) to fabricate polydimethylsiloxane (PDMS)-based mixed matrix membranes (MMMs) and explore their application in the recovery of organic solvents from water via pervaporation. Due to their good dispersibility in the dope solvent and compatibility with PDMS, uniform MMMs without discrete particle phases or aggregates are prepared. Interestingly, CMP nanosheets play a unique role as a nano-surfactant in enhancing both the sorption and diffusion coefficients, realizing unprecedented fast recovery of organic solvents from water. The total flux of the as-fabricated membranes can be enhanced from 74.8 to 406.2 kg μm-2 h-1 and the separation factor αethyl acetate/water is increased from 118.7 to 526.6 when using 5 wt% ethyl acetate aqueous solution as the feed at 50 °C. In addition, the CMP-incorporated PDMS membranes are also effective in recovering a wide range of organic compounds from water, including ethanol, acetone, tetrahydrofuran and acetonitrile.
Collapse
Affiliation(s)
- Liang Shen
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, 117576, Singapore.
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, College of Resources and Environment, Southwest University, Chongqing, 400715, China
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing, 400715, China
| | - Wei Liu
- Frontiers Science Center for Mobile Information Communication and Security, Quantum Information Research Center, School of Physics, Southeast University, Nanjing, 211189, China
- Purple Mountain Laboratories, Nanjing, 211111, China
| | - Yanqiu Lu
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, 117576, Singapore.
| | - Chenyi Fang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, 117576, Singapore.
| | - Sui Zhang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, 117576, Singapore.
| |
Collapse
|
7
|
Zhu T, Dong J, Liu H, Wang Y. Controllable hydrogen-bonded poly(dimethylsiloxane) (PDMS) membranes for ultrafast alcohol recovery. MATERIALS HORIZONS 2023; 10:3024-3033. [PMID: 37194492 DOI: 10.1039/d3mh00250k] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The lack of efficient separation membranes limits the development of bio-alcohol purification via a pervaporation process. In this work, novel controllable hydrogen-bonded poly(dimethylsiloxane) (PDMS) membranes are prepared from self-synthesized supramolecular elastomers for alcohol recovery. Different from the conventional covalently-bonded PDMS membranes, the hydrogen-bonding content and therefore the crosslinking degree in the as-synthesized PDMS membranes can be exactly regulated, by the suitable molecular design of the supramolecular elastomers. The effects of hydrogen-bonding content on the flexibility of the polymer chains and the separation performance of the resultant supramolecular membranes are investigated in detail. In comparison with the state-of-the-art polymeric membranes, the novel controllable hydrogen-bonded supramolecular PDMS membrane exhibits ultrahigh fluxes for ethanol (4.1 kg m-2 h-1) and n-butanol (7.7 kg m-2 h-1) recovery from 5 wt% alcohol aqueous solutions at 80 °C, with comparable separation factors. The designed supramolecular elastomer is therefore believed to provide valuable insights into the design of next-generation separation membrane materials for molecular separations.
Collapse
Affiliation(s)
- Tengyang Zhu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Huazhong University of Science and Technology), Ministry of Education, Wuhan, 430074, P. R. China.
- Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science & Technology, Wuhan, 430074, P. R. China
| | - Jiayu Dong
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Huazhong University of Science and Technology), Ministry of Education, Wuhan, 430074, P. R. China.
- Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science & Technology, Wuhan, 430074, P. R. China
| | - Huan Liu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Huazhong University of Science and Technology), Ministry of Education, Wuhan, 430074, P. R. China.
- Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science & Technology, Wuhan, 430074, P. R. China
| | - Yan Wang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Huazhong University of Science and Technology), Ministry of Education, Wuhan, 430074, P. R. China.
- Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science & Technology, Wuhan, 430074, P. R. China
| |
Collapse
|
8
|
Wan B, Yang X, Dong X, Zheng MS, Zhao Q, Zhang H, Chen G, Zha JW. Dynamic Sustainable Polyimide Film Combining Hardness with Softness via a "Mimosa-Like" Bionic Strategy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2207451. [PMID: 36281805 DOI: 10.1002/adma.202207451] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 10/07/2022] [Indexed: 06/16/2023]
Abstract
Dielectric polyimides (PIs) are ubiquitous as insulation in electrical power systems and electronic devices. Generally, dynamic polyimide is required to solve irreversible failure processes of electrical or mechanical damage, for example, under high temperature, pressure, and field strength. The challenge lies in the design of the molecular structure of rigid polyimide to achieve dynamic reversibility. Herein, a low-molecular-weight polyimide gene unit is designed to crosslink with polyimide ligase to prepare the smart film. Interestingly, due to the variability of gene unit and ligase combinations, the polyimide films combining hardness with softness are designed into three forms via a "Mimosa-like" bionic strategy to adapt to different application scenarios. Meanwhile, the films have good degradation efficiency, excellent recyclability, and can be self-healable, which makes them reuse. Clearly, the films can be used in the preparation of ultrafast sensors with a response time ≈0.15 s and the application of corona-resistant films with 100% recovery. Furthermore, the construction of polyimide and carbon-fiber-reinforced composites (CFRCs) has been verified to apply to the worse environment. Nicely, the composites have the property of multiple cycles and the non-destructive recycle rate of carbon fiber (CF) is as high as 100%. The design idea of preparing high-strength dynamic polyimide by crosslinking simple polyimide gene unit with ligase could provide a good foundation and a clear case for the sustainable development of electrical and electronic polyimides, from the perspective of Mimosa bionics.
Collapse
Affiliation(s)
- Baoquan Wan
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
- Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
- Shunde Graduate School of University of Science and Technology Beijing, Foshan, 528300, P. R. China
| | - Xing Yang
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
- Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
- Shunde Graduate School of University of Science and Technology Beijing, Foshan, 528300, P. R. China
| | - Xiaodi Dong
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
- Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
- Shunde Graduate School of University of Science and Technology Beijing, Foshan, 528300, P. R. China
| | - Ming-Sheng Zheng
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
- Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
- Shunde Graduate School of University of Science and Technology Beijing, Foshan, 528300, P. R. China
| | - Quanliang Zhao
- School of Mechanical and Materials Engineering, North China University of Technology, Beijing, 100041, P. R. China
| | - Hongkuan Zhang
- School of Mechanical and Materials Engineering, North China University of Technology, Beijing, 100041, P. R. China
| | - George Chen
- Department of Electronics and Computer Science, University of Southampton, Southampton, SO17 1BJ, UK
| | - Jun-Wei Zha
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
- Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
- Shunde Graduate School of University of Science and Technology Beijing, Foshan, 528300, P. R. China
| |
Collapse
|
9
|
Zanon M, Montalvillo-Jiménez L, Bosch P, Cue-López R, Martínez-Campos E, Sangermano M, Chiappone A. Photocurable Thiol-yne Alginate Hydrogels for Regenerative Medicine Purposes. Polymers (Basel) 2022; 14:4709. [PMID: 36365703 PMCID: PMC9654832 DOI: 10.3390/polym14214709] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/18/2022] [Accepted: 10/27/2022] [Indexed: 04/03/2024] Open
Abstract
Every year millions of people worldwide undergo surgical interventions, with the occurrence of mild or severe post-treatment consequences meaning that rehabilitation plays a key role in modern medicine. Considering the cases of burns and plastic surgery, the pressing need for new materials that can be used for wound patches or body fillers and are able to sustain tissue regeneration and promote cell adhesion and proliferation is clear. The challenges facing next-generation implant materials also include the need for improved structural properties for cellular organization and morphogenic guidance together with optimal mechanical, rheological, and topographical behavior. Herein, we propose for the first time a sodium alginate hydrogel obtained by a thiol-yne reaction, easily synthesized using carbodiimide chemistry in a two-step reaction. The hydrogels were formed in all cases within a few minutes of light irradiation, showing good self-standing properties under solicitation. The mechanical, rheological, topographical, and swelling properties of the gels were also tested and reported. Lastly, no cytotoxicity was detected among the hydrogels. Soluble extracts in culture media allowed cell proliferation, and no differences between samples were detected in terms of metabolic activity and DNA content. These results suggest the potential use of these cytocompatible hydrogels in tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Michael Zanon
