1
|
Khalid Z, Hadi F, Xie J, Chandrabose V, Oh JM. The Future of MXenes: Exploring Oxidative Degradation Pathways and Coping with Surface/Edge Passivation Approach. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2407856. [PMID: 39822135 DOI: 10.1002/smll.202407856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/15/2024] [Indexed: 01/19/2025]
Abstract
The MXene, which is usually transition metal carbide, nitride, and carbonitride, is one of the emerging family of 2D materials, exhibiting considerable potential across various research areas. Despite theoretical versatility, practical application of MXene is prohibited due to its spontaneous oxidative degradation. This review meticulously discusses the factors influencing the oxidation of MXenes, considering both thermodynamic and kinetic point of view. The potential mechanisms of oxidation are systematically introduced, based on experimental and theoretical models. Typically, the surfaces and edges of MXenes are susceptible to oxidation, as the surface terminal groups are easily attacked by oxygen and water molecules, ultimately leading to structural deformation. To retard oxidative degradation, ligand mediated surface/edge passivation is suggested as a promising strategy. In this regard, detailed passivation strategies for MXenes are systematically explained based on the types of chemistry at the MXene-ligand interface-covalent bonding, electrostatic interactions, and hydrogen bonding-and the type of stabilizing moieties-organic, inorganic, biomolecules, and polymers. The retardation of oxidation is discussed in relation with the interaction type and passivating moiety. This review aims to catalyze future research to identify efficient and cost-effective ligands for the surface engineering of MXenes, enhancing their oxidation stability.
Collapse
Affiliation(s)
- Zubair Khalid
- Department of Energy and Materials Engineering, Dongguk University-Seoul, Seoul, 04620, South Korea
| | - Farhan Hadi
- Department of Energy and Materials Engineering, Dongguk University-Seoul, Seoul, 04620, South Korea
| | - Jing Xie
- Department of Energy and Materials Engineering, Dongguk University-Seoul, Seoul, 04620, South Korea
| | - Vidya Chandrabose
- Department of Energy and Materials Engineering, Dongguk University-Seoul, Seoul, 04620, South Korea
| | - Jae-Min Oh
- Department of Energy and Materials Engineering, Dongguk University-Seoul, Seoul, 04620, South Korea
| |
Collapse
|
2
|
Zhao S, Zhang B, Li L, Zhang P, Li G, Zhu Z, Choi Y, Dong L, Luo M, Guo S. Robust I···H-O Intramolecular Halogen Bond Boosts Reversible I 3-/I - Redox Behavior for Sustainable Potassium-Iodine Batteries. J Am Chem Soc 2025; 147:669-677. [PMID: 39723906 DOI: 10.1021/jacs.4c12960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2024]
Abstract
Potassium-iodine batteries show great promise as alternatives for next-generation battery technology, owing to their high power density and environmental sustainability. Nevertheless, they suffer from polyiodide dissolution and the multistep electrode fabrication process, which leads to severe performance degradation and limitations in mass-market adoption. Herein, we report a simple "solution-adsorption" strategy for scale-up production of Ti3C2(OH)x-wrapped carbon nanotube paper (CNP), as an economic host for strengthening the iodine encapsulation. The cutting-edge characterizations and theoretical calculation results reveal that CNP exhibits great affinity to the electrochemically active I3-/I- redox couple, while the Ti-OH functional groups on MXene restrict the dissolution of polyiodides through forming the stable I···H-O intramolecular halogen bond. Benefiting from such a synergistic effect, the free-standing electrode ensures the reversible redox chemistry for developing high-performing potassium-iodine batteries. The fabricated pouch cell (100 mAh) shows a high energy density (130 Wh kg-1) with a full charge/discharge of 10 min, outperforming state-of-the-art new battery systems that require both high energy/power density. Such a potassium-iodine battery reduces the cost to 255 US$ kW h-1, which is much lower than that of the cathode materials in lithium-ion batteries and offers a sustainable option for grid-scale energy storage.
Collapse
Affiliation(s)
- Shuoqing Zhao
- School of Materials Science and Engineering, Peking University, Beijing 100871, P. R. China
- Key Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, P. R. China
| | - Bohan Zhang
- School of Materials Science and Engineering, Peking University, Beijing 100871, P. R. China
| | - Lu Li
- School of Materials Science and Engineering, Peking University, Beijing 100871, P. R. China
| | - Peng Zhang
- School of Materials Science and Engineering, Peking University, Beijing 100871, P. R. China
| | - Guohao Li
- College of Materials Science and Engineering, Hunan University, Changsha 410082, P. R. China
| | - Zhenyu Zhu
- School of Materials Science and Engineering, Peking University, Beijing 100871, P. R. China
| | - YoonJeong Choi
- School of Materials Science and Engineering, Peking University, Beijing 100871, P. R. China
| | - Liubing Dong
- College of Chemistry and Materials Science, Jinan University, Guangzhou 511443, P. R. China
| | - Mingchuan Luo
- School of Materials Science and Engineering, Peking University, Beijing 100871, P. R. China
| | - Shaojun Guo
- School of Materials Science and Engineering, Peking University, Beijing 100871, P. R. China
| |
Collapse
|
3
|
Xie G, Liao L, Wang J, Zhang P, Xu B, Xie X, Chen C, Anasori B, Zhang N. Strong support effect induced by MXene for the synthesis of metal sulfides nanosheet arrays with sulfur vacancies towards selective CO 2-to-CO photoreduction. Sci Bull (Beijing) 2024; 69:3247-3259. [PMID: 39127565 DOI: 10.1016/j.scib.2024.07.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/17/2024] [Accepted: 07/16/2024] [Indexed: 08/12/2024]
Abstract
Selective CO2-to-CO photoreduction is under intensive research and requires photocatalysts with tuned microstructures to accelerate the reaction kinetics. Here, we report CuInS2 nanosheet arrays with sulfur vacancies (VS) grown on the two-dimensional (2D) support of Ti3C2Tx MXene for CO2-to-CO photoreduction. Our results reveal that the use of Ti3C2Tx induces strong support effect, which causes the hierarchical nanosheet arrays growth of CuInS2 and simultaneously leads to charge transfer from CuInS2 to Ti3C2Tx support, resulting in VS formed in CuInS2. The strong support effect based on Ti3C2Tx is proven to be applicable to prepare a series of different metal indium sulfide arrays with VS. CuInS2 nanosheet arrays with VS supported on Ti3C2Tx benefit the photocatalytic selective reduction of CO2 to CO, manifesting a remarkable over 14.8-fold activity enhancement compared with pure CuInS2. The experimental and computational investigations pinpoint that VS of CuInS2 resulting from the support effect of Ti3C2Tx lowers the barrier of the rate-limiting step of *COOH → *OH + *CO, which is the key to the photoactivity enhancement. This work demonstrates MXene support effects and offers an effective approach to regulate the atomic microstructure of metal sulfides toward enhancing photocatalytic performance.
Collapse
Affiliation(s)
- Guanshun Xie
- College of Materials Science and Engineering, Hunan University, Changsha 410082, China
| | - Le Liao
- College of Materials Science and Engineering, Hunan University, Changsha 410082, China
| | - Jie Wang
- College of Materials Science and Engineering, Hunan University, Changsha 410082, China
| | - Peng Zhang
- Qinghai Provincial Key Laboratory of New Light Alloys, Qinghai University, Xining 810016, China
| | - Benhua Xu
- Chemical Engineering College, Qinghai University, Xining 810016, China
| | - Xiuqiang Xie
- College of Materials Science and Engineering, Hunan University, Changsha 410082, China.
| | - Chi Chen
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China.
| | - Babak Anasori
- School of Materials Engineering, School of Mechanical Engineering, Purdue University, West Lafayette 47907, USA.
| | - Nan Zhang
- College of Materials Science and Engineering, Hunan University, Changsha 410082, China.
| |
Collapse
|
4
|
Xia Y, Yu F, Nie D, Jiang Y, Sun M, Que L, Deng L, Zhao L, Zhang Q, Wang Z. Unlocking Fast Potassium Ion Kinetics: High-Rate and Long-Life Potassium Dual-Ion Battery for Operation at -60 °C. Angew Chem Int Ed Engl 2024; 63:e202406765. [PMID: 39031871 DOI: 10.1002/anie.202406765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/18/2024] [Accepted: 06/20/2024] [Indexed: 07/22/2024]
Abstract
Energy storage devices operating at low temperatures are plagued by sluggish kinetics, reduced capacity, and notorious dendritic growth. Herein, novel potassium dual-ion batteries (PDIBs) capable of superior performance at -60 °C, and fabricated by combining MXenes and polytriphenylamine (PTPAn) as the anode and cathode, respectively, are presented. Additionally, the reason for the anomalous kinetics of K+ (faster at low temperature than at room temperature) on the Ti3C2 anode is investigated. Theoretical calculations, crossover experiments, and in situ XRD at room and low temperatures revealed that K+ tends to bind with solvent molecules rather than anions at subzero temperatures, which not only inhibits the participation of PF6 - in the formation of the solid electrolyte interphase (SEI), but also guarantees co-intercalation behavior and suppresses undesirable K+ storage. The advantageous properties at low temperatures endow the Ti3C2 anode with fast K+ kinetics to unlock the outstanding performance of PDIB at ultralow temperatures. The PDIBs exhibit superior rate capability and high capacity retention at -40 °C and -60 °C. Impressively, after charging-discharging for 20,000 cycles at -60 °C, the PDIB retained 86.7 % of its initial capacity. This study reveals the influence of temperatures on MXenes and offers a unique design for dual-ion batteries operating at ultralow temperatures.
Collapse
Affiliation(s)
- Yang Xia
- State Key Laboratory of Space Power-Sources, MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Fuda Yu
- Engineering Research Center of Environment-Friendly Functional Materials, Ministry of Education, Institute of Materials Physical Chemistry, Huaqiao University, Xiamen, 361021, China
| | - Dan Nie
- College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518071, China
| | - Yunshan Jiang
- State Key Laboratory of Space Power-Sources, MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Meiyan Sun
- State Key Laboratory of Space Power-Sources, MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Lanfang Que
- Engineering Research Center of Environment-Friendly Functional Materials, Ministry of Education, Institute of Materials Physical Chemistry, Huaqiao University, Xiamen, 361021, China
| | - Liang Deng
- State Key Laboratory of Space Power-Sources, MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Lei Zhao
- State Key Laboratory of Space Power-Sources, MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Qianyu Zhang
- College of Materials Science and Engineering, Sichuan University, Chengdu, 610064, China
| | - Zhenbo Wang
- State Key Laboratory of Space Power-Sources, MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
- College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518071, China
| |
Collapse
|
5
|
Shi H, Wang C, Wang J, Wang D, Xiong Z, Wang Z, Wang Z, Bai Z, Gao Y, Yan X. Design of dual carbon encapsulated porous micron silicon composite with compact surface for enhanced reaction kinetics of lithium-ion battery anodes. J Colloid Interface Sci 2024; 668:459-470. [PMID: 38691956 DOI: 10.1016/j.jcis.2024.04.174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/22/2024] [Accepted: 04/24/2024] [Indexed: 05/03/2024]
Abstract
Developing high-performance composites with fast charging and superior cycle life is paramount for lithium-ion batteries (LIBs). Herein, we synthesized a double-shell carbon-coated porous structure composite with a compact surface (P-Si@rGO@C) using low-cost commercial micron-sized silicon (Si) instead of nanoscale silicon. Results reveal that the unique P-Si@rGO@C features high adaptability to volume expansion, accelerates electron/ion transmission rate, and forms a stable solid electrolyte interphase (SEI) film. This phenomenon arises from the synergistic effect of abundant internal voids and an external double-layer carbon shell with a dense surface. Specifically, the P-Si@rGO@C anode exhibits a high initial coulombic efficiency (ICE) (88.0 %), impressive rate-capability (612.1 mAh/g at 2C), and exceptional long-term cyclability (972.2 mAh/g over 500 cycles at 0.5C). Further kinetic studies elucidate the diffusion-capacitance hybrid energy storage mechanism and reveal an improved Li+ diffusion coefficient (from 3.47 × 10-11 to 2.85 × 10-9 cm2 s-1). Ex-situ characterization confirms the crystal phase change of micron-sized Si and the formation of a stable LiF-rich SEI. Theoretical calculations support these findings by demonstrating an enhancement in the adsorption ability of Si to Li+ (from -0.89 to -0.97 eV) and a reduction in the energy migration barrier (from 0.35 to 0.18 eV). Additionally, practical LixSi powder is shown to increase the ICE of full cells from 67.4 % to 87.9 %. Furthermore, a pouch cell utilizing the prelithiated P-Si@rGO@C anode paired with LiNi1/3Co1/3Mn1/3O2 (NCM111) cathode delivers a high initial reversible capacity of 7.2 mAh and 76.8 % capacity retention after 100 cycles. This work provides insights into the application of commercial silicon-aluminum alloy powder in the anode of high-energy LIBs.