- Dipartimento di Scienza Applicata e Tecnologia, Politecnico di Torino, C.so Duca Degli Abruzzi 24, 10129 Turin, Italy
- Departamento de Química Macromolecular Aplicada, Instituto de Ciencia y Tecnología de Polímeros, Consejo Superior de Investigaciones Científicas (CSIC), C/Juan de la Cierva 3, 28006 Madrid, Spain
| | - Laura Montalvillo-Jiménez
- Departamento de Química Macromolecular Aplicada, Instituto de Ciencia y Tecnología de Polímeros, Consejo Superior de Investigaciones Científicas (CSIC), C/Juan de la Cierva 3, 28006 Madrid, Spain
| | - Paula Bosch
- Departamento de Química Macromolecular Aplicada, Instituto de Ciencia y Tecnología de Polímeros, Consejo Superior de Investigaciones Científicas (CSIC), C/Juan de la Cierva 3, 28006 Madrid, Spain
| | - Raquel Cue-López
- Departamento de Química Macromolecular Aplicada, Instituto de Ciencia y Tecnología de Polímeros, Consejo Superior de Investigaciones Científicas (CSIC), C/Juan de la Cierva 3, 28006 Madrid, Spain
- Grupo de Síntesis Orgánica y Bioevaluación, Instituto Pluridisciplinar (UCM), Unidad Asociada al Instituto de Ciencia y Tecnología de Polímeros, Instituto de Química Médica (CSIC), Paseo de Juan XXIII 1, 28040 Madrid, Spain
| | - Enrique Martínez-Campos
- Departamento de Química Macromolecular Aplicada, Instituto de Ciencia y Tecnología de Polímeros, Consejo Superior de Investigaciones Científicas (CSIC), C/Juan de la Cierva 3, 28006 Madrid, Spain
- Grupo de Síntesis Orgánica y Bioevaluación, Instituto Pluridisciplinar (UCM), Unidad Asociada al Instituto de Ciencia y Tecnología de Polímeros, Instituto de Química Médica (CSIC), Paseo de Juan XXIII 1, 28040 Madrid, Spain
| | - Marco Sangermano
- Dipartimento di Scienza Applicata e Tecnologia, Politecnico di Torino, C.so Duca Degli Abruzzi 24, 10129 Turin, Italy
| | - Annalisa Chiappone
- Dipartimento di Scienze Chimiche e Geologiche, Università Degli Studi di Cagliari, Via Università 40, 09124 Cagliari, Italy
| |
Collapse
|
10
|
Abstract
Chemical separations aiming for high-purity commodities are critical to modern society. Compared to distillation, chemical absorption, and adsorption, membrane separation is attractive for its energy efficiency, ease of operation, and compact footprint. Molecular sieve membranes (MSMs) are broadly defined as membranes that are constructed from intrinsically and artificially porous materials. On the basis of our recent studies, this Account will first summarize the evolution of MSMs from the viewpoint of dimensionality of building blocks, which fundamentally determines the stacking architectures, intercrystalline gaps, and mass transfer channels of MSMs. Intergrowth of three-dimensional (3D) crystals as primary building blocks gives rise to classical MSMs. However, the poor connection between crystals inherent to those membranes results in intercrystalline gaps that are catastrophic for separation selectivity. We adopted a variety of strategies to close the crystal boundary gaps, including microwave synthesis, electrochemical-ionothermal synthesis, and modular integration. These efforts make us better understand the structure-performance relationship in membranes and create solutions for industrial processes. Excitingly, we first scaled-up the microwave synthesis of a Linde type A (LTA) zeolite membrane and built the world's largest ethanol dehydration membrane unit with an annual capacity of 100,000 tons. MSMs can also be made of two-dimensional (2D) nanosheets as primary building blocks. Those strike a balance between permeation rate and selectivity because the nanometer thickness ensures the minimization of the mass-transfer resistance of the membrane and the layer-by-layer stacking mode can significantly reduce the intercrystalline gaps. By publishing our first report on metal-organic framework (MOF) nanosheet membranes in Science, we committed to establishing top-down and bottom-up methods for assembly of laminae. Once the stacking, orientation, and connection between the layers are meticulously controlled, nanosheet building blocks with diversity open the door for ultrapermeable and selective MSMs. We recently proposed a supramolecule array membrane (SAM) with zero-dimensional (0D) molecules as primary building blocks, which has great potential to absolutely eliminate intercrystalline gaps in membranes. In contrast to the classical transport through nanopores of membranes, selective transport through the intermolecular spacing of supramolecules is creatively realized within the SAM, which marks a new breakthrough in ultraprecise sieving of molecules with tiny differences in size and revolutionizes MSMs in regard to stacking modes, intercrystalline gaps, and transport channels. MSMs have proven to be successful in diverse applications and have triggered wide interest. A unique perspective on the dimensionality evolution of building blocks will accelerate the progress of MSMs. The synergy of multidimensional MSMs will be a positive response to fundamental bottlenecks and industrial questions of membranes and will unlock the potential of membranes to displace the existing separation technologies in the future.
Collapse
Affiliation(s)
- Yujie Ban
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China.,University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100039, China
| | - Weishen Yang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China.,University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100039, China
| |
Collapse
|