Collapse
Affiliation(s)
- Haofeng Shi
- School of Materials Science and Engineering, University of Science and Technology, Beijing 100083, China
| | - Chengdeng Wang
- School of Materials Science and Engineering, University of Science and Technology, Beijing 100083, China
| | - Jiashuai Wang
- School of Materials Science and Engineering, University of Science and Technology, Beijing 100083, China
| | - Donghua Wang
- Institute of Carbon Neutrality and New Energy, School of Electronics and Information, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Zhihao Xiong
- School of Materials Science and Engineering, University of Science and Technology, Beijing 100083, China
| | - Zhaokun Wang
- School of Materials Science and Engineering, University of Science and Technology, Beijing 100083, China
| | - Zhi Wang
- School of Materials Science and Engineering, University of Science and Technology, Beijing 100083, China
| | - Zhiming Bai
- School of Civil and Resource Engineering, University of Science and Technology, Beijing 100083, China
| | - Yan Gao
- Laboratory of Nanosystem and Hierarchy Fabrication, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Xiaoqin Yan
- School of Materials Science and Engineering, University of Science and Technology, Beijing 100083, China.
| |
Collapse
|
6
|
Huang X, Gao J, Qin Y, Du D, Liu R, Shi Y, Wang C, Zhang Z, Zhang J, Sun J, Li T, Yin L, Wang R. Revealing the Effect of the Microstructure on Potassium Storage Behavior in a Two-Dimensional Mesoporous Carbon Anode. ACS NANO 2024. [PMID: 39088247 DOI: 10.1021/acsnano.4c06200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
Hard carbon is considered as the most promising anode material for potassium-ion energy storage devices. Substantial progress has been made in exploring advanced hard carbons to solve the issues of sluggish kinetics and large volume changes caused by the large radius of K+. However, the relationship between their complicated microstructures and the K+ charge storage behavior is still not fully explored. Herein, a series of two-dimensional mesoporous carbon microcoins (2D-MCMs) with tunable microstructures in heteroatom content and graphitization degree are synthesized by a facile hard-template method and follow a temperature-controllable annealing process. It is found that high heteroatom content makes for surface-driven K+ storage behavior, which increases the capacity-contribution ratio from a high potential region, while a high graphitization degree makes for K+ intercalation behavior, which increases the capacity-contribution ratio from a low potential region. Electrochemical results from a three-electrode Swagelok cell demonstrate that a 2D-MCM anode with more capacity contribution from a low working region allows the porous carbon cathode to be operated in a much wider electrochemical window, thus storing more charge. As a result, potassium-ion capacitors based on the optimized 2D-MCM anode deliver a high energy density of 113 Wh kg-1 and an exhilarating power density of 51,000 W kg-1.
Collapse
Affiliation(s)
- Xinli Huang
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, School of Materials Science and Engineering, Shandong University, Ji'nan 250061, China
| | - Jing Gao
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, School of Materials Science and Engineering, Shandong University, Ji'nan 250061, China
| | - Yuying Qin
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, School of Materials Science and Engineering, Shandong University, Ji'nan 250061, China
| | - Danni Du
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, School of Materials Science and Engineering, Shandong University, Ji'nan 250061, China
| | - Renbo Liu
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, School of Materials Science and Engineering, Shandong University, Ji'nan 250061, China
| | - Yuanchang Shi
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, School of Materials Science and Engineering, Shandong University, Ji'nan 250061, China
| | - Chengxiang Wang
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, School of Materials Science and Engineering, Shandong University, Ji'nan 250061, China
| | - Zhiwei Zhang
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, School of Materials Science and Engineering, Shandong University, Ji'nan 250061, China
| | - Jing Zhang
- Shandong Key Laboratory for Special Silicon-containing Material Advanced Materials Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Jinfeng Sun
- School of Material Science & Engineering, University of Jinan, Jinan 250024, China
| | - Tao Li
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, School of Materials Science and Engineering, Shandong University, Ji'nan 250061, China
| | - Longwei Yin
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, School of Materials Science and Engineering, Shandong University, Ji'nan 250061, China
| | - Rutao Wang
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, School of Materials Science and Engineering, Shandong University, Ji'nan 250061, China
| |
Collapse
|
7
|
Zhao S, Li G, Zhang B, Zhang S, Liu Y, Zhou J, Luo M, Guo S. Highly-Solvating Electrolyte Enables Mechanically Stable and Inorganic-Rich Cathode Electrolyte Interphase for High-Performing Potassium-Ion Batteries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2405184. [PMID: 38777567 DOI: 10.1002/adma.202405184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/13/2024] [Indexed: 05/25/2024]
Abstract
Cathode-electrolyte interphase (CEI) is crucial for the reversibility of rechargeable batteries, yet receives less attention compared to solid-electrolyte interphase (SEI). The prevalent weakly-solvating electrolyte is usually proposed from the standing point of obtaining robust SEI, however, the resultant weak ion-solvent interaction gives rise to excessive free solvents and forms thick CEI with high kinetic barriers, which is disadvantageous for interfacial stability at the high working voltage. Herein, a highly-solvating electrolyte is reported to immobilize free solvents by generating stable ternary complexes and facilitate the growth of homogeneous and ultrathin CEI to boost the electrochemical performances of potassium-ion batteries (PIBs). Through time-of-flight secondary ion mass spectrometry and cryogenic transmission electron microscopy, It is revealed that the deliberately coordinated complexes are the key to forming mechanically stable and inorganic-rich CEI with superior diffusion kinetics for high-performing PIBs. Coupling with a K0.5MnO2 cathode and a soft carbon (SC) anode, a high energy density (202.3 Wh kg-1) is achieved with an exceptional cycle lifespan (92.5% capacity retention after 500 cycles) in a SC||K0.5MnO2 full cell, setting new performance benchmarks for PIBs.
Collapse
Affiliation(s)
- Shuoqing Zhao
- School of Materials Science and Engineering, College of Engineering, Peking University, Beijing, 100871, P. R. China
| | - Guohao Li
- College of Materials Science and Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Bohan Zhang
- School of Materials Science and Engineering, College of Engineering, Peking University, Beijing, 100871, P. R. China
| | - Shipeng Zhang
- School of Materials Science and Engineering, College of Engineering, Peking University, Beijing, 100871, P. R. China
| | - Youxing Liu
- School of Materials Science and Engineering, College of Engineering, Peking University, Beijing, 100871, P. R. China
| | - Jinhui Zhou
- School of Materials Science and Engineering, College of Engineering, Peking University, Beijing, 100871, P. R. China
| | - Mingchuan Luo
- School of Materials Science and Engineering, College of Engineering, Peking University, Beijing, 100871, P. R. China
| | - Shaojun Guo
- School of Materials Science and Engineering, College of Engineering, Peking University, Beijing, 100871, P. R. China
| |
Collapse
|
8
|
Qin M, Yao Y, Chen C, Zhu K, Wang G, Cao D, Yan J. Regulating nitrogen/sulfur terminals on 3D porous Ti 3C 2 MXene with enhanced reaction kinetics toward high-performance alkali metal ion storage. J Colloid Interface Sci 2024; 665:742-751. [PMID: 38554464 DOI: 10.1016/j.jcis.2024.03.179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/22/2024] [Accepted: 03/26/2024] [Indexed: 04/01/2024]
Abstract
In this paper, we have developed a simple and efficient sulfur-amine chemistry strategy to prepare a three-dimensional (3D) porous Ti3C2Tx composite with large amounts of N and S terminal groups. The well-designed 3D macroporous architecture presents enlarged interlayer spacing, large specific surface area, and unique porous structure, which successfully solves the re-stacking issue of MXene during storage and electrode fabrication. It is the amount of concentrated hydrochloric acid added to the S-EDA (ethylenediamine)/MXene colloidal suspension that is critical to the formation of 3D morphology. In addition, N and S terminals on MXene could improve the adsorption ability of K+. Owing to the synergistic effect of the structure design and terminal modification, the N, S codoped three-dimensional porous Ti3C2Tx (3D-NSPM) material shows a high surface capacitive contribution and rapid diffusion kinetics for K+ and Na+. As a result, the as-prepared 3D-NSPM delivers high reversible capacity (237 and 273 mAh g-1 at 0.1 A g-1 for PIBs and SIBs, respectively), superb cycling stability (84.9% capacity retention after 10,000 cycles at 1 A g-1 in PIBs and 74.0% capacity retention after 2200 cycles at 1 A g-1 in SIBs), and excellent rate capability (111 and 196 mAh g-1 at 5 A g-1 for PIBs and SIBs, respectively), which are superior to other MXene-based anodes for PIBs and SIBs. Moreover, the described strategy provides a new insight for constructing the 3D porous structure from 2D building blocks beyond MXene.
Collapse
Affiliation(s)
- Meng Qin
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China
| | - Yiwei Yao
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China
| | - Chi Chen
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, and Xiamen Institute of Rare Earth Materials, Haixi Institute, Chinese Academy of Sciences, Xiamen 361021, China
| | - Kai Zhu
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China
| | - Guiling Wang
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China
| | - Dianxue Cao
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China
| | - Jun Yan
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China; State Key Laboratory of Organic-Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|
9
|
Zhou S, Zhang P, Li Y, Feng L, Xu M, Soomro RA, Xu B. Ultrastable Organic Anode Enabled by Electrochemically Active MXene Binder toward Advanced Potassium Ion Storage. ACS NANO 2024; 18:16027-16040. [PMID: 38833556 DOI: 10.1021/acsnano.4c04678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
Conjugated carbonyl compounds are regarded as promising organic anode materials for potassium ion batteries (PIBs) due to their rich redox sites, excellent reversibility, and structural tunability, but their low electrical conductivity and severe solubility in organic electrolytes have substantially restricted their practical application. Herein, 2D MXene is utilized as an electrochemically active binder to fabricate perylene-3,4,9,10-tetracarboxylic dianhydride (PTCDA) electrodes for high-performance PIBs. MXene, coupled with Super-P particles, served as a binder and conductive matrix to facilitate rapid ion and electron transport, restrain the solubility of PTCDA, promote potassium adsorption, and alleviate the volume expansion of PTCDA during potassiation. Consequently, the PTCDA electrode bonded by the MXene/Super-P system delivers excellent potassium storage performance in terms of a high capacity of 462 mAh g-1 at 50 mA g-1, superior rate capability of 116.3 mAh g-1 at 2000 mA g-1, and stable cycle performance over 3000 cycles with a low capacity decay rate of ∼0.0033% per cycle. When configured with the PTCDA@450 cathode, an all-PTCDA potassium ion full cell delivers a maximum energy density of 179.5 Wh kg-1, indicating the superiority of MXene as an electrochemically active binder to promote the practical application of organic anodes for PIBs.
Collapse
Affiliation(s)
- Shujie Zhou
- State Key Laboratory of Organic-Inorganic Composites, Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Peng Zhang
- State Key Laboratory of Organic-Inorganic Composites, Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing 100029, China
- Henan Key Laboratory of Quantum Materials and Quantum Energy, School of Quantum Information Future Technology, Henan University, Zhengzhou 450046, China
| | - Yanze Li
- State Key Laboratory of Organic-Inorganic Composites, Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Lingfei Feng
- State Key Laboratory of Organic-Inorganic Composites, Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Mengyao Xu
- State Key Laboratory of Organic-Inorganic Composites, Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Razium A Soomro
- State Key Laboratory of Organic-Inorganic Composites, Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Bin Xu
- State Key Laboratory of Organic-Inorganic Composites, Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing 100029, China
- Shaanxi Key Laboratory of Chemical Reaction Engineering, School of Chemistry and Chemical Engineering, Yan'an University, Yan'an 716000, China
| |
Collapse
|
10
|
Zhu Y, Ma J, Das P, Wang S, Wu ZS. High-Voltage MXene-Based Supercapacitors: Present Status and Future Perspectives. SMALL METHODS 2023; 7:e2201609. [PMID: 36703554 DOI: 10.1002/smtd.202201609] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 12/30/2022] [Indexed: 06/18/2023]
Abstract
As an emerging class of 2D materials, MXene exhibits broad prospects in the field of supercapacitors (SCs). However, the working voltage of MXene-based SCs is relatively limited (typically ≤ 0.6 V) due to the oxidation of MXene electrode and the decomposition of electrolyte, ultimately leading to low energy density of the device. To solve this issue, high-voltage MXene-based electrodes and corresponding matchable electrolytes are developed urgently to extend the voltage window of MXene-based SCs. Herein, a comprehensive overview and systematic discussion regarding the effects of electrolytes (aqueous, organic, and ionic liquid electrolytes), asymmetric device configuration, and material modification on the operating voltage of MXene-based SCs, is presented. A deep dive is taken into the latest advances in electrolyte design, structure regulation, and high-voltage mechanism of MXene-based SCs. Last, the future perspectives on high-voltage MXene-based SCs and their possible development directions are outlined and discussed in depth, providing new insights for the rational design and realization of advanced next-generation MXene-based electrodes and high-voltage electrolytes.
Collapse
Affiliation(s)
- Yuanyuan Zhu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
- Key Laboratory of Spin Electron and Nanomaterials of Anhui Higher Education Institutes, Suzhou University, Suzhou, 234000, China
| | - Jiaxin Ma
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, 19 A Yuquan Road, Shijingshan District, Beijing, 100049, China
| | - Pratteek Das
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Sen Wang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Zhong-Shuai Wu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
- Dalian National Laboratory for Clean Energy, Chinese Academy of Sciences, Dalian, 116023, China
| |
Collapse
|
11
|
Dubey P. A comprehensive overview of MXene‐based anode materials for univalent metal ions (Li
+
, Na
+
, and K
+
) and bivalent zinc ion capacitor application. ChemistrySelect 2023. [DOI: 10.1002/slct.202300018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
Affiliation(s)
- Prashant Dubey
- Centre of Material Sciences Institute of Interdisciplinary Studies (IIDS) University of Allahabad Prayagraj 211002 Uttar Pradesh India
| |
Collapse
|
12
|
Li Y, Huang S, Peng S, Jia H, Pang J, Ibarlucea B, Hou C, Cao Y, Zhou W, Liu H, Cuniberti G. Toward Smart Sensing by MXene. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206126. [PMID: 36517115 DOI: 10.1002/smll.202206126] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/17/2022] [Indexed: 06/17/2023]
Abstract
The Internet of Things era has promoted enormous research on sensors, communications, data fusion, and actuators. Among them, sensors are a prerequisite for acquiring the environmental information for delivering to an artificial data center to make decisions. The MXene-based sensors have aroused tremendous interest because of their extraordinary performances. In this review, the electrical, electronic, and optical properties of MXenes are first introduced. Next, the MXene-based sensors are discussed according to the sensing mechanisms such as electronic, electrochemical, and optical methods. Initially, biosensors are introduced based on chemiresistors and field-effect transistors. Besides, the wearable pressure sensor is demonstrated with piezoresistive devices. Third, the electrochemical methods include amperometry and electrochemiluminescence as examples. In addition, the optical approaches refer to surface plasmonic resonance and fluorescence resonance energy transfer. Moreover, the prospects are delivered of multimodal data fusion toward complicated human-like senses. Eventually, future opportunities for MXene research are conveyed in the new material discovery, structure design, and proof-of-concept devices.
Collapse
Affiliation(s)
- Yufen Li
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Jinan, 250022, China
| | - Shirong Huang
- Institute for Materials Science and Max Bergmann Center of Biomaterials, Technische Universität Dresden, 01069, Dresden, Germany
- Center for Advancing Electronics Dresden, Technische Universität Dresden, 01069, Dresden, Germany
| | - Songang Peng
- High-Frequency High-Voltage Device and Integrated Circuits R&D Center, Institute of Microelectronics, Chinese Academy of Sciences, Beijing, 100029, China
- Key Laboratory of Microelectronic Devices and Integrated Technology, Institute of Microelectronics, Chinese Academy of Sciences, Beijing, 100029, China
| | - Hao Jia
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China
| | - Jinbo Pang
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Jinan, 250022, China
| | - Bergoi Ibarlucea
- Institute for Materials Science and Max Bergmann Center of Biomaterials, Technische Universität Dresden, 01069, Dresden, Germany
- Center for Advancing Electronics Dresden, Technische Universität Dresden, 01069, Dresden, Germany
| | - Chongyang Hou
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Jinan, 250022, China
| | - Yu Cao
- Key Laboratory of Modern Power System Simulation and Control and Renewable Energy Technology (Ministry of Education), Northeast Electric Power University, Jilin, 132012, China
- School of Electrical Engineering, Northeast Electric Power University, Jilin, 132012, China
| | - Weijia Zhou
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Jinan, 250022, China
| | - Hong Liu
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Jinan, 250022, China
- State Key Laboratory of Crystal Materials, Center of Bio and Micro/Nano Functional Materials, Shandong University, 27 Shandanan Road, Jinan, 250100, China
| | - Gianaurelio Cuniberti
- Institute for Materials Science and Max Bergmann Center of Biomaterials, Technische Universität Dresden, 01069, Dresden, Germany
- Center for Advancing Electronics Dresden, Technische Universität Dresden, 01069, Dresden, Germany
- Dresden Center for Computational Materials Science, Technische Universität Dresden, 01062, Dresden, Germany
- Dresden Center for Intelligent Materials (GCL DCIM), Technische Universität Dresden, 01062, Dresden, Germany
| |
Collapse
|
13
|
Liu Y, Liu Q, Liu X, Zhao C, Su R, Luo X, Liu Z, Ying A. Russian-Doll-Like Porous Carbon as Anode Materials for High-Performance Potassium-Ion Hybrid Capacitors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206895. [PMID: 36567429 DOI: 10.1002/smll.202206895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/06/2022] [Indexed: 06/17/2023]
Abstract
Pore-structure design with the sophisticated and pragmatic nanostructures still remains a great challenge. In this work, porous carbon with Russian-doll-like pores rather than traditional single modal is fabricated via a boiling carbonization approach, accompanied by K+ -pre-intercalation. The most important internal factor is that alkali can penetrate into the stereoscopic space of layered Malonic acid dihydrazide and the confinement effect leads to the in-depth development of different dimensional pore structures. The oxygenated and nitrogenated surface guarantees the K+ intercalation behavior. Benefiting from their open framework and enlarged interlayer spacing, K+ -pre-intercalated porous carbon with Russian-doll-like pores (denoted as KPCRPs) as anode material exhibits promising potassium storage performance. The assembled KPCRP//activated carbon potassium-ion hybrid supercapacitor in 30 m CH3 COOK displays a high energy density of 157.29 Wh kg-1 , an ultrahigh power output of 14 kW kg-1 , and a long cycling life (99.58% capacity retention after 10000 cycles), highlighting the superiority of Russian-doll-like pore structure. This work sheds light on the designing of 3D pores structure, especially for multimodal pore architectures.
Collapse
Affiliation(s)
- Yujing Liu
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165, P. R. China
- Key Laboratory of Life-Organic Analysis of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165, P. R. China
| | - Qi Liu
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165, P. R. China
| | - Xiaohui Liu
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165, P. R. China
| | - Chengyao Zhao
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165, P. R. China
| | - Ruizhi Su
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165, P. R. China
| | - Xinwei Luo
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165, P. R. China
| | - Zhongqiu Liu
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165, P. R. China
- Key Laboratory of Life-Organic Analysis of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165, P. R. China
| | - Anguo Ying
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165, P. R. China
- Key Laboratory of Life-Organic Analysis of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165, P. R. China
| |
Collapse
|
14
|
Qian Y, Wu B, Li Y, Pan Z, Feng S, Lin N, Qian Y. Integrating Chemical Pre-Potassiation with Pre-Modulated KF-Rich Electrolyte Interfaces for Dual-Carbon Potassium Ion Hybrid Capacitor. Angew Chem Int Ed Engl 2023; 62:e202217514. [PMID: 36622790 DOI: 10.1002/anie.202217514] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/08/2023] [Accepted: 01/09/2023] [Indexed: 01/10/2023]
Abstract
Herein, a chemical pre-potassiation strategy via simultaneously treating both glucose derived carbon (GDC) anode and commercial activated carbon (CAC) cathode in potassium-naphthalene-tetrahydrofuran solution is developed for potassium ion hybrid capacitor (PIHC). Combined with in situ and ex situ characterizations, a radical reaction between pre-potassiation reagent and carbon electrodes is confirmed, which not only deactivates electrochemical irreversible sites, but also promotes to pre-form a uniform and dense KF-rich electrolyte film on the electrodes. As a result, the pre-potassiation treatment presents multiple advantages: (I) the initial Coulombic efficiency (CE) of the GDC anode increases from 45.4 % to 84.0 % with higher rate capability; (II) the CAC cathode exhibits the improved cycling CEs and stability due to the enhanced resistance to electrolyte oxidation at 4.2 V; (III) the assembled PIHC achieves a high energy density of 172.5 Wh kg-1 with cycling life over 10000 cycles.
Collapse
Affiliation(s)
- Yong Qian
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Applied Chemistry, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Bei Wu
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Applied Chemistry, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Yang Li
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Applied Chemistry, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Zhen Pan
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Applied Chemistry, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Shuai Feng
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Applied Chemistry, University of Science and Technology of China, Hefei, 230026, P. R. China.,College of Chemistry and Chemical Engineering, Taishan University, Shandong, 271021, P. R. China
| | - Ning Lin
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Applied Chemistry, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Yitai Qian
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Applied Chemistry, University of Science and Technology of China, Hefei, 230026, P. R. China
| |
Collapse
|
15
|
Wu M, Zheng W, Hu X, Zhan F, He Q, Wang H, Zhang Q, Chen L. Exploring 2D Energy Storage Materials: Advances in Structure, Synthesis, Optimization Strategies, and Applications for Monovalent and Multivalent Metal-Ion Hybrid Capacitors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2205101. [PMID: 36285775 DOI: 10.1002/smll.202205101] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/17/2022] [Indexed: 06/16/2023]
Abstract
The design and development of advanced energy storage devices with good energy/power densities and remarkable cycle life has long been a research hotspot. Metal-ion hybrid capacitors (MHCs) are considered as emerging and highly prospective candidates deriving from the integrated merits of metal-ion batteries with high energy density and supercapacitors with excellent power output and cycling stability. The realization of high-performance MHCs needs to conquer the inevitable imbalance in reaction kinetics between anode and cathode with different energy storage mechanisms. Featured by large specific surface area, short ion diffusion distance, ameliorated in-plane charge transport kinetics, and tunable surface and/or interlayer structures, 2D nanomaterials provide a promising platform for manufacturing battery-type electrodes with improved rate capability and capacitor-type electrodes with high capacity. In this article, the fundamental science of 2D nanomaterials and MHCs is first presented in detail, and then the performance optimization strategies from electrodes and electrolytes of MHCs are summarized. Next, the most recent progress in the application of 2D nanomaterials in monovalent and multivalent MHCs is dealt with. Furthermore, the energy storage mechanism of 2D electrode materials is deeply explored by advanced characterization techniques. Finally, the opportunities and challenges of 2D nanomaterials-based MHCs are prospected.
Collapse
Affiliation(s)
- Mengcheng Wu
- Department of Applied Chemistry, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 401331, P. R. China
| | - Wanying Zheng
- Department of Applied Chemistry, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 401331, P. R. China
| | - Xi Hu
- Department of Applied Chemistry, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 401331, P. R. China
| | - Feiyang Zhan
- Department of Applied Chemistry, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 401331, P. R. China
| | - Qingqing He
- Department of Applied Chemistry, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 401331, P. R. China
| | - Huayu Wang
- Department of Applied Chemistry, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 401331, P. R. China
| | - Qichun Zhang
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong S.A.R., 999077, P. R. China
| | - Lingyun Chen
- Department of Applied Chemistry, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 401331, P. R. China
| |
Collapse
|
16
|
Zhao X, Wang X, Sun M, Guo J, Zhou H, Wu M. Design of a specific two–dimensional layered V2C counter electrode for highly effective and stable rigid and flexible quasi–solid–state dye–sensitized solar cells. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
17
|
Xu H, Li M, Gong S, Zhao F, Zhao Y, Li C, Qi J, Wang Z, Wang H, Fan X, Peng W, Liu J. Constructing titanium carbide MXene/reduced graphene oxide superlattice heterostructure via electrostatic self-assembly for high-performance capacitive deionization. J Colloid Interface Sci 2022; 624:233-241. [PMID: 35660891 DOI: 10.1016/j.jcis.2022.05.131] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 05/16/2022] [Accepted: 05/22/2022] [Indexed: 12/25/2022]
Abstract
Capacitive deionization has attracted wide concern on accountof its high energy efficiency, low manufacturing cost and environmental friendliness. Nevertheless, the development of capacitive deionization is still impeded because of the scarcity of suitable electrode materials with superior performance. Herein, we successfully prepared the two-dimensional (2D) titanium carbide (Ti3C2Tx) MXene/ reduced graphene oxide (rGO) superlattice heterostructure by a facile electrostatic self-assembly strategy and systematically investigated its performance as capacitive deionized electrode materials. The unique 2D/2D superlattice heterostructure not only effectively alleviates the self-stacking problem of Ti3C2Tx MXene nanosheets, but also endows the heterostructure with superior conductivity and fast ion diffusion rate. As a result, the MXene/rGO superlattice heterostructure exhibits an outstanding salt (Na+) adsorption capacity (48 mg g-1) at 1.2 V significantly superior to pristine Ti3C2Tx MXene nanosheets, along with outstanding long-term cycling performance. Furthermore, the mechanism involved was elucidated through comprehensive characterizations. Therefore, this study offers a new pathway for designing high-performance electrode materials for capacitive deionization.
Collapse
Affiliation(s)
- Huiting Xu
- School of Chemical Engineering and Technology, National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, Hebei University of Technology, Tianjin 300130, China
| | - Meng Li
- School of Chemical Engineering and Technology, National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, Hebei University of Technology, Tianjin 300130, China
| | - Siqi Gong
- School of Chemical Engineering and Technology, National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, Hebei University of Technology, Tianjin 300130, China
| | - Fan Zhao
- School of Chemical Engineering and Technology, National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, Hebei University of Technology, Tianjin 300130, China
| | - Yang Zhao
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Chunli Li
- School of Chemical Engineering and Technology, National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, Hebei University of Technology, Tianjin 300130, China
| | - Junjie Qi
- School of Chemical Engineering and Technology, National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, Hebei University of Technology, Tianjin 300130, China
| | - Zhiying Wang
- School of Chemical Engineering and Technology, National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, Hebei University of Technology, Tianjin 300130, China
| | - Honghai Wang
- School of Chemical Engineering and Technology, National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, Hebei University of Technology, Tianjin 300130, China.
| | - Xiaobin Fan
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Wenchao Peng
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Jiapeng Liu
- School of Chemical Engineering and Technology, National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, Hebei University of Technology, Tianjin 300130, China.
| |
Collapse
|
18
|
Long Y, Tao Y, Shang T, Yang H, Sun Z, Chen W, Yang Q. Roles of Metal Ions in MXene Synthesis, Processing and Applications: A Perspective. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2200296. [PMID: 35218319 PMCID: PMC9036030 DOI: 10.1002/advs.202200296] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 02/03/2022] [Indexed: 05/29/2023]
Abstract
With a decade of effort, significant progress has been achieved in the synthesis, processing, and applications of MXenes. Metal ions play many crucial roles, such as in MXene delamination, structure regulation, surface modification, MXene composite construction, and even some unique applications. The different roles of metal ions are attributed to their many interactions with MXenes and the unique nature of MXenes, including their layered structure, surface chemistry, and the existence of multi-valent transition metals. Interactions with metal ions are crucial for the energy storage of MXene electrodes, especially in metal ion batteries and supercapacitors with neutral electrolytes. This review aims to provide a good understanding of the interactions between metal ions and MXenes, including the classification and fundamental chemistry of their interactions, in order to achieve their more effective utilization and rational design. It also provides new perspectives on MXene evolution and exfoliation, which may suggest optimized synthesis strategies. In this respect, the different effects of metal ions on MXene synthesis and processing are clarified, and the corresponding mechanisms are elaborated. Research progress on the roles metal ions have in MXene applications is also introduced.
Collapse
Affiliation(s)
- Yu Long
- Joint School of National University of Singapore and Tianjin UniversityInternational Campus of Tianjin UniversityBinhai New CityFuzhou350207China
- Department of ChemistryNational University of Singapore3 Science Drive 3Singapore117543Singapore
| | - Ying Tao
- Nanoyang GroupState Key Laboratory of Chemical EngineeringSchool of Chemical Engineering and TechnologyTianjin UniversityTianjin300072China
| | - Tongxin Shang
- Key Laboratory of Resource Chemistry of Ministry of EducationShanghai Key Laboratory of Rare Earth Functional MaterialsDepartment of ChemistryShanghai Normal UniversityShanghai200234China
| | - Haotian Yang
- Joint School of National University of Singapore and Tianjin UniversityInternational Campus of Tianjin UniversityBinhai New CityFuzhou350207China
- Department of ChemistryNational University of Singapore3 Science Drive 3Singapore117543Singapore
| | - Zejun Sun
- Department of ChemistryNational University of Singapore3 Science Drive 3Singapore117543Singapore
| | - Wei Chen
- Joint School of National University of Singapore and Tianjin UniversityInternational Campus of Tianjin UniversityBinhai New CityFuzhou350207China
- Department of ChemistryNational University of Singapore3 Science Drive 3Singapore117543Singapore
- Department of PhysicsNational University of Singapore2 Science Drive 3Singapore117542Singapore
| | - Quan‐Hong Yang
- Joint School of National University of Singapore and Tianjin UniversityInternational Campus of Tianjin UniversityBinhai New CityFuzhou350207China
- Nanoyang GroupState Key Laboratory of Chemical EngineeringSchool of Chemical Engineering and TechnologyTianjin UniversityTianjin300072China
| |
Collapse
|
19
|
Guo X, Gao H, Wang S, Yang G, Zhang X, Zhang J, Liu H, Wang G. MXene-Based Aerogel Anchored with Antimony Single Atoms and Quantum Dots for High-Performance Potassium-Ion Batteries. NANO LETTERS 2022; 22:1225-1232. [PMID: 35044774 DOI: 10.1021/acs.nanolett.1c04389] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Rationally electronic structure engineering of nanocomposite electrodes shows great promise for enhancing the electrochemical performance of rechargeable batteries. Herein, we report antimony single atoms and quantum dots (∼5 nm) codecorated Ti3C2Tx MXene-based aerogels (Sb SQ@MA) for high-performance potassium-ion batteries (PIBs). We found that the atomically dispersed Sb could modify the electronic structure of the Sb/Ti3C2Tx composite, improve the charge transfer kinetics, and enhance the potassium storage capability at the heterointerfaces. Additionally, the MXene-based aerogel with rich surface functional groups and defects provides abundant anchoring sites and endows the composite reinforced structural stability and highly efficient electron transfer. The high loading of Sb (∼60.3 wt %) with short ionic transport pathways is desired potassium reservoirs. These features synergistically enhance the rate and cycling performance of the Sb SQ@MA electrodes in PIBs. This work has demonstrated an enlightening technique to tailor the interface activity of heterostructured electrodes for electrochemical applications.
Collapse
Affiliation(s)
- Xin Guo
- Centre for Clean Energy Technology, School of Mathematics and Physics, Faculty of Science, University of Technology Sydney, Broadway, Sydney NSW 2007, Australia
| | - Hong Gao
- Joint International Laboratory on Environmental and Energy Frontier Materials, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Shijian Wang
- Centre for Clean Energy Technology, School of Mathematics and Physics, Faculty of Science, University of Technology Sydney, Broadway, Sydney NSW 2007, Australia
| | - Guang Yang
- College of Physical Science and Technology, Yangzhou University, Yangzhou 225002, China
| | - Xiuyun Zhang
- College of Physical Science and Technology, Yangzhou University, Yangzhou 225002, China
| | - Jinqiang Zhang
- Centre for Clean Energy Technology, School of Mathematics and Physics, Faculty of Science, University of Technology Sydney, Broadway, Sydney NSW 2007, Australia
| | - Hao Liu
- Centre for Clean Energy Technology, School of Mathematics and Physics, Faculty of Science, University of Technology Sydney, Broadway, Sydney NSW 2007, Australia
| | - Guoxiu Wang
- Centre for Clean Energy Technology, School of Mathematics and Physics, Faculty of Science, University of Technology Sydney, Broadway, Sydney NSW 2007, Australia
| |
Collapse
|
20
|
Liu Z, Zhao S, Li G, Chen C, Xie X, Wu Z, Zhang N. Stabilizing BiOCl/Ti3C2Tx Hybrids for Potassium-Ion Batteries via Solid Electrolyte Interphase Reconstruction. Inorg Chem Front 2022. [DOI: 10.1039/d2qi00640e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The synergistic innovation from reasonable material design to electrolyte optimization is the key to improve the performance of anode materials for potassium ion batteries (PIBs). In this work, a two-dimensional...
Collapse
|